Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Celebrating a Century of Insulin Discovery: A Critical Appraisal of the Emerging Alternative Insulin Delivery Systems

Author(s): Ntethelelo Sibiya*, Bonisiwe Mbatha, Phikelelani Ngubane and Andile Khathi

Volume 20, Issue 6, 2023

Published on: 11 August, 2022

Page: [656 - 668] Pages: 13

DOI: 10.2174/1567201819666220531101203

Price: $65

Abstract

Since the discovery of insulin, continuous developments of this peptide have led to better management of diabetes mellitus, thus leading to a decrease in diabetes-related mortality. Despite these developments, we have seen an increase in diabetes cases, which has further necessitated more innovative methods for diabetes management. The subcutaneous administration of insulin remains the mainstay therapy for type 1 diabetes mellitus. However, despite the availability of insulin analogues with improved pharmacokinetics, challenges with conventional administration exist. The challenges associated with insulin injections include hypoglycaemic episodes, needle phobia, and injection-site inflammation, which all have been reported to reduce patient compliance. Ongoing research on diabetes management strives to develop therapies that provide improved glycaemic control with minimal side effects. In part, for these reasons, we have seen an increase in the search and development of alternative insulin delivery systems that are envisaged to circumvent the shortfalls associated with the conventional administration route. Several alternative drug delivery systems, such as oral, pulmonary, buccal, nasal, and transdermal, have been explored in the last century. These efforts have not been without victory, as we have seen the emergence of pulmonary (Exubera and Afrezza) and buccal insulin delivery systems licenced for therapeutic use. Despite the success seen in these two systems, their marketability and popularity have been severely compromised due to reported safety concerns. Although oral insulin delivery has always shown promise in the past decades; however, it was only limited to preclinical trials. The main challenge associated with this delivery route is poor bioavailability, which necessitates high insulin concentration to be administered. Due to recent developments, oral insulin has reached phase 3 clinical trials. It is believed that patients would prefer oral insulin as their preference is often observed for oral antidiabetics over injected ones. In the last decade, transdermal insulin has also gained interest, where delivery of insulin with a concomitant reduction in blood glucose concentration has been demonstrated in vivo. However, at present, there are no clinical studies that have reported the efficacy of transdermal insulin administration. With technological advancement, there is a potential to develop yet another insulin delivery system that would likely enter the markets. As these novel delivery systems have been found to be effective, emerging competing products should be welcome and appreciated.

Keywords: Diabetes mellitus, insulin delivery systems, bioavailability, pharmacokinetics, blood glucose absorption, insulin discovery.

Graphical Abstract
[1]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[2]
Young, F.; Critchley, J.A.; Johnstone, L.K.; Unwin, N.C. A review of co-morbidity between infectious and chronic disease in Sub Saharan Africa: TB and diabetes mellitus, HIV and metabolic syndrome, and the impact of globalization. Global. Health, 2009, 5(1), 9.
[http://dx.doi.org/10.1186/1744-8603-5-9] [PMID: 19751503]
[3]
Inzucchi, S.E.; Sherwin, R.S. Type 2 diabetes mellitus. In: Cecil Medicine, 24th Ed; Saunders Elsevier: Philadelphia, PA, 2011.
[4]
Robertson, R.P.; Harmon, J.; Tran, P.O.; Tanaka, Y.; Takahashi, H. Glucose toxicity in β-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes, 2003, 52(3), 581-587.
[http://dx.doi.org/10.2337/diabetes.52.3.581] [PMID: 12606496]
[5]
Pessin, J.E.; Saltiel, A.R. Signaling pathways in insulin action: Molecular targets of insulin resistance. J. Clin. Invest., 2000, 106(2), 165-169.
[http://dx.doi.org/10.1172/JCI10582] [PMID: 10903329]
[6]
Zaykov, A.N.; Mayer, J.P.; DiMarchi, R.D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov., 2016, 15(6), 425-439.
[http://dx.doi.org/10.1038/nrd.2015.36] [PMID: 26988411]
[7]
Egger, M.; Davey Smith, G.; Stettler, C.; Diem, P. Risk of adverse effects of intensified treatment in insulin-dependent diabetes mellitus: A meta-analysis. Diabet. Med., 1997, 14(11), 919-928.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199711)14:11<919:AID-DIA456>3.0.CO;2-A] [PMID: 9400915]
[8]
Rorsman, P.; Eliasson, L.; Renström, E.; Gromada, J.; Barg, S.; Göpel, S. The cell physiology of biphasic insulin secretion. News Physiol. Sci., 2000, 15(2), 72-77.
[http://dx.doi.org/10.1152/physiologyonline.2000.15.2.72] [PMID: 11390882]
[9]
Matthews, D.R.; Connolly, A.A.; Holman, R.R.; Turner, R.C. Physiology of insulin secretion: Problems of quantity and timing. Neth. J. Med., 1985, 28(Suppl. 1), 20-24.
[10]
Komatsu, M.; Takei, M.; Ishii, H.; Sato, Y. Glucose-stimulated insulin secretion: A newer perspective. J. Diabetes Investig., 2013, 4(6), 511-516.
[http://dx.doi.org/10.1111/jdi.12094] [PMID: 24843702]
[11]
Dunn, M.F. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer - a review. Biometals, 2005, 18(4), 295-303.
[http://dx.doi.org/10.1007/s10534-005-3685-y] [PMID: 16158220]
[12]
Huber, M.P.; Zelnick, L.R.; Utzschneider, K.M.; Kahn, S.E.; de Boer, I.H.; Kestenbaum, B.R. Tubular secretory clearance is associated with whole-body insulin clearance. J. Clin. Endocrinol. Metab., 2020, 105(11), e3882-e3891.
[http://dx.doi.org/10.1210/clinem/dgaa522] [PMID: 32785690]
[13]
Kumria, R.; Goomber, G. Emerging trends in insulin delivery: Buccal route. J. Diabetol., 2011, 2(1), 1-9.
[14]
Brandenburg, D. Insulin-structure, function, design. Exp. Clin. Endocrin. Diabetes, 1999, 107(Suppl. 2), S6-S12.
[15]
Sanlioglu, A.D.; Altunbas, H.A.; Balci, M.K.; Griffith, T.S.; Sanlioglu, S. Clinical utility of insulin and insulin analogs. Islets, 2013, 5(2), 67-78.
[http://dx.doi.org/10.4161/isl.24590] [PMID: 23584214]
[16]
Bakaysa, D.L.; Radziuk, J.; Havel, H.A.; Brader, M.L.; Li, S.; Dodd, S.W.; Beals, J.M.; Pekar, A.H.; Brems, D.N. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: Dissociation of a protein-ligand complex. Protein Sci., 1996, 5(12), 2521-2531.
[http://dx.doi.org/10.1002/pro.5560051215] [PMID: 8976561]
[17]
Couper, J.J.; Prins, J.B. 2: Recent advances in therapy of diabetes. Med. J. Aust., 2003, 179(8), 441-447.
[http://dx.doi.org/10.5694/j.1326-5377.2003.tb05628.x] [PMID: 14558872]
[18]
Mathieu, C.; Gillard, P.; Benhalima, K. Insulin analogues in type 1 diabetes mellitus: Getting better all the time. Nat. Rev. Endocrinol., 2017, 13(7), 385-399.
[http://dx.doi.org/10.1038/nrendo.2017.39] [PMID: 28429780]
[19]
Poon, K.; King, A.B. Glargine and detemir: Safety and efficacy profiles of the long-acting basal insulin analogs. Drug Healthc. Patient Saf., 2010, 2, 213-223.
[PMID: 21701633]
[20]
Morello, C.M. Pharmacokinetics and pharmacodynamics of insulin analogs in special populations with type 2 diabetes mellitus. Int. J. Gen. Med., 2011, 4, 827-835.
[http://dx.doi.org/10.2147/IJGM.S26889] [PMID: 22267935]
[21]
Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab. J., 2019, 43(4), 383-397.
[http://dx.doi.org/10.4093/dmj.2019.0121] [PMID: 31441246]
[22]
Mardare, I.; Campbell, S.M.; Meyer, J.C.; Sefah, I.A.; Massele, A.; Godman, B. Enhancing choices regarding the administration of insulin among patients with diabetes requiring insulin across countries and implications for future care. Front. Pharmacol., 2022, 12, 794363.
[http://dx.doi.org/10.3389/fphar.2021.794363]
[23]
Grunberger, G.; Sze, D.; Ermakova, A.; Sieradzan, R.; Oliveria, T.; Miller, E.M. Treatment intensification with insulin pumps and other technologies in patients with type 2 diabetes: Results of a physician survey in the United States. Clin. Diabetes, 2020, 38(1), 47-55.
[http://dx.doi.org/10.2337/cd19-0008] [PMID: 31975751]
[24]
Grunberger, G.; Bhargava, A.; Ly, T.; Zisser, H.; Ilag, L.L.; Malone, J.; Fan, L.; Zhang, S.; Johnson, J. Human regular U-500 insulin via continuous subcutaneous insulin infusion via multiple daily injections in adults with type 2 diabetes: The VIVID study. Diabetes Obes. Metab., 2020, 22(3), 434-441.
[http://dx.doi.org/10.1111/dom.13947] [PMID: 31865633]
[25]
Iglesias, P.; Díez, J.J. Insulin therapy in renal disease. Diabetes Obes. Metab., 2008, 10(10), 811-823.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00802.x] [PMID: 18248491]
[26]
Rubin, R.R.; Peyrot, M.; Kruger, D.F.; Travis, L.B. Barriers to insulin injection therapy: Patient and health care provider perspectives. Diabetes Educ., 2009, 35(6), 1014-1022.
[http://dx.doi.org/10.1177/0145721709345773] [PMID: 19934459]
[27]
Radermecker, R.P.; Piérard, G.E.; Scheen, A.J. Lipodystrophy reactions to insulin: Effects of continuous insulin infusion and new insulin analogs. Am. J. Clin. Dermatol., 2007, 8(1), 21-28.
[http://dx.doi.org/10.2165/00128071-200708010-00003] [PMID: 17298103]
[28]
Mamoulakis, D.; Bitsori, M.; Galanakis, E.; Raissaki, M.; Kalmanti, M. Insulin-induced oedema in children and adolescents. J. Paediatr. Child Health, 2006, 42(10), 655-657.
[http://dx.doi.org/10.1111/j.1440-1754.2006.00911.x] [PMID: 16972977]
[29]
Dongerkery, S.P.; Schroeder, P.R.; Shomali, M.E. Insulin and its cardiovascular effects: What is the current evidence? Curr. Diab. Rep., 2017, 17(12), 120.
[http://dx.doi.org/10.1007/s11892-017-0955-3] [PMID: 29058131]
[30]
Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery - a review. Pharm. Sci. Technol. Today, 2000, 3(4), 138-145.
[http://dx.doi.org/10.1016/S1461-5347(00)00247-9] [PMID: 10754543]
[31]
Mansoor, S.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Polymer-based nanoparticle strategies for insulin delivery. Polymers (Basel), 2019, 11(9), 1380.
[http://dx.doi.org/10.3390/polym11091380] [PMID: 31443473]
[32]
Hamman, J.H.; Enslin, G.M.; Kotzé, A.F. Oral delivery of peptide drugs: Barriers and developments. BioDrugs, 2005, 19(3), 165-177.
[http://dx.doi.org/10.2165/00063030-200519030-00003] [PMID: 15984901]
[33]
Uchiyama, T.; Sugiyama, T.; Quan, Y.S.; Kotani, A.; Okada, N.; Fujita, T.; Muranishi, S.; Yamamoto, A. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: Their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-β-D-maltopyranoside. J. Pharm. Pharmacol., 1999, 51(11), 1241-1250.
[http://dx.doi.org/10.1211/0022357991776976] [PMID: 10632081]
[34]
Carino, G.P.; Jacob, J.S.; Mathiowitz, E. Nanosphere based oral insulin delivery. J. Control. Release, 2000, 65(1-2), 261-269.
[http://dx.doi.org/10.1016/S0168-3659(99)00247-3] [PMID: 10699286]
[35]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11, 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[36]
McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci., 2018, 253, 1-22.
[http://dx.doi.org/10.1016/j.cis.2018.02.002] [PMID: 29478671]
[37]
Dan, N.; Samanta, K.; Almoazen, H. An update on pharmaceutical strategies for oral delivery of therapeutic peptides and proteins in adults and pediatrics. Children (Basel), 2020, 7(12), 307.
[http://dx.doi.org/10.3390/children7120307] [PMID: 33352795]
[38]
Mahato, R.I.; Narang, A.S.; Thoma, L.; Miller, D.D. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(2-3), 153-214.
[39]
Park, K.; Kwon, I.C.; Park, K. Oral protein delivery: Current status and future prospect. React. Funct. Polym., 2011, 71(3), 280-287.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.10.002]
[40]
Gedawy, A.; Martinez, J.; Al-Salami, H.; Dass, C.R. Oral insulin delivery: Existing barriers and current counter-strategies. J. Pharm. Pharmacol., 2018, 70(2), 197-213.
[http://dx.doi.org/10.1111/jphp.12852] [PMID: 29193053]
[41]
Aungst, B.J.; Rogers, N.J. Site dependence of absorption-promoting actions of laureth-9, Na salicylate, Na2EDTA, and aprotinin on rectal, nasal, and buccal insulin delivery. Pharm. Res., 1988, 5(5), 305-308.
[http://dx.doi.org/10.1023/A:1015930821648] [PMID: 2469079]
[42]
Shao, Z.; Li, Y.; Chermak, T.; Mitra, A.K. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of β-cyclodextrin derivatives on α-chymotryptic degradation and enteral absorption of insulin in rats. Pharm. Res., 1994, 11(8), 1174-1179.
[http://dx.doi.org/10.1023/A:1018997101542] [PMID: 7971720]
[43]
Musabayane, C.T.; Munjeri, O.; Bwititi, P.; Osim, E.E. Orally administered, insulin-loaded amidated pectin hydrogel beads sustain plasma concentrations of insulin in streptozotocin-diabetic rats. J. Endocrinol., 2000, 164(1), 1-6.
[http://dx.doi.org/10.1677/joe.0.1640001] [PMID: 10607931]
[44]
Momoh, M.A.; Franklin, K.C.; Agbo, C.P.; Ugwu, C.E.; Adedokun, M.O.; Anthony, O.C.; Chidozie, O.E.; Okorie, A.N. Microemulsion-based approach for oral delivery of insulin: Formulation design and characterization. Heliyon, 2020, 6(3), e03650.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03650] [PMID: 32258491]
[45]
Czuba, E.; Diop, M.; Mura, C.; Schaschkow, A.; Langlois, A.; Bietiger, W.; Neidl, R.; Virciglio, A.; Auberval, N.; Julien-David, D.; Maillard, E.; Frere, Y.; Marchioni, E.; Pinget, M.; Sigrist, S. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Int. J. Pharm., 2018, 542(1-2), 47-55.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.045] [PMID: 29501738]
[46]
Lopes, M.; Simões, S.; Veiga, F.; Seiça, R.; Ribeiro, A. Why most oral insulin formulations do not reach clinical trials. Ther. Deliv., 2015, 6(8), 973-987.
[http://dx.doi.org/10.4155/TDE.15.47] [PMID: 26272222]
[47]
Antunes, F.; Andrade, F.; Araújo, F.; Ferreira, D.; Sarmento, B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm., 2013, 83(3), 427-435.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.003] [PMID: 23159710]
[48]
Chu, M.K.; Chen, J.; Gordijo, C.R.; Chiang, S.; Ivovic, A.; Koulajian, K.; Giacca, A.; Wu, X.Y.; Sun, Y. In vitro and in vivo testing of glucose-responsive insulin-delivery microdevices in diabetic rats. Lab Chip, 2012, 12(14), 2533-2539.
[http://dx.doi.org/10.1039/c2lc40139h] [PMID: 22565220]
[49]
Hemkens, L.G.; Grouven, U.; Bender, R.; Günster, C.; Gutschmidt, S.; Selke, G.W.; Sawicki, P.T. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: A cohort study. Diabetologia, 2009, 52(9), 1732-1744.
[http://dx.doi.org/10.1007/s00125-009-1418-4] [PMID: 19565214]
[50]
Halberg, I.B.; Lyby, K.; Wassermann, K.; Heise, T.; Zijlstra, E.; Plum-Mörschel, L. Efficacy and safety of oral basal insulin via subcutaneous insulin glargine in type 2 diabetes: A randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol., 2019, 7(3), 179-188.
[http://dx.doi.org/10.1016/S2213-8587(18)30372-3] [PMID: 30679095]
[51]
Krischer, J.P.; Schatz, D.A.; Bundy, B.; Skyler, J.S.; Greenbaum, C.J. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: A randomized clinical trial. JAMA, 2017, 318(19), 1891-1902.
[http://dx.doi.org/10.1001/jama.2017.17070] [PMID: 29164254]
[52]
Halberg, I.B.; Lyby, K.; Wassermann, K.; Heise, T.; Plum-Mörschel, L.; Zijlstra, E. The effect of food intake on the pharmacokinetics of oral basal insulin: A randomised crossover trial in healthy male subjects. Clin. Pharmacokinet., 2019, 58(11), 1497-1504.
[http://dx.doi.org/10.1007/s40262-019-00772-2] [PMID: 31093929]
[53]
Fleseriu, M.; Dreval, A.; Bondar, I.; Vagapova, G.; Macut, D.; Pokramovich, Y.G.; Molitch, M.E.; Leonova, N.; Raverot, G.; Grineva, E.; Poteshkin, Y.E. Maintenance of response to oral octreotide compared with injectable somatostatin receptor ligands in patients with acromegaly: A phase 3, multicentre, randomised controlled trial. Lancet Diabetes Endocrinol., 2022, 10(2), 102-111.
[54]
Igarashi, A.; Bekker Hansen, B.; Langer, J.; Tavella, F.; Collings, H.; Davies, N.; Wyn, R. Preference for oral and injectable GLP-1 RA therapy profiles in Japanese patients with type 2 diabetes: A discrete choice experiment. Adv. Ther., 2021, 38(1), 721-738.
[http://dx.doi.org/10.1007/s12325-020-01561-1] [PMID: 33245530]
[55]
Heinemann, L.; Pfützner, A.; Heise, T. Alternative routes of administration as an approach to improve insulin therapy: Update on dermal, oral, nasal and pulmonary insulin delivery. Curr. Pharm. Des., 2001, 7(14), 1327-1351.
[http://dx.doi.org/10.2174/1381612013397384] [PMID: 11472272]
[56]
Yu, J.; Chien, Y.W. Pulmonary drug delivery: Physiologic and mechanistic aspects. Crit. Rev. Ther. Drug Carrier Syst., 1997, 14(4), 395-453.
[57]
Agu, R.U.; Ugwoke, M.I.; Armand, M.; Kinget, R.; Verbeke, N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res., 2001, 2(4), 198-209.
[http://dx.doi.org/10.1186/rr58] [PMID: 11686885]
[58]
Maher, S.; Geoghegan, C.; Brayden, D.J. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: Reasons for low efficacy in humans. Expert Opin. Drug Deliv., 2021, 18(2), 273-300.
[http://dx.doi.org/10.1080/17425247.2021.1825375] [PMID: 32937089]
[59]
El-Hammadi, M.M.; Arias, J.L. An update on liposomes in drug delivery: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(11), 891-907.
[http://dx.doi.org/10.1080/13543776.2019.1679767] [PMID: 31603360]
[60]
Liu, H.; Shan, X.; Yu, J.; Li, X.; Hu, L. Recent advances in inhaled formulations and pulmonary insulin delivery systems. Curr. Pharm. Biotechnol., 2020, 21(3), 180-193.
[http://dx.doi.org/10.2174/1389201020666191011152248] [PMID: 31612824]
[61]
Hadiya, S.; Radwan, R.; Zakaria, M.; El-Sherif, T.; Hamad, M.A.; Elsabahy, M. Nanoparticles integrating natural and synthetic polymers for in vivo insulin delivery. Pharm. Dev. Technol., 2021, 26(1), 30-40.
[http://dx.doi.org/10.1080/10837450.2020.1832117] [PMID: 33019826]
[62]
Zarogoulidis, P.; Papanas, N.; Kouliatsis, G.; Spyratos, D.; Zarogoulidis, K.; Maltezos, E. Inhaled insulin: Too soon to be forgotten? J. Aerosol Med. Pulm. Drug Deliv., 2011, 24(5), 213-223.
[http://dx.doi.org/10.1089/jamp.2011.0876] [PMID: 21689020]
[63]
Mahesh Kumar, T.; Misra, A. Formulation and evaluation of insulin dry powder for inhalation. Drug Dev. Ind. Pharm., 2006, 32(6), 677-686.
[http://dx.doi.org/10.1080/03639040600712862] [PMID: 16885123]
[64]
Harper, N.J.; Gray, S.; De Groot, J.; Parker, J.M.; Sadrzadeh, N.; Schuler, C.; Schumacher, J.D.; Seshadri, S.; Smith, A.E.; Steeno, G.S.; Stevenson, C.L.; Taniere, R.; Wang, M.; Bennett, D.B. The design and performance of the exubera pulmonary insulin delivery system. Diabetes Technol. Ther., 2007, 9(Suppl. 1), S16-S27.
[http://dx.doi.org/10.1089/dia.2007.0222] [PMID: 17563300]
[65]
White, S.; Bennett, D.B.; Cheu, S.; Conley, P.W.; Guzek, D.B.; Gray, S.; Howard, J.; Malcolmson, R.; Parker, J.M.; Roberts, P.; Sadrzadeh, N.; Schumacher, J.D.; Seshadri, S.; Sluggett, G.W.; Stevenson, C.L.; Harper, N.J. EXUBERA: Pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol. Ther., 2005, 7(6), 896-906.
[http://dx.doi.org/10.1089/dia.2005.7.896] [PMID: 16386095]
[66]
Neumiller, J.J.; Campbell, R.K.; Wood, L.D. A review of inhaled technosphere insulin. Ann. Pharmacother., 2010, 44(7-8), 1231-1239.
[http://dx.doi.org/10.1345/aph.1P055] [PMID: 20516362]
[67]
Hollander, P.A.; Blonde, L.; Rowe, R.; Mehta, A.E.; Milburn, J.L.; Hershon, K.S.; Chiasson, J.L.; Levin, S.R. Efficacy and safety of inhaled insulin (exubera) compared with subcutaneous insulin therapy in patients with type 2 diabetes: Results of a 6-month, randomized, comparative trial. Diabetes Care, 2004, 27(10), 2356-2362.
[http://dx.doi.org/10.2337/diacare.27.10.2356] [PMID: 15451900]
[68]
Odegard, P.S.; Capoccia, K.L. Inhaled insulin. Exubera. Ann. Pharmacother., 2005, 39(5), 843-853.
[http://dx.doi.org/10.1345/aph.1E522] [PMID: 15827072]
[69]
Mack, G.S. Pfizer dumps Exubera. Nat. Biotechnol., 2007, 25(12), 1331-1332.
[http://dx.doi.org/10.1038/nbt1207-1331] [PMID: 18066009]
[70]
Fountaine, R.; Milton, A.; Checchio, T.; Wei, G.; Stolar, M.; Teeter, J.; Jaeger, R.; Fryburg, D. Acute passive cigarette smoke exposure and inhaled human insulin (Exubera) pharmacokinetics. Br. J. Clin. Pharmacol., 2008, 65(6), 864-870.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03122.x] [PMID: 18477263]
[71]
Rosenstock, J.; Cefalu, W.T.; Hollander, P.A.; Klioze, S.S.; Reis, J.; Duggan, W.T. Safety and efficacy of inhaled human insulin (Exubera) during discontinuation and readministration of therapy in adults with type 2 diabetes: A 3-year randomized controlled trial. Diabetes Technol. Ther., 2009, 11(11), 697-705.
[http://dx.doi.org/10.1089/dia.2009.0062] [PMID: 19905885]
[72]
Norwood, P. Inhaled insulin: A clinical perspective with emphasis on EXUBERA®. Expert Rev. Endocrinol. Metab., 2007, 2(3), 313-320.
[http://dx.doi.org/10.1586/17446651.2.3.313] [PMID: 30743801]
[73]
Ledet, G.; Graves, R.A.; Bostanian, L.A.; Mandal, T.K. A second-generation inhaled insulin for diabetes mellitus. Am. J. Health Syst. Pharm., 2015, 72(14), 1181-1187.
[http://dx.doi.org/10.2146/ajhp140540] [PMID: 26150567]
[74]
Greene, S.F.; Nikula, K.J.; Poulin, D.; McInally, K.; Reynolds, J.A. Long-term nonclinical pulmonary safety assessment of Afrezza, a novel insulin inhalation powder. Toxicol. Pathol., 2021, 49(2), 334-348.
[http://dx.doi.org/10.1177/0192623320960420] [PMID: 33043802]
[75]
Kesavadev, J.; Saboo, B.; Krishna, M.B.; Krishnan, G. Evolution of insulin delivery devices: From syringes, pens, and pumps to DIY artificial pancreas. Diabetes Ther., 2020, 11(6), 1251-1269.
[http://dx.doi.org/10.1007/s13300-020-00831-z] [PMID: 32410184]
[76]
Rave, K.; Potocka, E.; Heinemann, L.; Heise, T.; Boss, A.H.; Marino, M.; Costello, D.; Chen, R. Pharmacokinetics and linear exposure of AFRESA compared with the subcutaneous injection of regular human insulin. Diabetes Obes. Metab., 2009, 11(7), 715-720.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01039.x] [PMID: 19476477]
[77]
Al-Tabakha, M.M. Future prospect of insulin inhalation for diabetic patients: The case of Afrezza via Exubera. J. Control. Release, 2015, 215, 25-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.025] [PMID: 26222134]
[78]
Oleck, J.; Kassam, S.; Goldman, J.D. Commentary: Why was inhaled insulin a failure in the market? Diabetes Spectr., 2016, 29(3), 180-184.
[http://dx.doi.org/10.2337/diaspect.29.3.180] [PMID: 27574374]
[79]
Santos Cavaiola, T.; Edelman, S. Inhaled insulin: A breath of fresh air? A review of inhaled insulin. Clin. Ther., 2014, 36(8), 1275-1289.
[http://dx.doi.org/10.1016/j.clinthera.2014.06.025] [PMID: 25044021]
[80]
Goldberg, T.; Wong, E. Afrezza (insulin human) inhalation powder: A new inhaled insulin for the management of type-1 or type-2 diabetes mellitus. PT, 2015, 40(11), 735-741.
[PMID: 26609206]
[81]
Muchmore, D.B. The need for faster insulin: Problem solved? J. Diabetes Sci. Technol., 2017, 11(1), 157-159.
[http://dx.doi.org/10.1177/1932296816677577] [PMID: 28264172]
[82]
Mohanty, R.R.; Das, S. Inhaled insulin-current direction of insulin research. J. Clin. Diagn. Res., 2017, 11(4), OE01-OE02.
[PMID: 28571200]
[83]
Piras de Oliveira, C.; Mitchell, B.D.; Fan, L.; Garey, C.; Liao, B.; Bispham, J.; Vint, N.; Perez-Nieves, M.; Hughes, A.; McAuliffe-Fogarty, A. Patient perspectives on the use of half-unit insulin pens by people with type 1 diabetes: A cross-sectional observational study. Curr. Med. Res. Opin., 2021, 37(1), 45-51.
[http://dx.doi.org/10.1080/03007995.2020.1843423] [PMID: 33108218]
[84]
Zimmerman, C.; Albanese-O’Neill, A.; Haller, M.J. Advances in type 1 diabetes technology over the last decade. Eur. Endocrinol., 2019, 15(2), 70-76.
[http://dx.doi.org/10.17925/EE.2019.15.2.70] [PMID: 31616496]
[85]
Jadhav, K.R.; Gambhire, M.N.; Shaikh, I.M.; Kadam, V.J.; Pisal, S.S. Nasal drug delivery system-factors affecting and applications. Curr. Drug Ther., 2007, 2(1), 27-38.
[http://dx.doi.org/10.2174/157488507779422374]
[86]
Deshpande, T.; Masareddy, R.; Patil, A. Nasal drug delivery-a review. RGUHS J. Pharm. Sci., 2012, 2(1), 24-37.
[http://dx.doi.org/10.5530/rjps.2012.1.4]
[87]
Türker, S.; Onur, E.; Ózer, Y. Nasal route and drug delivery systems. Pharm. World Sci., 2004, 26(3), 137-142.
[http://dx.doi.org/10.1023/B:PHAR.0000026823.82950.ff] [PMID: 15230360]
[88]
Appasaheb, P.S.; Manohar, S.D.; Bhanudas, S.R.; Anjaneri, N. A review on intranasal drug delivery system. J. Adv. Pharm. Edu. Res., 2013, 3(4), 333-346.
[89]
Leary, A.C.; Dowling, M.; Cussen, K.; O’Brien, J.; Stote, R.M. Pharmacokinetics and pharmacodynamics of intranasal insulin spray (Nasulin) administered to healthy male volunteers: Infuence of the nasal cycle. J. Diabetes Sci. Technol., 2008, 2(6), 1054-1060.
[http://dx.doi.org/10.1177/193229680800200613] [PMID: 19885293]
[90]
Freiherr, J.; Hallschmid, M.; Frey, W.H., II; Brünner, Y.F.; Chapman, C.D.; Hölscher, C.; Craft, S.; De Felice, F.G.; Benedict, C. Intranasal insulin as a treatment for Alzheimer’s disease: A review of basic research and clinical evidence. CNS Drugs, 2013, 27(7), 505-514.
[http://dx.doi.org/10.1007/s40263-013-0076-8] [PMID: 23719722]
[91]
Sintov, A.C.; Levy, H.V.; Botner, S. Systemic delivery of insulin via the nasal route using a new microemulsion system: In vitro and in vivo studies. J. Control. Release, 2010, 148(2), 168-176.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.004] [PMID: 20709120]
[92]
Jain, A.K.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur. J. Pharm. Biopharm., 2008, 69(2), 426-435.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.001] [PMID: 18295464]
[93]
Bhalerao, R.; Patil, A.; Rishipathak, D.; Kshirsagar, S. Insulin therapies: Current and future trends. Asian J. Res. Pharm. Sci., 2017, 7(4), 189-196.
[http://dx.doi.org/10.5958/2231-5659.2017.00029.7]
[94]
Macleod, J.J.R. Advances in diabetes care: Insulin. Diabetes & Primary Care, 2011, 13(3), 141.
[95]
Whitmer, R.A. Type 2 diabetes and risk of cognitive impairment and dementia. Curr. Neurol. Neurosci. Rep., 2007, 7(5), 373-380.
[http://dx.doi.org/10.1007/s11910-007-0058-7] [PMID: 17764626]
[96]
Hanson, L.R.; Frey, W.H., II Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci., 2008, 9(Suppl. 3), S5.
[http://dx.doi.org/10.1186/1471-2202-9-S3-S5] [PMID: 19091002]
[97]
Schwarz, B.; Merkel, O.M. Nose-to-brain delivery of biologics. Ther. Deliv., 2019, 10(4)
[http://dx.doi.org/10.4155/tde-2019-0013]
[98]
Hölscher, C. First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimers Dement., 2014, 10(1)(Suppl.), S33-S37.
[http://dx.doi.org/10.1016/j.jalz.2013.12.006] [PMID: 24529523]
[99]
Paudel, K.S.; Hammell, D.C.; Agu, R.U.; Valiveti, S.; Stinchcomb, A.L. Cannabidiol bioavailability after nasal and transdermal application: Effect of permeation enhancers. Drug Dev. Ind. Pharm., 2010, 36(9), 1088-1097.
[http://dx.doi.org/10.3109/03639041003657295] [PMID: 20545522]
[100]
Gaddam, M.; Singh, A.; Jain, N.; Avanthika, C.; Jhaveri, S.; De la Hoz, I.; Sanka, S.; Goli, S.R. A comprehensive review of intranasal insulin and its effect on the cognitive function of diabetics. Cureus, 2021, 13(8), e17219.
[http://dx.doi.org/10.7759/cureus.17219] [PMID: 34540446]
[101]
Hallschmid, M. Intranasal insulin for Alzheimer’s disease. CNS Drugs, 2021, 35(1), 21-37.
[http://dx.doi.org/10.1007/s40263-020-00781-x] [PMID: 33515428]
[102]
Hallschmid, M. Intranasal insulin. J. Neuroendocrinol., 2021, 33(4), e12934.
[http://dx.doi.org/10.1111/jne.12934] [PMID: 33506526]
[103]
Gwizdala, K.L.; Ferguson, D.P.; Kovan, J.; Novak, V.; Pontifex, M.B. Placebo controlled phase II clinical trial: Safety and efficacy of combining intranasal insulin & acute exercise. Metab. Brain Dis., 2021, 36(6), 1289-1303.
[http://dx.doi.org/10.1007/s11011-021-00727-2] [PMID: 33856613]
[104]
Craft, S.; Raman, R.; Chow, T.W.; Rafii, M.S.; Sun, C.K.; Rissman, R.A.; Donohue, M.C.; Brewer, J.B.; Jenkins, C.; Harless, K.; Gessert, D.; Aisen, P.S. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: A randomized clinical trial. JAMA Neurol., 2020, 77(9), 1099-1109.
[http://dx.doi.org/10.1001/jamaneurol.2020.1840] [PMID: 32568367]
[105]
Chen, C.C.; Fang, C.L.; Al-Suwayeh, S.A.; Leu, Y.L.; Fang, J.Y. Transdermal delivery of selegiline from alginate-Pluronic composite thermogels. Int. J. Pharm., 2011, 415(1-2), 119-128.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.060] [PMID: 21645593]
[106]
Verma, S.; Kaul, M.; Rawat, A.; Saini, S. An overview on buccal drug delivery system. Int. J. Pharm. Sci. Res., 2011, 2(6), 1303.
[107]
Nicolazzo, J.A.; Reed, B.L.; Finnin, B.C. The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa. J. Pharm. Sci., 2003, 92(12), 2399-2410.
[http://dx.doi.org/10.1002/jps.10505] [PMID: 14603485]
[108]
Puratchikody, A.; Prasanth, V.V.; Mathew, S.T.; Kumar, A. Buccal drug delivery: Past, present and future-a review. Int. J. Drug Deliv., 2011, 3(2), 171.
[109]
Uddin, M.N.; Allon, A.; Roni, M.A.; Kouzi, S. Overview and future potential of fast dissolving buccal films as drug delivery system for vaccines. J. Pharm. Pharm. Sci., 2019, 22(1), 388-406.
[http://dx.doi.org/10.18433/jpps30528] [PMID: 31386612]
[110]
Walker, G.F.; Langoth, N.; Bernkop-Schnürch, A. Peptidase activity on the surface of the porcine buccal mucosa. Int. J. Pharm., 2002, 233(1-2), 141-147.
[http://dx.doi.org/10.1016/S0378-5173(01)00934-6] [PMID: 11897418]
[111]
Aungst, B.J.; Rogers, N.J. Comparison of the effects of various transmucosal absorption promoters on buccal insulin delivery. Int. J. Pharm., 1989, 53(3), 227-235.
[http://dx.doi.org/10.1016/0378-5173(89)90316-5]
[112]
Rao, N.R.; Shravani, B.; Reddy, M.S. Overview on buccal drug delivery systems. J. Pharm. Sci. Res., 2013, 5(4), 80.
[113]
Reddy, J.R.K. Formulation and Ev. Pharm. Res., 2016, 4(1), 11-17.
[114]
Banerjee, A.; Lee, J.; Mitragotri, S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng. Transl. Med., 2016, 1(3), 338-346.
[http://dx.doi.org/10.1002/btm2.10015] [PMID: 29313019]
[115]
Hosny, E.A.; Elkheshen, S.A.; Saleh, S.I. Buccoadhesive tablets for insulin delivery: In-vitro and in-vivo studies. Boll. Chim. Farm., 2002, 141(3), 210-217.
[PMID: 12197420]
[116]
Bernstein, G. Delivery of insulin to the buccal mucosa utilizing the RapidMist system. Expert Opin. Drug Deliv., 2008, 5(9), 1047-1055.
[http://dx.doi.org/10.1517/17425247.5.9.1047] [PMID: 18754753]
[117]
Bansal, M.; Bansal, S.; Kumria, R. The RapidMist™ System for Buccal Delivery of Insulin. In: das Neves, J.; Sarmento, B.; Eds. Mucosal Delivery of Biopharmaceuticals; Springer: Boston, MA, 2014, pp. 423-436.
[http://dx.doi.org/10.1007/978-1-4614-9524-6_19]
[118]
Crasto, W.; Jarvis, J.; Davies, M.J. Handbook of Insulin Therapies; Springer International Publishing: Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-10939-8]
[119]
Beran, D.; Lazo-Porras, M.; Mba, C.M.; Mbanya, J.C. A global perspective on the issue of access to insulin. Diabetologia, 2021, 64(5), 954-962.
[http://dx.doi.org/10.1007/s00125-020-05375-2] [PMID: 33483763]
[120]
Heinemann, L.; Jacques, Y. Oral insulin and buccal insulin: A critical reappraisal. J. Diabetes Sci. Technol., 2009, 3(3), 568-584.
[http://dx.doi.org/10.1177/193229680900300323] [PMID: 20144297]
[121]
Bashyal, S.; Seo, J.E.; Keum, T.; Noh, G.; Lamichhane, S.; Kim, J.H.; Kim, C.H.; Choi, Y.W.; Lee, S. Facilitated buccal insulin delivery via hydrophobic ion-pairing approach: In vitro and ex vivo evaluation. Int. J. Nanomedicine, 2021, 16, 4677-4691.
[http://dx.doi.org/10.2147/IJN.S318092] [PMID: 34262275]
[122]
Bashyal, S.; Seo, J.E.; Keum, T.; Noh, G.; Lamichhane, S.; Lee, S. Development, characterization, and ex vivo assessment of elastic liposomes for enhancing the buccal delivery of insulin. Pharmaceutics, 2021, 13(4), 565.
[http://dx.doi.org/10.3390/pharmaceutics13040565] [PMID: 33923670]
[123]
Gleason, J.M.; Daniels, C.; Williams, K.; Varghese, A.; Koyle, M.A.; Bägli, D.J.; Pippi Salle, J.L.; Lorenzo, A.J. Single center experience with oxybutynin transdermal system (patch) for management of symptoms related to non-neuropathic overactive bladder in children: An attractive, well tolerated alternative form of administration. J. Pediatr. Urol., 2014, 10(4), 753-757.
[http://dx.doi.org/10.1016/j.jpurol.2013.12.017] [PMID: 24477421]
[124]
Schuetz, Y.B.; Naik, A.; Guy, R.H.; Kalia, Y.N. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opin. Drug Deliv., 2005, 2(3), 533-548.
[http://dx.doi.org/10.1517/17425247.2.3.533] [PMID: 16296773]
[125]
Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther., 2012, 2(1), 66-75.
[126]
Ahad, A.; Raish, M.; Bin Jardan, Y.A.; Al-Mohizea, A.M.; Al-Jenoobi, F.I. Delivery of insulin via skin route for the management of diabetes mellitus: Approaches for breaching the obstacles. Pharmaceutics, 2021, 13(1), 100.
[http://dx.doi.org/10.3390/pharmaceutics13010100] [PMID: 33466845]
[127]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[128]
Sibiya, N.; Ngubane, P.; Mabandla, M. Cardioprotective effects of pectin-insulin patch in streptozotocin-induced diabetic rats. J. Diabetes, 2017, 9(12), 1073-1081.
[http://dx.doi.org/10.1111/1753-0407.12538] [PMID: 28220624]
[129]
Ita, K.B. Transdermal drug delivery: Progress and challenges. J. Drug Deliv. Sci. Technol., 2014, 24(3), 245-250.
[http://dx.doi.org/10.1016/S1773-2247(14)50041-X]
[130]
Haque, T.; Talukder, M.M.U. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull., 2018, 8(2), 169-179.
[http://dx.doi.org/10.15171/apb.2018.021] [PMID: 30023318]
[131]
Andrews, S.N.; Jeong, E.; Prausnitz, M.R. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res., 2013, 30(4), 1099-1109.
[http://dx.doi.org/10.1007/s11095-012-0946-7] [PMID: 23196771]
[132]
Gómez, C.; Benito, M.; Teijón, J.M.; Blanco, M.D. Novel methods and devices to enhance transdermal drug delivery: The importance of laser radiation in transdermal drug delivery. Ther. Deliv., 2012, 3(3), 373-388.
[http://dx.doi.org/10.4155/tde.12.10] [PMID: 22833996]
[133]
Sibiya, N.; Ngubane, P.; Mabandla, M. The ameliorative effect of pectin-insulin patch on renal injury in streptozotocin-induced diabetic rats. Kidney Blood Press. Res., 2017, 42(3), 530-540.
[http://dx.doi.org/10.1159/000480395] [PMID: 28854437]
[134]
Sibiya, N.; Mabandla, M. The pectin-insulin patch application prevents the onset of peripheral neuropathy-like symptoms in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol., 2018, 96(12), 1286-1292.
[http://dx.doi.org/10.1139/cjpp-2018-0415] [PMID: 30326192]
[135]
Hadebe, S.I.; Ngubane, P.S.; Serumula, M.R.; Musabayane, C.T. Transdermal delivery of insulin by amidated pectin hydrogel matrix patch in streptozotocin-induced diabetic rats: Effects on some selected metabolic parameters. PLoS One, 2014, 9(7), e101461.
[http://dx.doi.org/10.1371/journal.pone.0101461] [PMID: 24987850]
[136]
Pagneux, Q.; Ye, R.; Chengnan, L.; Barras, A.; Hennuyer, N.; Staels, B.; Caina, D.; Osses, J.I.A.; Abderrahmani, A.; Plaisance, V.; Pawlowski, V.; Boukherroub, R.; Melinte, S.; Szunerits, S. Electrothermal patches driving the transdermal delivery of insulin. Nanoscale Horiz., 2020, 5(4), 663-670.
[http://dx.doi.org/10.1039/C9NH00576E] [PMID: 32226966]
[137]
Harjoh, N.; Wong, T.W.; Caramella, C. Transdermal insulin delivery with microwave and fatty acids as permeation enhancers. Int. J. Pharm., 2020, 584, 119416.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119416] [PMID: 32423875]
[138]
Zhang, N.; Zhou, X.; Liu, L.; Zhao, L.; Xie, H.; Yang, Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front. Pharmacol., 2021, 12, 719905.
[http://dx.doi.org/10.3389/fphar.2021.719905] [PMID: 34630098]
[139]
Zhang, Q.; Widmer, G.; Tzipori, S. A pig model of the human gastrointestinal tract. Gut Microbes, 2013, 4(3), 193-200.
[http://dx.doi.org/10.4161/gmic.23867] [PMID: 23549377]
[140]
Patterson, C.C.; Harjutsalo, V.; Rosenbauer, J.; Neu, A.; Cinek, O.; Skrivarhaug, T.; Rami-Merhar, B.; Soltesz, G.; Svensson, J.; Parslow, R.C.; Castell, C.; Schoenle, E.J.; Bingley, P.J.; Dahlquist, G.; Jarosz-Chobot, P.K. Marčiulionytė D.; Roche, E.F.; Rothe, U.; Bratina, N.; Ionescu-Tirgoviste, C.; Weets, I.; Kocova, M.; Cherubini, V.; Rojnic Putarek, N.; deBeaufort, C.E.; Samardzic, M.; Green, A. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: A multicentre prospective registration study. Diabetologia, 2019, 62(3), 408-417.
[http://dx.doi.org/10.1007/s00125-018-4763-3] [PMID: 30483858]
[141]
Godman, B.; Fadare, J.; Kwon, H.Y.; Dias, C.Z.; Kurdi, A.; Dias Godói, I.P.; Kibuule, D.; Hoxha, I.; Opanga, S.; Saleem, Z.; Bochenek, T. Marković-Peković V.; Mardare, I.; Kalungia, A.C.; Campbell, S.; Allocati, E.; Pisana, A.; Martin, A.P.; Meyer, J.C. Evidence-based public policy making for medicines across countries: Findings and implications for the future. J. Comp. Eff. Res., 2021, 10(12), 1019-1052.
[http://dx.doi.org/10.2217/cer-2020-0273] [PMID: 34241546]
[142]
Sharma, S.K.; Kant, R.; Kalra, S.; Bishnoi, R. Prevalence of primary non-adherence with insulin and barriers to insulin initiation in patients with type 2 diabetes mellitus - an exploratory study in a tertiary care teaching public hospital. Eur. Endocrinol., 2020, 16(2), 143-147.
[http://dx.doi.org/10.17925/EE.2020.16.2.143] [PMID: 33117446]
[143]
Hayfron-Benjamin, C.; van den Born, B.J.; Maitland-van der Zee, A.H.; Amoah, A.G.B.; Meeks, K.A.C.; Klipstein-Grobusch, K.; Bahendeka, S.; Spranger, J.; Danquah, I.; Mockenhaupt, F.; Beune, E.; Smeeth, L.; Agyemang, C. Microvascular and macrovascular complications in type 2 diabetes Ghanaian residents in Ghana and Europe: The RODAM study. J. Diabetes Complications, 2019, 33(8), 572-578.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.04.016] [PMID: 31167710]
[144]
Wong, J.; Chan, K.Y.; Lo, K. Sodium-glucose co-transporter 2 inhibitors on weight change and cardiometabolic profiles in individuals with overweight or obesity and without diabetes: A meta-analysis. Obes. Rev., 2021, 22(12), e13336.
[http://dx.doi.org/10.1111/obr.13336] [PMID: 34542222]
[145]
Patorno, E.; Everett, B.M.; Goldfine, A.B.; Glynn, R.J.; Liu, J.; Gopalakrishnan, C.; Kim, S.C. Comparative cardiovascular safety of glucagon-like peptide-1 receptor agonists via other antidiabetic drugs in routine care: A cohort study. Diabetes Obes. Metab., 2016, 18(8), 755-765.
[http://dx.doi.org/10.1111/dom.12665] [PMID: 27003762]
[146]
Kubota, A.; Takano, H.; Wang, H.; Hasegawa, H.; Tadokoro, H.; Hirose, M.; Kobara, Y.; Yamada-Inagawa, T.; Komuro, I.; Kobayashi, Y. DPP-4 inhibition has beneficial effects on the heart after myocardial infarction. J. Mol. Cell. Cardiol., 2016, 91, 72-80.
[http://dx.doi.org/10.1016/j.yjmcc.2015.12.026] [PMID: 26739213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy