Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Therapeutic Benefits of Intravenously Administrated Nanoparticles in Stroke and Age-related Neurodegenerative Diseases

Author(s): Mehdi Farhoudi, Saeed Sadigh-Eteghad, Javad Mahmoudi, Afsaneh Farjami, Mohammad Mahmoudian and Sara Salatin*

Volume 28, Issue 24, 2022

Published on: 18 July, 2022

Page: [1985 - 2000] Pages: 16

DOI: 10.2174/1381612828666220608093639

Price: $65

Open Access Journals Promotions 2
Abstract

The mean global lifetime risk of neurological disorders such as stroke, Alzheimer’s disease (AD), and Parkinson’s disease (PD) has shown a large effect on economy and society. Researchers are still struggling to find effective drugs to treat neurological disorders and drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between peripheral blood circulation and neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration. BBB disruption is evident in many neurological conditions. Nevertheless, the majority of currently available therapies have tremendous problems with drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm which can encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD, as well as the factors affecting their efficacy after systemic administration.

Keywords: Central nervous system, blood-brain barrier, stroke, Alzheimer’s disease, Parkinson’s disease, nanoparticles.

[1]
Harschnitz O, Studer L. Human stem cell models to study host-virus interactions in the central nervous system. Nat Rev Immunol 2021; 21(7): 441-53.
[http://dx.doi.org/10.1038/s41577-020-00474-y] [PMID: 33398129]
[2]
Bobillo S, Crespo M, Escudero L, et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica 2021; 106(2): 513-21.
[http://dx.doi.org/10.3324/haematol.2019.241208] [PMID: 32079701]
[3]
Propson NE, Roy ER, Litvinchuk A, Köhl J, Zheng H. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J Clin Invest 2021; 131(1): e140966.
[http://dx.doi.org/10.1172/JCI140966] [PMID: 32990682]
[4]
Wang Z, Zhang C, Huang F, Liu X, Wang Z, Yan B. Breakthrough of ZrO2 nanoparticles into fetal brains depends on developmental stage of maternal placental barrier and fetal blood-brain-barrier. J Hazard Mater 2021; 402: 123563.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123563] [PMID: 32745876]
[5]
Küpeli Akkol E, Tatlı Çankaya I, Şeker Karatoprak G, Carpar E, Sobarzo-Sánchez E, Capasso R. Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front Pharmacol 2021; 12: 669638.
[http://dx.doi.org/10.3389/fphar.2021.669638] [PMID: 34054540]
[6]
Eftekhari A, Ahmadian E, Salatin S, et al. Current analytical approaches in diagnosis of melanoma. Trends Analyt Chem 2019; 116: 122-35.
[http://dx.doi.org/10.1016/j.trac.2019.05.004]
[7]
Salatin S. Nanoparticles as potential tools for improved antioxidant enzyme delivery. J Adv Chem Pharm Mater 2018; 1(3): 65-6.
[8]
Zhang H, van Os WL, Tian X, et al. Development of curcumin-loaded zein nanoparticles for transport across the blood-brain barrier and inhibition of glioblastoma cell growth. Biomater Sci 2021; 9(21): 7092-103.
[http://dx.doi.org/10.1039/D0BM01536A] [PMID: 33538729]
[9]
Hou W, Jiang Y, Xie G, et al. Biocompatible BSA-MnO2 nanoparticles for in vivo timely permeability imaging of blood-brain barrier and prediction of hemorrhage transformation in acute ischemic stroke. Nanoscale 2021; 13(18): 8531-42.
[http://dx.doi.org/10.1039/D1NR02015C] [PMID: 33908561]
[10]
Figueroa EG, González-Candia A, Caballero-Román A, et al. Blood-brain barrier dysfunction in hemorrhagic transformation: A therapeutic opportunity for nanoparticles and melatonin. J Neurophysiol 2021; 125(6): 2025-33.
[http://dx.doi.org/10.1152/jn.00638.2020] [PMID: 33909508]
[11]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Alami-Milani M, Jelvehgari M. Formulation and evaluation of eudragit RL-100 nanoparticles loaded in-situ forming gel for intranasal delivery of rivastigmine. Adv Pharm Bull 2020; 10(1): 20-9.
[http://dx.doi.org/10.15171/apb.2020.003] [PMID: 32002358]
[12]
Luissint A-C, Artus C, Glacial F, Ganeshamoorthy K, Couraud P-O. Tight junctions at the blood brain barrier: Physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012; 9(1): 23.
[http://dx.doi.org/10.1186/2045-8118-9-23] [PMID: 23140302]
[13]
Zamanlu M, Eskandani M, Barar J, Jaymand M, Pakchin PS, Farhoudi M. Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. J Drug Deliv Sci Technol 2019; 53: 101165.
[http://dx.doi.org/10.1016/j.jddst.2019.101165]
[14]
Posadas I, Monteagudo S, Ceña V. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine (Lond) 2016; 11(7): 833-49.
[http://dx.doi.org/10.2217/nnm.16.15] [PMID: 26980585]
[15]
de Gooijer MC, Kemper EM, Buil LCM, et al. ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when blood-brain barrier integrity is lost. Cell Rep Med 2021; 2(1): 100184.
[http://dx.doi.org/10.1016/j.xcrm.2020.100184] [PMID: 33521698]
[16]
Elabi O, Gaceb A, Carlsson R, et al. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep 2021; 11(1): 1120.
[http://dx.doi.org/10.1038/s41598-020-80889-8] [PMID: 33441868]
[17]
Tavazoie M, Van der Veken L, Silva-Vargas V, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008; 3(3): 279-88.
[http://dx.doi.org/10.1016/j.stem.2008.07.025] [PMID: 18786415]
[18]
Alquisiras-Burgos I, Peralta-Arrieta I, Alonso-Palomares LA, Zacapala-Gómez AE, Salmerón-Bárcenas EG, Aguilera P. Neurological complications associated with the blood-brain barrier damage induced by the inflammatory response during SARS-CoV-2 infection. Mol Neurobiol 2021; 58(2): 520-35.
[http://dx.doi.org/10.1007/s12035-020-02134-7] [PMID: 32978729]
[19]
Maghsoodi M, Rahmani M, Ghavimi H, et al. Fast dissolving sublingual films containing sumatriptan alone and combined with methoclopramide: Evaluation in vitro drug release and mucosal permeation. Ulum-i Daruyi 2016; 22(3): 153-63.
[http://dx.doi.org/10.15171/PS.2016.25]
[20]
Nian K, Harding IC, Herman IM, Ebong EE. Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction. Front Physiol 2020; 11: 605398.
[http://dx.doi.org/10.3389/fphys.2020.605398] [PMID: 33424628]
[21]
Zhang Z, Tian Y, Ye K. δ-secretase in neurodegenerative diseases: Mechanisms, regulators and therapeutic opportunities. Transl Neurodegener 2020; 9(1): 1-9.
[http://dx.doi.org/10.1186/s40035-019-0179-3] [PMID: 31911834]
[22]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. An alternative approach for improved entrapment efficiency of hydrophilic drug substance in PLGA nanoparticles by interfacial polymer deposition following solvent displacement. Jundishapur J Nat Pharm Prod 2018; 13(4): e12873.
[http://dx.doi.org/10.5812/jjnpp.12873]
[23]
Alami-Milani M, Zakeri-Milani P, Valizadeh H, Sattari S, Salatin S, Jelvehgari M. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol 2019; 24(6): 680-8.
[http://dx.doi.org/10.1080/10837450.2019.1578370] [PMID: 30892119]
[24]
Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials (Basel) 2020; 10(9): 1-40.
[http://dx.doi.org/10.3390/nano10091700] [PMID: 32872399]
[25]
Salatin S, Lotfipour F, Jelvehgari M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin Drug Deliv 2019; 16(12): 1313-31.
[http://dx.doi.org/10.1080/17425247.2020.1693998] [PMID: 31738622]
[26]
Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. Beilstein J Nanotechnol 2020; 11(1): 338-53.
[http://dx.doi.org/10.3762/bjnano.11.25] [PMID: 32117671]
[27]
Sharifi S, Samani A, Ahmadian E, et al. Oral delivery of proteins and peptides by mucoadhesive nanoparticles. Biointerface Res Appl Chem 2019; 9(2): 3849-52.
[http://dx.doi.org/10.33263/BRIAC92.849852]
[28]
Xin H, Sha X, Jiang X, et al. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles. Biomaterials 2012; 33(5): 1673-81.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.018] [PMID: 22133551]
[29]
Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Overcoming the blood-brain barrier: Functionalised chitosan nanocarriers. Pharmaceutics 2020; 12(11): 1-20.
[http://dx.doi.org/10.3390/pharmaceutics12111013] [PMID: 33114020]
[30]
Hajal C, Campisi M, Mattu C, Chiono V, Kamm RD. In vitro models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics 2018; 12(4): 042213.
[http://dx.doi.org/10.1063/1.5027118] [PMID: 29887937]
[31]
Bernard-Patrzynski F, Lécuyer M-A, Puscas I, et al. Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One 2019; 14(12): e0226302.
[http://dx.doi.org/10.1371/journal.pone.0226302] [PMID: 31851695]
[32]
Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 2009; 137(1): 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.002] [PMID: 19285109]
[33]
Reimold I, Domke D, Bender J, Seyfried CA, Radunz H-E, Fricker G. Delivery of nanoparticles to the brain detected by fluorescence microscopy. Eur J Pharm Biopharm 2008; 70(2): 627-32.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.007] [PMID: 18577452]
[34]
Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT. Focused ultrasound disruption of the blood-brain barrier: A new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 2012; 32(1): E3.
[http://dx.doi.org/10.3171/2011.10.FOCUS11252] [PMID: 22208896]
[35]
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Adv Sci (Weinh) 2021; 8(10): 2003937.
[http://dx.doi.org/10.1002/advs.202003937] [PMID: 34026447]
[36]
Salatin S, Jelvehgari M. Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome-hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 2020; 46(8): 1318-33.
[http://dx.doi.org/10.1080/03639045.2020.1788068] [PMID: 32598186]
[37]
Iachetta G, Falanga A, Molino Y, et al. gH625-liposomes as tool for pituitary adenylate cyclase-activating polypeptide brain delivery. Sci Rep 2019; 9(1): 9183.
[http://dx.doi.org/10.1038/s41598-019-45137-8] [PMID: 31235716]
[38]
Li W, Qiu J, Li X-L, et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci Adv 2021; 7(1): eabd6889.
[http://dx.doi.org/10.1126/sciadv.abd6889] [PMID: 33523853]
[39]
Brown TD, Habibi N, Wu D, Lahann J, Mitragotri S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood-brain barrier. ACS Biomater Sci Eng 2020; 6(9): 4916-28.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00743] [PMID: 33455287]
[40]
Gonzalez-Carter D, Goode AE, Kiryushko D, et al. Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale 2019; 11(45): 22054-69.
[http://dx.doi.org/10.1039/C9NR02866H] [PMID: 31720664]
[41]
Tosi G, Musumeci T, Ruozi B, et al. The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: Strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. J Drug Deliv Sci Technol 2016; 32: 66-76.
[http://dx.doi.org/10.1016/j.jddst.2015.07.007]
[42]
Liang J, Gao C, Zhu Y, et al. Natural brain penetration enhancer-modified albumin nanoparticles for glioma targeting delivery. ACS Appl Mater Interfaces 2018; 10(36): 30201-13.
[http://dx.doi.org/10.1021/acsami.8b11782] [PMID: 30113810]
[43]
Dizaj SM, Rad AA, Safaei N, et al. The application of nanomaterials in cardiovascular diseases: A review on drugs and devices. J Pharm Pharm Sci 2019; 22: 501-15.
[http://dx.doi.org/10.18433/jpps30456]
[44]
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomedicine 2019; 14: 6497-517.
[http://dx.doi.org/10.2147/IJN.S215941] [PMID: 31616141]
[45]
Monge M, Fornaguera C, Quero C, et al. Functionalized PLGA nanoparticles prepared by nano-emulsion templating interact selectively with proteins involved in the transport through the blood-brain barrier. Eur J Pharm Biopharm 2020; 156: 155-64.
[http://dx.doi.org/10.1016/j.ejpb.2020.09.003] [PMID: 32927077]
[46]
Holmkvist AD, Agorelius J, Forni M, Nilsson UJ, Linsmeier CE, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology 2020; 18(1): 27-35.
[http://dx.doi.org/10.1186/s12951-020-0585-9] [PMID: 32024534]
[47]
Lotfipour F, Alami-Milani M, Salatin S, Hadavi A, Jelvehgari M. Freeze-thaw-induced cross-linked PVA/chitosan for oxytetracycline-loaded wound dressing: The experimental design and optimization. Res Pharm Sci 2019; 14(2): 175-89.
[http://dx.doi.org/10.4103/1735-5362.253365] [PMID: 31620194]
[48]
Salatin S, Alami-Milani M, Daneshgar R, Jelvehgari M. Box-Behnken experimental design for preparation and optimization of the intranasal gels of selegiline hydrochloride. Drug Dev Ind Pharm 2018; 44(10): 1613-21.
[http://dx.doi.org/10.1080/03639045.2018.1483387] [PMID: 29932793]
[49]
Simkó M, Mattsson M-O. Interactions between nanosized materials and the brain. Curr Med Chem 2014; 21(37): 4200-14.
[http://dx.doi.org/10.2174/0929867321666140716100449] [PMID: 25039776]
[50]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[51]
Da Silva-Candal A, Brown T, Krishnan V, et al. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J Control Release 2019; 309: 94-105.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.026] [PMID: 31330214]
[52]
Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013; 110(26): 10753-8.
[http://dx.doi.org/10.1073/pnas.1308345110] [PMID: 23754411]
[53]
Huang X, Li L, Liu T, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011; 5(7): 5390-9.
[http://dx.doi.org/10.1021/nn200365a] [PMID: 21634407]
[54]
Arvizo RR, Miranda OR, Moyano DF, et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 2011; 6(9): e24374.
[http://dx.doi.org/10.1371/journal.pone.0024374] [PMID: 21931696]
[55]
Jiang Z, Dong X, Sun Y. Charge effects of self-assembled chitosan-hyaluronic acid nanoparticles on inhibiting amyloid β-protein aggregation. Carbohydr Res 2018; 461: 11-8.
[http://dx.doi.org/10.1016/j.carres.2018.03.001] [PMID: 29549749]
[56]
Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 2007; 118(1): 54-8.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.012] [PMID: 17250920]
[57]
Decuzzi P, Godin B, Tanaka T, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010; 141(3): 320-7.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.014] [PMID: 19874859]
[58]
Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm 2007; 344(1-2): 103-9.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.023] [PMID: 17651930]
[59]
Petri B, Bootz A, Khalansky A, et al. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: Revisiting the role of surfactants. J Control Release 2007; 117(1): 51-8.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.015] [PMID: 17150277]
[60]
Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 2010; 107(3): 1235-40.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[61]
Jiang W, Xie H, Ghoorah D, et al. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One 2012; 7(5): e37376.
[http://dx.doi.org/10.1371/journal.pone.0037376] [PMID: 22615995]
[62]
Gromnicova R, Davies HA, Sreekanthreddy P, et al. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One 2013; 8(12): e81043.
[http://dx.doi.org/10.1371/journal.pone.0081043] [PMID: 24339894]
[63]
Martinez-Veracoechea FJ, Frenkel D. Designing super selectivity in multivalent nano-particle binding. Proc Natl Acad Sci USA 2011; 108(27): 10963-8.
[http://dx.doi.org/10.1073/pnas.1105351108] [PMID: 21690358]
[64]
Wiley DT, Webster P, Gale A, Davis ME. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 2013; 110(21): 8662-7.
[http://dx.doi.org/10.1073/pnas.1307152110] [PMID: 23650374]
[65]
Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J Control Release 2010; 146(2): 196-200.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.007] [PMID: 20385181]
[66]
Gopinath PM, Saranya V, Vijayakumar S, et al. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci Rep 2019; 9(1): 8860.
[http://dx.doi.org/10.1038/s41598-019-45139-6] [PMID: 31222081]
[67]
Gorshkov V, Bubis JA, Solovyeva EM, Gorshkov MV, Kjeldsen F. Protein corona formed on silver nanoparticles in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environ Sci Nano 2019; 6(4): 1089-98.
[http://dx.doi.org/10.1039/C8EN01054D] [PMID: 31304020]
[68]
Engelberg S, Netzer E, Assaraf YG, Livney YD. Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death Dis 2019; 10(10): 702.
[http://dx.doi.org/10.1038/s41419-019-1870-0] [PMID: 31541073]
[69]
Lee S-Y, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 2009; 20(49): 495101.
[http://dx.doi.org/10.1088/0957-4484/20/49/495101] [PMID: 19904027]
[70]
Sánchez-López E, Ettcheto M, Egea MA, et al. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization. J Nanobiotechnology 2018; 16(1): 32.
[http://dx.doi.org/10.1186/s12951-018-0356-z] [PMID: 29587747]
[71]
Ahmadian E, Samiei M, Hasanzadeh A, et al. Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: Past, present and future. J Pharm Biomed Anal 2020; 186: 113265.
[http://dx.doi.org/10.1016/j.jpba.2020.113265] [PMID: 32283481]
[72]
Nance EA, Woodworth GF, Sailor KA, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 2012; 4(149): 149ra119.
[http://dx.doi.org/10.1126/scitranslmed.3003594] [PMID: 22932224]
[73]
Cheng J, Li D, Sun M, et al. Physicochemical-property guided design of a highly sensitive probe to image nitrosative stress in the pathology of stroke. Chem Sci (Camb) 2019; 11(1): 281-9.
[http://dx.doi.org/10.1039/C9SC03798E] [PMID: 34040723]
[74]
Gibson CL, Attwood L. The impact of gender on stroke pathology and treatment. Neurosci Biobehav Rev 2016; 67: 119-24.
[http://dx.doi.org/10.1016/j.neubiorev.2015.08.020] [PMID: 26657813]
[75]
Bauer AT, Bürgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab 2010; 30(4): 837-48.
[http://dx.doi.org/10.1038/jcbfm.2009.248] [PMID: 19997118]
[76]
Nichols P, Urriola J, Miller S, et al. Blood-brain barrier dysfunction significantly correlates with serum matrix metalloproteinase-7 (MMP-7) following traumatic brain injury. Neuroimage Clin 2021; 31: 102741.
[http://dx.doi.org/10.1016/j.nicl.2021.102741] [PMID: 34225019]
[77]
Chen J, Gu Z, Wu M, et al. C-reactive protein can upregulate VEGF expression to promote ADSC-induced angiogenesis by activating HIF-1α via CD64/PI3k/Akt and MAPK/ERK signaling pathways. Stem Cell Res Ther 2016; 7(1): 1-13.
[http://dx.doi.org/10.1186/s13287-016-0377-1] [PMID: 30606242]
[78]
Jiang S, Xia R, Jiang Y, Wang L, Gao F. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier. PLoS One 2014; 9(2): e86407.
[http://dx.doi.org/10.1371/journal.pone.0086407] [PMID: 24551038]
[79]
Nadareishvili Z, Simpkins AN, Hitomi E, Reyes D, Leigh R. Post-stroke blood-brain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy. Cerebrovasc Dis 2019; 47(3-4): 135-42.
[http://dx.doi.org/10.1159/000499666] [PMID: 30970357]
[80]
da Fonseca ACC, Matias D, Garcia C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 2014; 8: 362.
[http://dx.doi.org/10.3389/fncel.2014.00362] [PMID: 25404894]
[81]
Dong X, Gao J, Su Y, Wang Z. Nanomedicine for ischemic stroke. Int J Mol Sci 2020; 21(20): 1-22.
[http://dx.doi.org/10.3390/ijms21207600] [PMID: 33066616]
[82]
Zamanlu M, Farhoudi M, Eskandani M, et al. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J Drug Target 2018; 26(2): 95-109.
[http://dx.doi.org/10.1080/1061186X.2017.1365874] [PMID: 28796540]
[83]
Zamanlu M, Eskandani M, Mohammadian R, Entekhabi N, Rafi M, Farhoudi M. Spectrophotometric analysis of thrombolytic activity: SATA assay. Bioimpacts 2018; 8(1): 31-8.
[http://dx.doi.org/10.15171/bi.2018.05] [PMID: 29713600]
[84]
Azam F, Madi AM, Ali HI. Molecular docking and prediction of pharmacokinetic properties of dual mechanism drugs that block MAO-B and Adenosine A(2A) receptors for the treatment of Parkinson’s disease. J Young Pharm 2012; 4(3): 184-92.
[http://dx.doi.org/10.4103/0975-1483.100027] [PMID: 23112538]
[85]
Gaudin A, Yemisci M, Eroglu H, et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol 2014; 9(12): 1054-62.
[http://dx.doi.org/10.1038/nnano.2014.274] [PMID: 25420034]
[86]
Fukuta T, Ishii T, Asai T, Oku N. Applications of liposomal drug delivery systems to develop neuroprotective agents for the treatment of ischemic stroke. Biol Pharm Bull 2019; 42(3): 319-26.
[http://dx.doi.org/10.1248/bpb.b18-00683] [PMID: 30828062]
[87]
Wang J, Zhang Y, Xia J, et al. Neuronal PirB upregulated in cerebral ischemia acts as an attractive theranostic target for ischemic stroke. J Am Heart Assoc 2018; 7(3): e007197.
[http://dx.doi.org/10.1161/JAHA.117.007197] [PMID: 29378731]
[88]
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries. Life Sci 2018; 193: 64-76.
[http://dx.doi.org/10.1016/j.lfs.2017.11.046] [PMID: 29196052]
[89]
Karatas H, Aktas Y, Gursoy-Ozdemir Y, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 2009; 29(44): 13761-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4246-09.2009] [PMID: 19889988]
[90]
Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem 2001; 76(5): 1597-600.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00222.x] [PMID: 11238745]
[91]
Yemisci M, Caban S, Gursoy-Ozdemir Y, et al. Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection. J Cereb Blood Flow Metab 2015; 35(3): 469-75.
[http://dx.doi.org/10.1038/jcbfm.2014.220] [PMID: 25492116]
[92]
Ma J, Zhang S, Liu J, et al. Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small 2019; 15(35): e1902011.
[http://dx.doi.org/10.1002/smll.201902011] [PMID: 31290245]
[93]
Han L, Cai Q, Tian D, et al. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomedicine 2016; 12(7): 1833-42.
[http://dx.doi.org/10.1016/j.nano.2016.03.005] [PMID: 27039220]
[94]
Jin Q, Cai Y, Li S, et al. Edaravone-encapsulated agonistic micelles rescue ischemic brain tissue by tuning blood-brain barrier permeability. Theranostics 2017; 7(4): 884-98.
[http://dx.doi.org/10.7150/thno.18219] [PMID: 28382161]
[95]
Han JY, Fan JY, Horie Y, et al. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 2008; 117(2): 280-95.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.008] [PMID: 18048101]
[96]
Liu X, Ye M, An C, Pan L, Ji L. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials 2013; 34(28): 6893-905.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.021] [PMID: 23768781]
[97]
Reyhani-Rad S, Mahmoudi J. Effect of adenosine A2A receptor antagonists on motor disorders induced by 6-hydroxydopamine in rat. Acta Cir Bras 2016; 31(2): 133-7.
[http://dx.doi.org/10.1590/S0102-865020160020000008] [PMID: 26959623]
[98]
Shaafi S, Najmi S, Aliasgharpour H, et al. The efficacy of the ketogenic diet on motor functions in Parkinson’s disease: A rat model. Iran J Neurol 2016; 15(2): 63-9.
[PMID: 27326359]
[99]
Kouli A, Camacho M, Allinson K, Williams-Gray CH. Neuroinflammation and protein pathology in Parkinson’s disease dementia. Acta Neuropathol Commun 2020; 8(1): 211.
[http://dx.doi.org/10.1186/s40478-020-01083-5] [PMID: 33272323]
[100]
Kortekaas R, Leenders KL, van Oostrom JC, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005; 57(2): 176-9.
[http://dx.doi.org/10.1002/ana.20369] [PMID: 15668963]
[101]
Schneider SA, Obeso JA. Clinical and pathological features of Parkinson’s disease. Curr Top Behav Neurosci 2015; 22: 205-20.
[http://dx.doi.org/10.1007/7854_2014_317] [PMID: 24850081]
[102]
Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 2015; 35(5): 747-50.
[http://dx.doi.org/10.1038/jcbfm.2015.32] [PMID: 25757748]
[103]
Rite I, Machado A, Cano J, Venero JL. Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 2007; 101(6): 1567-82.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04567.x] [PMID: 17437543]
[104]
Barcia C, Bautista V, Sánchez-Bahillo A, et al. Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm (Vienna) 2005; 112(9): 1237-48.
[http://dx.doi.org/10.1007/s00702-004-0256-2] [PMID: 15666038]
[105]
Chung YC, Kim Y-S, Bok E, Yune TY, Maeng S, Jin BK. MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson’s disease. Mediators Inflamm 2013; 2013: 370526.
[http://dx.doi.org/10.1155/2013/370526] [PMID: 23853428]
[106]
Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm (Vienna) 2012; 119(1): 59-71.
[http://dx.doi.org/10.1007/s00702-011-0684-8] [PMID: 21748523]
[107]
van Assema DM, Lubberink M, Bauer M, et al. Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 2012; 135(Pt 1): 181-9.
[http://dx.doi.org/10.1093/brain/awr298] [PMID: 22120145]
[108]
Jangula A, Murphy EJ. Lipopolysaccharide-induced blood brain barrier permeability is enhanced by alpha-synuclein expression. Neurosci Lett 2013; 551: 23-7.
[http://dx.doi.org/10.1016/j.neulet.2013.06.058] [PMID: 23876253]
[109]
Yokel RA. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 2006; 10(2-3): 223-53.
[http://dx.doi.org/10.3233/JAD-2006-102-309] [PMID: 17119290]
[110]
Leveugle B, Faucheux BA, Bouras C, et al. Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 1996; 91(6): 566-72.
[http://dx.doi.org/10.1007/s004010050468] [PMID: 8781654]
[111]
Dickson DW. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258.
[http://dx.doi.org/10.1101/cshperspect.a009258] [PMID: 22908195]
[112]
Wen C-J, Zhang L-W, Al-Suwayeh SA, Yen T-C, Fang J-Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine 2012; 7: 1599-611.
[PMID: 22619515]
[113]
Nasrolahi A, Mahmoudi J, Akbarzadeh A, et al. Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: Is there a light at the end of the tunnel? Rev Neurosci 2018; 29(5): 475-89.
[http://dx.doi.org/10.1515/revneuro-2017-0040] [PMID: 29305570]
[114]
Qu M, Lin Q, He S, et al. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J Control Release 2018; 277: 173-82.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.019] [PMID: 29588159]
[115]
Vong LB, Sato Y, Chonpathompikunlert P, Tanasawet S, Hutamekalin P, Nagasaki Y. Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater 2020; 109: 220-8.
[http://dx.doi.org/10.1016/j.actbio.2020.03.021] [PMID: 32268242]
[116]
Ray S, Sinha P, Laha B, Maiti S, Bhattacharyya UK, Nayak AK. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol 2018; 48: 21-9.
[http://dx.doi.org/10.1016/j.jddst.2018.08.016]
[117]
Pahuja R, Seth K, Shukla A, et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015; 9(5): 4850-71.
[http://dx.doi.org/10.1021/nn506408v] [PMID: 25825926]
[118]
Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 2011; 415(1-2): 273-83.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.062] [PMID: 21651967]
[119]
Liu H, Han Y, Wang T, et al. Targeting microglia for therapy of Parkinson’s Disease by using biomimetic ultrasmall nanoparticles. J Am Chem Soc 2020; 142(52): 21730-42.
[http://dx.doi.org/10.1021/jacs.0c09390] [PMID: 33315369]
[120]
Xu S-F, Zhang Y-H, Wang S, et al. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol 2019; 21: 101090.
[http://dx.doi.org/10.1016/j.redox.2018.101090] [PMID: 30593976]
[121]
Lalani J, Raichandani Y, Mathur R, et al. Comparative receptor based brain delivery of tramadol-loaded poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol 2012; 8(6): 918-27.
[http://dx.doi.org/10.1166/jbn.2012.1462] [PMID: 23030000]
[122]
Huang R, Han L, Li J, et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med 2009; 11(9): 754-63.
[http://dx.doi.org/10.1002/jgm.1361] [PMID: 19554623]
[123]
Huang R, Ke W, Liu Y, et al. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 2010; 290(1-2): 123-30.
[http://dx.doi.org/10.1016/j.jns.2009.09.032] [PMID: 19909981]
[124]
Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17(8): 564-74.
[http://dx.doi.org/10.1080/10611860903112842] [PMID: 19694610]
[125]
Wang L, Zhang L, Xue X, Ge G, Liang X. Enhanced dispersibility and cellular transmembrane capability of single-wall carbon nanotubes by polycyclic organic compounds as chaperon. Nanoscale 2012; 4(13): 3983-9.
[http://dx.doi.org/10.1039/c2nr30346a] [PMID: 22628008]
[126]
Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 2006; 6(9): 2043-8.
[http://dx.doi.org/10.1021/nl061241t] [PMID: 16968023]
[127]
Kim O-H, Park JH, Son JI, Kim K-Y, Lee HJ. Both intracranial and intravenous administration of functionalized carbon nanotubes protect dopaminergic neuronal death from 6-hydroxydopamine. Int J Nanomedicine 2020; 15: 7615-26.
[http://dx.doi.org/10.2147/IJN.S276380] [PMID: 33116491]
[128]
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[129]
Cheng Y, Tian D-Y, Wang Y-J. Peripheral clearance of brain-derived Aβ in Alzheimer’s disease: Pathophysiology and therapeutic perspectives. Transl Neurodegener 2020; 9(1): 16.
[http://dx.doi.org/10.1186/s40035-020-00195-1] [PMID: 32381118]
[130]
Canobbio I, Abubaker AA, Visconte C, Torti M, Pula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer’s disease. Front Cell Neurosci 2015; 9: 65.
[http://dx.doi.org/10.3389/fncel.2015.00065] [PMID: 25784858]
[131]
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol 2020; 140(4): 417-47.
[http://dx.doi.org/10.1007/s00401-020-02196-w] [PMID: 32728795]
[132]
Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P. Relationship between amyloid-β deposition and blood-brain barrier dysfunction in Alzheimer’s disease. Front Cell Neurosci 2021; 15: 695479.
[http://dx.doi.org/10.3389/fncel.2021.695479] [PMID: 34349624]
[133]
Cai Z, Liu N, Wang C, et al. Role of RAGE in Alzheimer’s disease. Cell Mol Neurobiol 2016; 36(4): 483-95.
[http://dx.doi.org/10.1007/s10571-015-0233-3] [PMID: 26175217]
[134]
Sochocka M, Koutsouraki ES, Gasiorowski K, Leszek J. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: A new approach to therapy. CNS Neurol Disord Drug Targets 2013; 12(6): 870-81.
[http://dx.doi.org/10.2174/18715273113129990072] [PMID: 23469836]
[135]
Emrani S, Arain HA, DeMarshall C, Nuriel T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review. Alzheimers Res Ther 2020; 12(1): 141-50.
[http://dx.doi.org/10.1186/s13195-020-00712-4] [PMID: 33148345]
[136]
Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000; 106(12): 1489-99.
[http://dx.doi.org/10.1172/JCI10498] [PMID: 11120756]
[137]
Davis N, Mota BC, Stead L, et al. Pharmacological ablation of astrocytes reduces Aβ degradation and synaptic connectivity in an ex vivo model of Alzheimer’s disease. J Neuroinflammation 2021; 18(1): 73.
[http://dx.doi.org/10.1186/s12974-021-02117-y] [PMID: 33731156]
[138]
Mietelska-Porowska A, Wojda U. T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: Potential pools of new biomarkers. J Immunol Res 2017; 2017: 4626540.
[http://dx.doi.org/10.1155/2017/4626540] [PMID: 28293644]
[139]
Iadecola C, Zhang F, Niwa K, et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 1999; 2(2): 157-61.
[http://dx.doi.org/10.1038/5715] [PMID: 10195200]
[140]
Ruitenberg A, den Heijer T, Bakker SL, et al. Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam Study. Ann Neurol 2005; 57(6): 789-94.
[http://dx.doi.org/10.1002/ana.20493] [PMID: 15929050]
[141]
Winkler EA, Nishida Y, Sagare AP, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 2015; 18(4): 521-30.
[http://dx.doi.org/10.1038/nn.3966] [PMID: 25730668]
[142]
Reynolds DS. A short perspective on the long road to effective treatments for Alzheimer’s disease. Br J Pharmacol 2019; 176(18): 3636-48.
[http://dx.doi.org/10.1111/bph.14581] [PMID: 30657599]
[143]
Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem 2019; 176: 228-47.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.020] [PMID: 31103902]
[144]
Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2020; 19(2): 147-57.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[145]
Guarnieri D, Falanga A, Muscetti O, et al. Shuttle-mediated nanoparticle delivery to the blood-brain barrier. Small 2013; 9(6): 853-62.
[http://dx.doi.org/10.1002/smll.201201870] [PMID: 23135878]
[146]
Meng F, Asghar S, Gao S, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B Biointerfaces 2015; 134: 88-97.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.025] [PMID: 26162977]
[147]
Duro-Castano A, Borrás C, Herranz-Pérez V, et al. Targeting Alzheimer’s disease with multimodal polypeptide-based nanoconjugates. Sci Adv 2021; 7(13): eabf9180.
[http://dx.doi.org/10.1126/sciadv.abf9180] [PMID: 33771874]
[148]
Khemariya RP, Khemariya PS. New-fangled approach in the management of Alzheimer by formulation of polysorbate 80 coated chitosan nanoparticles of rivastigmine for brain delivery and their in vivo evaluation. Int J Curr Res Med Sci 2016; 2(2): 18-29.
[149]
Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 2010; 31(5): 908-15.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.104] [PMID: 19853292]
[150]
Huang N, Lu S, Liu X-G, Zhu J, Wang Y-J, Liu R-T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 2017; 8(46): 81001-13.
[http://dx.doi.org/10.18632/oncotarget.20944] [PMID: 29113362]
[151]
Gao C, Chu X, Gong W, et al. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J Nanobiotechnology 2020; 18(1): 71.
[http://dx.doi.org/10.1186/s12951-020-00626-1] [PMID: 32404183]
[152]
Liu Z, Gao X, Kang T, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 2013; 24(6): 997-1007.
[http://dx.doi.org/10.1021/bc400055h] [PMID: 23718945]
[153]
Lu Y, Guo Z, Zhang Y, et al. Microenvironment remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia. Adv Sci (Weinh) 2018; 6(4): 1801586.
[http://dx.doi.org/10.1002/advs.201801586] [PMID: 30828531]
[154]
Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine 2018; 14(2): 609-18.
[http://dx.doi.org/10.1016/j.nano.2017.12.006] [PMID: 29248676]
[155]
Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(1): 35-47.
[http://dx.doi.org/10.1002/wnan.59] [PMID: 20049829]
[156]
Hou K, Zhao J, Wang H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun 2020; 11(1): 4790.
[http://dx.doi.org/10.1038/s41467-020-18525-2] [PMID: 32963242]
[157]
Singh AK, Singh SS, Rathore AS, et al. Lipid-Coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater Sci Eng 2021; 7(8): 3737-53.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00514] [PMID: 34297529]
[158]
Wang H, Xu X, Guan X, et al. Liposomal 9-aminoacridine for treatment of ischemic stroke: From drug discovery to drug delivery. Nano Lett 2020; 20(3): 1542-51.
[http://dx.doi.org/10.1021/acs.nanolett.9b04018] [PMID: 32039606]
[159]
Xu H, Hua Y, Zhong J, et al. Resveratrol delivery by albumin nanoparticles improved neurological function and neuronal damage in transient middle cerebral artery occlusion rats. Front Pharmacol 2018; 9: 1403.
[http://dx.doi.org/10.3389/fphar.2018.01403] [PMID: 30564121]
[160]
Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle delivered anti-miR-141-3p for stroke therapy. Cells 2021; 10(5): 1011-20.
[http://dx.doi.org/10.3390/cells10051011] [PMID: 33922958]
[161]
Hsu S-H, Al-Suwayeh S, Chen CC, Chi C-H, Fang J-Y. PEGylated liposomes incorporated with nonionic surfactants as an apomorphine delivery system targeting the brain: In vitro release and in vivo real-time imaging. Curr Nanosci 2011; 7(2): 191-9.
[http://dx.doi.org/10.2174/157341311794653686]
[162]
Hsu S-H, Wen C-J, Al-Suwayeh SA, Chang H-W, Yen T-C, Fang J-Y. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: Apomorphine as a model drug. Nanotechnology 2010; 21(40): 405101.
[http://dx.doi.org/10.1088/0957-4484/21/40/405101] [PMID: 20823498]
[163]
Li Y, Chen Z, Lu Z, et al. “Cell-addictive” dual-target traceable nanodrug for Parkinson’s disease treatment via flotillins pathway. Theranostics 2018; 8(19): 5469-81.
[http://dx.doi.org/10.7150/thno.28295] [PMID: 30555558]
[164]
Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 2008; 1200: 159-68.
[http://dx.doi.org/10.1016/j.brainres.2008.01.039] [PMID: 18291351]
[165]
Bilia AR, Nardiello P, Piazzini V, et al. Successful brain delivery of andrographolide loaded in human albumin nanoparticles to TgCRND8 mice, an Alzheimer’s Disease mouse model. Front Pharmacol 2019; 10: 910.
[http://dx.doi.org/10.3389/fphar.2019.00910] [PMID: 31507412]
[166]
Sun D, Li N, Zhang W, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces 2016; 148: 116-29.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.052] [PMID: 27591943]
[167]
Xu R, Wang J, Xu J, et al. Rhynchophylline Loaded-mPEG-PLGA nanoparticles coated with tween-80 for preliminary study in Alzheimer’s Disease. Int J Nanomedicine 2020; 15: 1149-60.
[http://dx.doi.org/10.2147/IJN.S236922] [PMID: 32110013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy