Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Synergy Mechanisms of Rhizoma Paridis Saponins on Non-small Cell Lung Cancer: Segmented Solid Phase Extraction, Bioactivity Screening, and Network Pharmacology

Author(s): Chen Liu, Qingyun Ma, Ruikun Du, Menghan Chen, Shuyan Xing, Yong Yang* and Rong Rong*

Volume 22, Issue 20, 2022

Published on: 05 August, 2022

Page: [3466 - 3486] Pages: 21

DOI: 10.2174/1871520622666220601090838

Price: $65

conference banner
Abstract

Background: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Rhizoma paridis saponins (RPS), the main bioactive ingredients of Paris polyphylla Smith var. yunnanensis (PPY), have been proved to have remarkable effects on NSCLC cell lines. However, the multi-component synergistic effects and mechanisms of RPS on NSCLC have not been elucidated.

Objective: To decipher the multi-RPS synergistic effects and mechanisms against NSCLC based on network pharmacology combined with segmented solid-phase extraction (SPE) and bioactivity screening method.

Methods: Firstly, segmented SPE and cytotoxicity assays were performed to screen the RPS-enrichment fraction of PPY, and the steroidal saponins in it were identified by LC-MS/MS. Then, a network pharmacology analysis was performed to predict the potential therapeutic targets of RPS on NSCLC. Finally, viable cell counting tests and RT-qPCR were utilized to verify the synergistic effects and mechanisms of RPS.

Results: 48 potentially active compounds were identified from the 30% MeOH/EtOAc fraction of PPY (30% M/E PPY). The results of the network pharmacology analysis indicated that RPS exerted joint effects by regulating six key targets in the PI3K-AKT signaling pathway. In vitro experiments showed that due to the synergistic effects, 30% M/E PPY at 13.90 μg/mL could exert a stronger inhibitory activity on A549 cells by reducing the overexpression of six hub genes compared with the parallel control groups.

Conclusion: This research elaborates on the multi-RPS synergy mechanisms against NSCLC and provides a way to develop new combination medicines for NSCLC.

Keywords: Rhizoma paridis saponins, non-small cell lung cancer, segmented solid-phase extraction, bioactivity screening, network pharmacology, PI3K-Akt signaling pathway.

Graphical Abstract
[1]
Huang, Y.T.; Heist, R.S.; Chirieac, L.R.; Lin, X.; Skaug, V.; Zienolddiny, S.; Haugen, A.; Wu, M.C.; Wang, Z.; Su, L.; Asomaning, K.; Christiani, D.C. Genome-wide analysis of survival in early-stage non-small-cell lung cancer. J. Clin. Oncol., 2009, 27(16), 2660-2667.
[http://dx.doi.org/10.1200/JCO.2008.18.7906] [PMID: 19414679]
[2]
Sun, D.; Li, H.; Cao, M.; He, S.; Lei, L.; Peng, J.; Chen, W. Cancer burden in China: Trends, risk factors and prevention. Cancer Biol. Med., 2020, 17(4), 879-895.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0387] [PMID: 33299641]
[3]
Gao, Y.; Zens, P.; Su, M.; Gemperli, C.A.; Yang, H.; Deng, H.; Yang, Z.; Xu, D.; Hall, S.R.R.; Berezowska, S.; Dorn, P.; Peng, R.W.; Schmid, R.A.; Wang, W.; Marti, T.M. Chemotherapy-induced CDA expression renders resistant non-small cell lung cancer cells sensitive to 5′-deoxy-5-fluorocytidine (5′-DFCR). J. Exp. Clin. Cancer Res., 2021, 40(1), 138.
[http://dx.doi.org/10.1186/s13046-021-01938-2] [PMID: 33874986]
[4]
Shen, L.; Niu, X.; Jian, H.; Xu, Y.; Yu, Y.; Lu, S. Assessment of interfering factors and clinical risk associated with discontinuation of pemetrexed maintenance therapy in advanced non-squamous non-small cell lung cancer. Lung Cancer, 2017, 111, 43-50.
[http://dx.doi.org/10.1016/j.lungcan.2017.07.001] [PMID: 28838396]
[5]
Visser, S.; Huisbrink, J.; van ’t Veer, N.E.; van Toor, J.J.; van Boxem, A.J.M.; van Walree, N.C.; Stricker, B.H.; Aerts, J.G.J.V. Renal im-pairment during pemetrexed maintenance in patients with advanced nonsmall cell lung cancer: A cohort study. Eur. Respir. J., 2018, 52(4), 1800884.
[http://dx.doi.org/10.1183/13993003.00884-2018] [PMID: 30139775]
[6]
Sugiura, Y.; Nemoto, E.; Kawai, O.; Ohkubo, Y.; Fusegawa, H.; Kaseda, S. Gefitinib frequently induces liver damage in patients with lung adenocarcinoma previously treated by chemotherapy. Lung Cancer (Auckl.), 2013, 4, 9-14.
[http://dx.doi.org/10.2147/LCTT.S45172] [PMID: 28210130]
[7]
Rodak, O.; Peris-Díaz, M.D.; Olbromski, M.; Podhorska-Okołów, M.; Dzięgiel, P. Current landscape of non-small cell lung cancer: Epi-demiology, histological classification, targeted therapies, and immunotherapy. Cancers (Basel), 2021, 13(18), 4705.
[http://dx.doi.org/10.3390/cancers13184705] [PMID: 34572931]
[8]
Friedlaender, A.; Addeo, A.; Russo, A.; Gregorc, V.; Cortinovis, D.; Rolfo, C.D. Targeted therapies in early stage NSCLC: Hype or hope? Int. J. Mol. Sci., 2020, 21(17), 6329.
[http://dx.doi.org/10.3390/ijms21176329] [PMID: 32878298]
[9]
Haratake, N.; Seto, T. NTRK fusion-positive non-small-cell lung Cancer: The diagnosis and targeted therapy. Clin. Lung Cancer, 2021, 22(1), 1-5.
[http://dx.doi.org/10.1016/j.cllc.2020.10.013] [PMID: 33272813]
[10]
Jiang, Q.; Xie, M.; He, M.; Yan, F.; Zhang, X.; Yu, S. Anti-PD-1/PD-L1 antibodies versus docetaxel in patients with previously treated non-small-cell lung cancer. Oncotarget, 2017, 9(7), 7672-7683.
[http://dx.doi.org/10.18632/oncotarget.23584] [PMID: 29484143]
[11]
Meador, C.B.; Hata, A.N. Acquired resistance to targeted therapies in NSCLC: Updates and evolving insights. Pharmacol. Ther., 2020, 210, 107522.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107522] [PMID: 32151666]
[12]
Horvath, L.; Thienpont, B.; Zhao, L.; Wolf, D.; Pircher, A. Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC) - novel approaches and future outlook. Mol. Cancer, 2020, 19(1), 141.
[http://dx.doi.org/10.1186/s12943-020-01260-z] [PMID: 32917214]
[13]
Alsayari, A.; Asiri, Y.I.; Muhsinah, A.B.; Hassan, M.Z. Synthesis of new pyrazole hybrids as potential anticancer agents with xanthine oxidase inhibitory activity. Anticancer. Agents Med. Chem., 2022, 22
[http://dx.doi.org/10.2174/1871520622666220110162651] [PMID: 35016597]
[14]
Townsend, P.A.; Kozhevnikova, M.V.; Cexus, O.N.F.; Zamyatnin, A.A., Jr; Soond, S.M. BH3-mimetics: Recent developments in cancer therapy. J. Exp. Clin. Cancer Res., 2021, 40(1), 355.
[http://dx.doi.org/10.1186/s13046-021-02157-5] [PMID: 34753495]
[15]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[16]
Şeker Karatoprak, G.; Küpeli Akkol, E.; Yücel, Ç.; Bahadır Acıkara, Ö.; Sobarzo-Sánchez, E. Advances in understanding the role of aloe emodin and targeted drug delivery systems in Cancer. Oxid. Med. Cell. Longev., 2022, 2022, 7928200.
[http://dx.doi.org/10.1155/2022/7928200] [PMID: 35087619]
[17]
Amekyeh, H.; Alkhader, E.; Sabra, R.; Billa, N. Prospects of curcumin nanoformulations in Cancer management. Molecules, 2022, 27(2), 361.
[http://dx.doi.org/10.3390/molecules27020361] [PMID: 35056675]
[18]
Sidders, B.; Karlsson, A.; Kitching, L.; Torella, R.; Karila, P.; Phelan, A. Network-Based drug discovery: Coupling network pharmacology with phenotypic screening for neuronal excitability. J. Mol. Biol., 2018, 430(18 Pt A), 3005-3015.
[http://dx.doi.org/10.1016/j.jmb.2018.07.016] [PMID: 30030026]
[19]
Li, Y.; Xu, C.; Wang, H.; Liu, X.; Jiang, L.; Liang, S.; Wu, Z.; Wang, Z.; Zhou, J.; Xiao, W.; Guo, Z.; Wang, Y. Systems pharmacology reveals the multi-level synergetic mechanism of action of Ginkgo biloba L. leaves for cardiomyopathy treatment. J. Ethnopharmacol., 2021, 264, 113279.
[http://dx.doi.org/10.1016/j.jep.2020.113279] [PMID: 32810617]
[20]
Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic effects of chinese herbal medicine: A comprehensive review of methodology and current research. Front. Pharmacol., 2016, 7, 201.
[http://dx.doi.org/10.3389/fphar.2016.00201] [PMID: 27462269]
[21]
Zhang, A.; Sun, H.; Wang, X. Potentiating therapeutic effects by enhancing synergism based on active constituents from traditional medi-cine. Phytother. Res., 2014, 28(4), 526-533.
[http://dx.doi.org/10.1002/ptr.5032] [PMID: 23913598]
[22]
Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia, 2014, 92, 133-147.
[http://dx.doi.org/10.1016/j.fitote.2013.10.010] [PMID: 24177191]
[23]
Gertsch, J. Botanical drugs, synergy, and network pharmacology: Forth and back to intelligent mixtures. Planta Med., 2011, 77(11), 1086-1098.
[http://dx.doi.org/10.1055/s-0030-1270904] [PMID: 21412698]
[24]
Wang, W.; Liu, T.; Yang, L.; Ma, Y.; Dou, F.; Shi, L.; Wen, A.; Ding, Y. Study on the multi-targets mechanism of triphala on cardio-cerebral vascular diseases based on network pharmacology. Biomed. Pharmacother., 2019, 116, 108994.
[http://dx.doi.org/10.1016/j.biopha.2019.108994] [PMID: 31112872]
[25]
Tian, D.; Yang, Y.; Yu, M.; Han, Z.Z.; Wei, M.; Zhang, H.W.; Jia, H.M.; Zou, Z.M. Anti-inflammatory chemical constituents of Flos Chry-santhemi indici determined by UPLC-MS/MS integrated with network pharmacology. Food Funct., 2020, 11(7), 6340-6351.
[http://dx.doi.org/10.1039/D0FO01000F] [PMID: 32608438]
[26]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[27]
Ding, Y.G.; Zhao, Y.L.; Zhang, J.; Zuo, Z.T.; Zhang, Q.Z.; Wang, Y.Z. The traditional uses, phytochemistry, and pharmacological proper-ties of Paris L. (Liliaceae): A review. J. Ethnopharmacol., 2021, 278, 114293.
[http://dx.doi.org/10.1016/j.jep.2021.114293] [PMID: 34102270]
[28]
Negi, J.S.; Bisht, V.K.; Bhandari, A.K.; Bhatt, V.P.; Singh, P.; Singh, N. Paris polyphylla: Chemical and biological prospectives. Anticancer. Agents Med. Chem., 2014, 14(6), 833-839.
[http://dx.doi.org/10.2174/1871520614666140611101040] [PMID: 24917072]
[29]
He, J.; Yu, S.; Guo, C.; Tan, L.; Song, X.; Wang, M.; Wu, J.; Long, Y.; Gong, D.; Zhang, R.; Cao, Z.; Li, Y.; Peng, C. Polyphyllin I induces autophagy and cell cycle arrest via inhibiting PDK1/Akt/mTOR signal and downregulating cyclin B1 in human gastric carcinoma HGC-27 cells. Biomed. Pharmacother., 2019, 117, 109189.
[http://dx.doi.org/10.1016/j.biopha.2019.109189] [PMID: 31387191]
[30]
Lin, L.T.; Shi, Y.C.; Choong, C.Y.; Tai, C.J. The fruits of Paris polyphylla inhibit colorectal cancer cell migration induced by Fusobacte-rium nucleatum-Derived extracellular vesicles. Molecules, 2021, 26(13), 4081.
[http://dx.doi.org/10.3390/molecules26134081] [PMID: 34279421]
[31]
Zhang, J.; Yang, Y.; Lei, L.; Tian, M. Rhizoma paridis saponins induces cell cycle arrest and apoptosis in non-small cell lung carcinoma A549 cells. Med. Sci. Monit., 2015, 21, 2535-2541.
[http://dx.doi.org/10.12659/MSM.895084] [PMID: 26311066]
[32]
Gupta, D.D.; Mishra, S.; Verma, S.S.; Shekher, A.; Rai, V.; Awasthee, N.; Das, T.J.; Paul, D.; Das, S.K.; Tag, H.; Chandra Gupta, S.; Hui, P.K. Evaluation of antioxidant, anti-inflammatory and anticancer activities of diosgenin enriched Paris polyphylla rhizome extract of Indi-an Himalayan landraces. J. Ethnopharmacol., 2021, 270, 113842.
[http://dx.doi.org/10.1016/j.jep.2021.113842] [PMID: 33460752]
[33]
Wang, P.; Yang, Q.; Du, X.; Chen, Y.; Zhang, T. Targeted regulation of Rell2 by microRNA-18a is implicated in the anti-metastatic effect of polyphyllin VI in breast cancer cells. Eur. J. Pharmacol., 2019, 851, 161-173.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.041] [PMID: 30817902]
[34]
Wang, C.W.; Tai, C.J.; Choong, C.Y.; Lin, Y.C.; Lee, B.H.; Shi, Y.C.; Tai, C.J. Aqueous extract of Paris polyphylla (AEPP) inhibits ovarian Cancer via suppression of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha. Molecules, 2016, 21(6), 727.
[http://dx.doi.org/10.3390/molecules21060727] [PMID: 27271583]
[35]
Xiao, T.; Zhong, W.; Zhao, J.; Qian, B.; Liu, H.; Chen, S.; Qiao, K.; Lei, Y.; Zong, S.; Wang, H.; Liang, Y.; Zhang, H.; Meng, J.; Zhou, H.; Sun, T.; Liu, Y.; Yang, C. Polyphyllin I suppresses the formation of vasculogenic mimicry via Twist1/VE-cadherin pathway. Cell Death Dis., 2018, 9(9), 906.
[http://dx.doi.org/10.1038/s41419-018-0902-5] [PMID: 30185783]
[36]
He, H.; Xu, C.; Zheng, L.; Wang, K.; Jin, M.; Sun, Y.; Yue, Z. Polyphyllin VII induces apoptotic cell death via inhibition of the PI3K/Akt and NF κB pathways in A549 human lung cancer cells. Mol. Med. Rep., 2020, 21(2), 597-606.
[http://dx.doi.org/10.3892/mmr.2019.10879] [PMID: 31974591]
[37]
Gao, X.; Zhang, X.; Chen, W.; Li, J.; Yang, W.; Zhang, X.; Li, S.; Liu, C. Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves. Phytochemistry, 2020, 178, 112460.
[http://dx.doi.org/10.1016/j.phytochem.2020.112460] [PMID: 32692662]
[38]
Xu, X.H.; Li, T.; Fong, C.M.; Chen, X.; Chen, X.J.; Wang, Y.T.; Huang, M.Q.; Lu, J.J. Saponins from Chinese medicines as anticancer agents. Molecules, 2016, 21(10), 1326.
[http://dx.doi.org/10.3390/molecules21101326] [PMID: 27782048]
[39]
Li, P.; Li, M.; Yue, D.; Chen, H. Solid-phase extraction methods for nucleic acid separation. A review. J. Sep. Sci., 2022, 45(1), 172-184.
[http://dx.doi.org/10.1002/jssc.202100295] [PMID: 34453482]
[40]
Hennion, M.C. Solid-phase extraction: Method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A, 1999, 856(1-2), 3-54.
[http://dx.doi.org/10.1016/S0021-9673(99)00832-8] [PMID: 10526783]
[41]
Lai, L.; Shen, Q.; Wang, Y.; Chen, L.; Lai, J.; Wu, Z.; Jiang, H. Polyphyllin I reverses the resistance of osimertinib in non-small cell lung cancer cell through regulation of PI3K/Akt signaling. Toxicol. Appl. Pharmacol., 2021, 419, 115518.
[http://dx.doi.org/10.1016/j.taap.2021.115518] [PMID: 33812963]
[42]
Zheng, R.; Jiang, H.; Li, J.; Liu, X.; Xu, H.; Polyphyllin, I.I. Polyphyllin II restores sensitization of the resistance of PC-9/ZD cells to ge-fitinib by a negative regulation of the PI3K/Akt/mTOR signaling pathway. Curr. Cancer Drug Targets, 2017, 17(4), 376-385.
[http://dx.doi.org/10.2174/1568009616666161213141608] [PMID: 28093061]
[43]
Rhodes, D.R.; Kalyana-Sundaram, S.; Mahavisno, V.; Varambally, R.; Yu, J.; Briggs, B.B.; Barrette, T.R.; Anstet, M.J.; Kincead-Beal, C.; Kulkarni, P.; Varambally, S.; Ghosh, D.; Chinnaiyan, A.M. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 2007, 9(2), 166-180.
[http://dx.doi.org/10.1593/neo.07112] [PMID: 17356713]
[44]
Bhattacharjee, A.; Richards, W.G.; Staunton, J.; Li, C.; Monti, S.; Vasa, P.; Ladd, C.; Beheshti, J.; Bueno, R.; Gillette, M.; Loda, M.; Weber, G.; Mark, E.J.; Lander, E.S.; Wong, W.; Johnson, B.E.; Golub, T.R.; Sugarbaker, D.J.; Meyerson, M. Classification of human lung carci-nomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13790-13795.
[http://dx.doi.org/10.1073/pnas.191502998] [PMID: 11707567]
[45]
Selamat, S.A.; Chung, B.S.; Girard, L.; Zhang, W.; Zhang, Y.; Campan, M.; Siegmund, K.D.; Koss, M.N.; Hagen, J.A.; Lam, W.L.; Lam, S.; Gazdar, A.F.; Laird-Offringa, I.A. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA ex-pression. Genome Res., 2012, 22(7), 1197-1211.
[http://dx.doi.org/10.1101/gr.132662.111] [PMID: 22613842]
[46]
Hou, J.; Aerts, J.; den Hamer, B.; van Ijcken, W.; den Bakker, M.; Riegman, P.; van der Leest, C.; van der Spek, P.; Foekens, J.A.; Hoogsteden, H.C.; Grosveld, F.; Philipsen, S. Gene expression-based classification of non-small cell lung carcinomas and survival predic-tion. PLoS One, 2010, 5(4), e10312.
[http://dx.doi.org/10.1371/journal.pone.0010312] [PMID: 20421987]
[47]
Landi, M.T.; Dracheva, T.; Rotunno, M.; Figueroa, J.D.; Liu, H.; Dasgupta, A.; Mann, F.E.; Fukuoka, J.; Hames, M.; Bergen, A.W.; Mur-phy, S.E.; Yang, P.; Pesatori, A.C.; Consonni, D.; Bertazzi, P.A.; Wacholder, S.; Shih, J.H.; Caporaso, N.E.; Jen, J. Gene expression signa-ture of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One, 2008, 3(2), e1651.
[http://dx.doi.org/10.1371/journal.pone.0001651] [PMID: 18297132]
[48]
Yamagata, N.; Shyr, Y.; Yanagisawa, K.; Edgerton, M.; Dang, T.P.; Gonzalez, A.; Nadaf, S.; Larsen, P.; Roberts, J.R.; Nesbitt, J.C.; Jensen, R.; Levy, S.; Moore, J.H.; Minna, J.D.; Carbone, D.P. A training-testing approach to the molecular classification of resected non-small cell lung cancer. Clin. Cancer Res., 2003, 9(13), 4695-4704.
[PMID: 14581339]
[49]
Beer, D.G.; Kardia, S.L.; Huang, C.C.; Giordano, T.J.; Levin, A.M.; Misek, D.E.; Lin, L.; Chen, G.; Gharib, T.G.; Thomas, D.G.; Lizyness, M.L.; Kuick, R.; Hayasaka, S.; Taylor, J.M.; Iannettoni, M.D.; Orringer, M.B.; Hanash, S. Gene-expression profiles predict survival of pa-tients with lung adenocarcinoma. Nat. Med., 2002, 8(8), 816-824.
[http://dx.doi.org/10.1038/nm733] [PMID: 12118244]
[50]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[51]
Tian, Y.; Gong, G.Y.; Ma, L.L.; Wang, Z.Q.; Song, D.; Fang, M.Y. Anti-cancer effects of Polyphyllin I: An update in 5 years. Chem. Biol. Interact., 2020, 316, 108936.
[http://dx.doi.org/10.1016/j.cbi.2019.108936] [PMID: 31870841]
[52]
Feng, F-F.; Cheng, P.; Sun, C.; Wang, H.; Wang, W. Inhibitory effects of polyphyllins I and VII on human cisplatin-resistant NSCLC via p53 upregulation and CIP2A/AKT/mTOR signaling axis inhibition. Chin. J. Nat. Med., 2019, 17(10), 768-777.
[http://dx.doi.org/10.1016/S1875-5364(19)30093-7] [PMID: 31703757]
[53]
Teng, J.F.; Mei, Q.B.; Zhou, X.G.; Tang, Y.; Xiong, R.; Qiu, W.Q.; Pan, R.; Law, B.Y.; Wong, V.K.; Yu, C.L.; Long, H.A.; Xiao, X.L.; Zhang, F.; Wu, J.M.; Qin, D.L.; Wu, A.G.; Polyphyllin, V.I. Polyphyllin VI induces caspase-1-Mediated Pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung Cancer. Cancers (Basel), 2020, 12(1), 193.
[http://dx.doi.org/10.3390/cancers12010193] [PMID: 31941010]
[54]
Teng, J.F.; Qin, D.L.; Mei, Q.B.; Qiu, W.Q.; Pan, R.; Xiong, R.; Zhao, Y.; Law, B.Y.; Wong, V.K.; Tang, Y.; Yu, C.L.; Zhang, F.; Wu, J.M.; Wu, A.G. Polyphyllin VI, a saponin from Trillium tschonoskii Maxim. induces apoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer. Pharmacol. Res., 2019, 147, 104396.
[http://dx.doi.org/10.1016/j.phrs.2019.104396] [PMID: 31404628]
[55]
Zhou, S.; Ai, Z.; Li, W.; You, P.; Wu, C.; Li, L.; Hu, Y.; Ba, Y. Deciphering the pharmacological mechanisms of Taohe-Chengqi Decoction extract against renal fibrosis through integrating network pharmacology and experimental validation in vitro and in vivo. Front. Pharmacol., 2020, 11, 425.
[http://dx.doi.org/10.3389/fphar.2020.00425] [PMID: 32372953]
[56]
Huang, P.; Ke, H.; Qiu, Y.; Cai, M.; Qu, J.; Leng, A. Systematically characterizing chemical profile and potential mechanisms of qingre lidan decoction acting on cholelithiasis by integrating UHPLC-QTOF-MS and network target analysis. Evid. Based Complement. Alternat. Med., 2019, 2019, 2675287.
[http://dx.doi.org/10.1155/2019/2675287] [PMID: 30719056]
[57]
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11.
[http://dx.doi.org/10.1016/S1875-5364(21)60001-8] [PMID: 33516447]
[58]
Liam, C.K.; Pang, Y.K.; Poh, M.E. EGFR mutations in Asian patients with advanced lung adenocarcinoma. J. Thorac. Oncol., 2014, 9(9), e70-e71.
[http://dx.doi.org/10.1097/JTO.0000000000000251] [PMID: 25122441]
[59]
Tasdemir, S.; Taheri, S.; Akalin, H.; Kontas, O.; Onal, O.; Ozkul, Y. Increased EGFR mRNA expression levels in non-small cell lung Can-cer. Eurasian J. Med., 2019, 51(2), 177-185.
[http://dx.doi.org/10.5152/eurasianjmed.2016.0237] [PMID: 31258360]
[60]
Alevizakos, M.; Kaltsas, S.; Syrigos, K.N. The VEGF pathway in lung cancer. Cancer Chemother. Pharmacol., 2013, 72(6), 1169-1181.
[http://dx.doi.org/10.1007/s00280-013-2298-3] [PMID: 24085262]
[61]
Cathcart, M.C.; Gately, K.; Cummins, R.; Drakeford, C.; Kay, E.W.; O’Byrne, K.J.; Pidgeon, G.P. Thromboxane synthase expression and correlation with VEGF and angiogenesis in non-small cell lung cancer. Biochim. Biophys. Acta, 2014, 1842(5), 747-755.
[http://dx.doi.org/10.1016/j.bbadis.2014.01.011] [PMID: 24480048]
[62]
Wang, X.; Song, X.; Zhuo, W.; Fu, Y.; Shi, H.; Liang, Y.; Tong, M.; Chang, G.; Luo, Y. The regulatory mechanism of Hsp90alpha secre-tion and its function in tumor malignancy. Proc. Natl. Acad. Sci., 2009, 106(50), 21288-21293.
[http://dx.doi.org/10.1073/pnas.0908151106] [PMID: 19965370]
[63]
Cepero, E.; King, A.M.; Coffey, L.M.; Perez, R.G.; Boise, L.H. Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene, 2005, 24(42), 6354-6366.
[http://dx.doi.org/10.1038/sj.onc.1208793] [PMID: 16007191]
[64]
Mason, K.D.; Carpinelli, M.R.; Fletcher, J.I.; Collinge, J.E.; Hilton, A.A.; Ellis, S.; Kelly, P.N.; Ekert, P.G.; Metcalf, D.; Roberts, A.W.; Huang, D.C.; Kile, B.T. Programmed anuclear cell death delimits platelet life span. Cell, 2007, 128(6), 1173-1186.
[http://dx.doi.org/10.1016/j.cell.2007.01.037] [PMID: 17382885]
[65]
Vogler, M.; Hamali, H.A.; Sun, X.M.; Bampton, E.T.; Dinsdale, D.; Snowden, R.T.; Dyer, M.J.; Goodall, A.H.; Cohen, G.M. BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood, 2011, 117(26), 7145-7154.
[http://dx.doi.org/10.1182/blood-2011-03-344812] [PMID: 21562047]
[66]
Kodama, T.; Hikita, H.; Kawaguchi, T.; Shigekawa, M.; Shimizu, S.; Hayashi, Y.; Li, W.; Miyagi, T.; Hosui, A.; Tatsumi, T.; Kanto, T.; Hiramatsu, N.; Kiyomizu, K.; Tadokoro, S.; Tomiyama, Y.; Hayashi, N.; Takehara, T. Mcl-1 and Bcl-xL regulate Bak/Bax-dependent apoptosis of the megakaryocytic lineage at multistages. Cell Death Differ., 2012, 19(11), 1856-1869.
[http://dx.doi.org/10.1038/cdd.2012.88] [PMID: 22790873]
[67]
Baek, Y.; Lee, M.N.; Wu, D.; Pae, M. Luteolin reduces adipose tissue macrophage inflammation and insulin resistance in postmenopausal obese mice. J. Nutr. Biochem., 2019, 71, 72-81.
[http://dx.doi.org/10.1016/j.jnutbio.2019.06.002] [PMID: 31302373]
[68]
Shi, X.; Wang, J.; Lei, Y.; Cong, C.; Tan, D.; Zhou, X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol. Med. Rep., 2019, 19(6), 4529-4535.
[http://dx.doi.org/10.3892/mmr.2019.10121] [PMID: 30942405]
[69]
Schuurbiers, O.C.; Kaanders, J.H.; van der Heijden, H.F.; Dekhuijzen, R.P.; Oyen, W.J.; Bussink, J. The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J. Thorac. Oncol., 2009, 4(6), 761-767.
[http://dx.doi.org/10.1097/JTO.0b013e3181a1084f] [PMID: 19404218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy