Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Super Para-Magnetic Iron Oxide Nanoparticles (SPIONs) in the Treatment of Cancer: Challenges, Approaches, and its Pivotal Role in Pancreatic, Colon, and Prostate Cancer

Author(s): Sameea Ahmed Khan and Rajesh Sharma*

Volume 20, Issue 6, 2023

Published on: 25 August, 2022

Page: [643 - 655] Pages: 13

DOI: 10.2174/1567201819666220509164611

Price: $65

Open Access Journals Promotions 2
Abstract

Super Para-magnetic Iron Oxide Nanoparticles (SPIONs) have been manifested for their broad spectrum of applications ranging from biomedical imaging to the treatment of many diseases. Many experiments are being conducted across the globe to especially investigate their potential in the field of targeted treatment for malignant tissues. However, challenges pertaining to the desired delivery of anticancer drugs in the body remain unresolved or unattended. The bare iron oxide nanoparticles are liable to form agglomerates or get easily oxidized in the air which can lead to loss of their magnetism and viability. Moreover, in several reactions, these magnetic nanoparticles leach into the solution/ suspension, making it kinetically unstable. The nanoparticles, further readily metabolize in the stomach pH or are phagocytosed by macrophages. In this article, we address these issues by shedding light on the impact of controlling parameters like size, synthesis method, and surface engineering. After studying the existing literature, it is noted that currently, these magnetically guided delivery systems are being rigorously tested in areas like pancreatic cancer, colon cancer, and prostate cancer, which will be discussed in this review. The fact that the major issue in the conventional treatment of these cancers is intrinsic and acquired drug resistance is a key issue. In this context, the potential of SPIONs as efficient nanotherapeutics is presented. The article provides a deeper insight into the research conducted on these focused areas in cancer. This review also discusses, in brief, the consolidation of artificial intelligence in cancer nanomedicine assuring a better treatment outcome in near future.

Keywords: Nanoparticles, SPIONs, targeted therapy, tumor treatment, pancreatic cancer, colon cancer, and prostate cancer.

Next »
Graphical Abstract
[1]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006] [PMID: 20685224]
[2]
Petri-Fink, A.; Hofmann, H. Superparamagnetic iron oxide nanoparticles (SPIONs): From synthesis to in vivo studies--a summary of the synthesis, characterization, in vitro, and in vivo investigations of SPIONs with particular focus on surface and colloidal properties. IEEE Trans. Nanobiosci., 2007, 6(4), 289-297.
[http://dx.doi.org/10.1109/TNB.2007.908987] [PMID: 18217622]
[3]
Laurent, S.; Dutz, S.; Häfeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci., 2011, 166(1-2), 8-23.
[http://dx.doi.org/10.1016/j.cis.2011.04.003] [PMID: 21601820]
[4]
El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine (Lond.), 2018, 13(8), 929-952.
[http://dx.doi.org/10.2217/nnm-2017-0320] [PMID: 29546817]
[5]
Bakhtiary, Z.; Saei, A.A.; Hajipour, M.J.; Raoufi, M.; Vermesh, O.; Mahmoudi, M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine, 2016, 12(2), 287-307.
[http://dx.doi.org/10.1016/j.nano.2015.10.019] [PMID: 26707817]
[6]
Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(6), e1571.
[http://dx.doi.org/10.1002/wnan.1571] [PMID: 31241251]
[7]
Hoang Thi, T.T.; Nguyen Tran, D.H.; Bach, L.G.; Vu-Quang, H.; Nguyen, D.C.; Park, K.D.; Nguyen, D.H. Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics, 2019, 11(3), 11.
[http://dx.doi.org/10.3390/pharmaceutics11030120] [PMID: 30875948]
[8]
Gu, F.X.; Karnik, R.; Wang, A.Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R.S.; Farokhzad, O.C. Targeted nanoparticles for cancer therapy. Nano Today, 2007, 2, 14-21.
[http://dx.doi.org/10.1016/S1748-0132(07)70083-X]
[9]
Beg, S.; Alharbi, K.S.; Alruwaili, N.K.; Alotaibi, N.H.; Almalki, W.H.; Alenezi, S.K.; Altowayan, W.M.; Alshammari, M.S.; Rahman, M. Nanotherapeutic systems for delivering cancer vaccines: Recent advances. Nanomedicine (Lond.), 2020, 15(15), 1527-1537.
[http://dx.doi.org/10.2217/nnm-2020-0046] [PMID: 32410483]
[10]
Muñoz, M.; Gómez-Ramírez, S.; Bhandari, S. The safety of available treatment options for iron-deficiency anemia. Expert Opin. Drug Saf., 2018, 17(2), 149-159.
[http://dx.doi.org/10.1080/14740338.2018.1400009] [PMID: 29103332]
[11]
Wang, Y.X.J. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol., 2015, 21(47), 13400-13402.
[http://dx.doi.org/10.3748/wjg.v21.i47.13400] [PMID: 26715826]
[12]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 311, 397-415.
[13]
Petri-Fink, A.; Steitz, B.; Finka, A.; Salaklang, J.; Hofmann, H. Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): Colloidal stability, cytotoxicity, and cellular uptake studies. Eur. J. Pharm. Biopharm., 2008, 68(1), 129-137.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.024] [PMID: 17881203]
[14]
Mandel, K.; Hutter, F.; Gellermann, C.; Sextl, G. Synthesis and stabilisation of superparamagnetic iron oxide nanoparticle dispersions. Colloids Surf. A Physicochem. Eng. Asp., 2011, 390, 173-178.
[http://dx.doi.org/10.1016/j.colsurfa.2011.09.024]
[15]
Nabavinia, M.; Beltran-Huarac, J. Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl. Bio Mater., 2020, 3(12), 8172-8187.
[http://dx.doi.org/10.1021/acsabm.0c00947] [PMID: 35019598]
[16]
Sun, S.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 2002, 124(28), 8204-8205.
[http://dx.doi.org/10.1021/ja026501x] [PMID: 12105897]
[17]
Inozemtseva, O.A.; German, S.V.; Navolokin, N.A.; Bucharskaya, A.B.; Maslyakova, G.N.; Gorin, D.A. Encapsulated magnetite nanoparticles: Preparation and application as multifunctional tool for drug delivery systems. Nanotechnol. Biosens, 2018, 175-192.
[18]
Sakulkhu, U.; Mahmoudi, M.; Maurizi, L.; Salaklang, J.; Hofmann, H. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci. Rep., 2014, 41, 1-9.
[19]
Wu, W.; Jiang, C.Z.; Roy, V.A.L. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, 8(47), 19421-19474.
[http://dx.doi.org/10.1039/C6NR07542H] [PMID: 27812592]
[20]
Rajan, A.; Sahu, N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res., 2020, 22, 319.
[http://dx.doi.org/10.1007/s11051-020-05045-9]
[21]
Revia, R.A.; Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater. Today, 2016, 19(3), 157-168.
[http://dx.doi.org/10.1016/j.mattod.2015.08.022] [PMID: 27524934]
[22]
Nelson, N.; Port, J.; Pandey, M. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review. J. Nanotheranostics, 2020, 1, 105-135.
[http://dx.doi.org/10.3390/jnt1010008]
[23]
Al Faraj, A.; Shaik, A.P.; Shaik, A.S. Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology, 2015, 9(7), 825-834.
[http://dx.doi.org/10.3109/17435390.2014.980450] [PMID: 26356541]
[24]
Singh, N.; Jenkins, G.J.S.; Nelson, B.C.; Marquis, B.J.; Maffeis, T.G.G.; Brown, A.P.; Williams, P.M.; Wright, C.J.; Doak, S.H. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials, 2012, 33(1), 163-170.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.087] [PMID: 22027595]
[25]
Singh, A.V.; Romeo, A.; Scott, K.; Wagener, S.; Leibrock, L.; Laux, P.; Luch, A.; Kerkar, P.; Balakrishnan, S.; Dakua, S.P.; Park, B.W. Emerging technologies for in vitro inhalation toxicology. Adv. Healthc. Mater., 2021, 10(18), e2100633.
[http://dx.doi.org/10.1002/adhm.202100633] [PMID: 34292676]
[26]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.W. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[27]
Chamorro, S.; Gutiérrez, L.; Vaquero, M.P.; Verdoy, D.; Salas, G.; Luengo, Y.; Brenes, A.; José Teran, F. Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology, 2015, 26(20), 205101.
[http://dx.doi.org/10.1088/0957-4484/26/20/205101] [PMID: 25927227]
[28]
Powell, J.J.; Faria, N.; Thomas-McKay, E.; Pele, L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun., 2010, 34(3), J226-J233.
[http://dx.doi.org/10.1016/j.jaut.2009.11.006] [PMID: 20096538]
[29]
Hunt, N.J.; McCourt, P.A.G.; Kuncic, Z.; Le Couteur, D.G.; Cogger, V.C. Opportunities and challenges for nanotherapeutics for the aging population. Front. Nanotechnol., 2022, 0, 1.
[http://dx.doi.org/10.3389/fnano.2022.832524]
[30]
Yu, M.; Wu, J.; Shi, J.; Farokhzad, O.C. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release, 2016, 240, 24-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.012] [PMID: 26458789]
[31]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[32]
Nichols, J.W.; Bae, Y.H. Odyssey of a cancer nanoparticle: From injection site to site of action. Nano Today, 2012, 7(6), 606-618.
[http://dx.doi.org/10.1016/j.nantod.2012.10.010] [PMID: 23243460]
[33]
Talekar, M.; Kendall, J.; Denny, W.; Garg, S. Targeting of nanoparticles in cancer: Drug delivery and diagnostics. Anticancer Drugs, 2011, 22(10), 949-962.
[http://dx.doi.org/10.1097/CAD.0b013e32834a4554] [PMID: 21970851]
[34]
Kievit, F.M.; Zhang, M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. ACC. Chem. Res., 2011, 44(10), 853-862.
[http://dx.doi.org/10.1021/ar2000277]
[35]
Peng, N.; Wu, B.; Wang, L.; He, W.; Ai, Z.; Zhang, X.; Wang, Y.; Fan, L.; Ye, Q. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater. Sci., 2016, 4(12), 1802-1813.
[http://dx.doi.org/10.1039/C6BM00504G] [PMID: 27792228]
[36]
Dawidczyk, C.M.; Kim, C.; Park, J.H.; Russell, L.M.; Lee, K.H.; Pomper, M.G.; Searson, P.C. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. J. Control. Release, 2014, 187, 133-144.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.036] [PMID: 24874289]
[37]
Baronzio, G.; Parmar, G.; Baronzio, M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front. Oncol., 2015, 5, 165.
[http://dx.doi.org/10.3389/fonc.2015.00165] [PMID: 26258072]
[38]
Palanisamy, S.; Wang, Y-M. Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans., 2019, 48(26), 9490-9515.
[http://dx.doi.org/10.1039/C9DT00459A] [PMID: 31211303]
[39]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1, 16014.
[40]
Janko, C.; Zaloga, J.; Pöttler, M.; Dürr, S.; Eberbeck, D.; Tietze, R.; Lyer, S.; Alexiou, C. Strategies to optimize the biocompatibility of iron oxide nanoparticles - “SPIONS safe by design. J. Magn. Magn. Mater., 2017, 431, 281-284.
[http://dx.doi.org/10.1016/j.jmmm.2016.09.034]
[41]
Ali, S.; Khan, S.A.; Yamani, Z.H.; Qamar, M.T.; Morsy, M.A.; Sarfraz, S. Shape- and size-controlled superparamagnetic iron oxide nanoparticles using various reducing agents and their relaxometric properties by Xigo Acorn Area. Appl. Nanosci., 2019, 9, 479-489.
[http://dx.doi.org/10.1007/s13204-018-0907-5]
[42]
Chen, S.; Chen, S.; Zeng, Y.; Lin, L.; Wu, C.; Ke, Y.; Liu, G. Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages. J. Appl. Toxicol., 2018, 38(7), 978-986.
[http://dx.doi.org/10.1002/jat.3606] [PMID: 29492987]
[43]
Macavei, S.G.; Suciu, M. Crăciunescu, I.; Barbu-Tudoran, L.; Tripon, S.C.; Leoștean, C.; Bălan, R. SPION size dependent effects on normal and cancer cells. Stud. Univ. Babes-Bolyai Biol., 2017, 62, 29-42.
[http://dx.doi.org/10.24193/subbb.2017.1.02]
[44]
Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano, 2017, 11(2), 2284-2303.
[http://dx.doi.org/10.1021/acsnano.7b00609] [PMID: 28178419]
[45]
Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J. Phys. Chem. C, 2014, 118, 8691-8701.
[46]
Patsula, V.; Kosinová, L. Lovrić M.; Ferhatovic Hamzić L.; Rabyk, M.; Konefal, R.; Paruzel, A.; Šlouf, M.; Herynek, V.; Gajović S.; Horák, D. Superparamagnetic Fe3O4 nanoparticles: Synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2016, 8(11), 7238-7247.
[http://dx.doi.org/10.1021/acsami.5b12720] [PMID: 26928653]
[47]
Khan, U.S.; Rahim, A.; Khan, N.; Muhammad, N.; Rehman, F.; Ahmad, K.; Iqbal, J. Aging study of the powdered magnetite nanoparticles. Mater. Chem. Phys., 2017, 189, 86-89.
[http://dx.doi.org/10.1016/j.matchemphys.2016.12.047]
[48]
Santomauro, G.; Singh, A.V.; Park, B.W.; Mohammadrahimi, M.; Erkoc, P.; Goering, E.; Schütz, G.; Sitti, M.; Bill, J. Incorporation of terbium into a microalga leads to magnetotactic swimmers. Adv. Biosyst., 2018, 2, 1800039.
[http://dx.doi.org/10.1002/adbi.201800039]
[49]
Silva, A.H.; Lima, E., Jr; Mansilla, M.V.; Zysler, R.D.; Troiani, H.; Pisciotti, M.L.M.; Locatelli, C.; Benech, J.C.; Oddone, N.; Zoldan, V.C.; Winter, E.; Pasa, A.A.; Creczynski-Pasa, T.B. Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: Cell uptake and biocompatibility evaluation. Nanomedicine, 2016, 12(4), 909-919.
[http://dx.doi.org/10.1016/j.nano.2015.12.371] [PMID: 26767515]
[50]
Zaloga, J.; Pöttler, M.; Leitinger, G.; Friedrich, R.P.; Almer, G.; Lyer, S.; Baum, E.; Tietze, R.; Heimke-Brinck, R.; Mangge, H.; Dörje, F.; Lee, G.; Alexiou, C. Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting. Eur. J. Pharm. Biopharm., 2016, 101, 152-162.
[http://dx.doi.org/10.1016/j.ejpb.2016.01.017] [PMID: 26854862]
[51]
Strehl, C.; Gaber, T.; Maurizi, L.; Hahne, M.; Rauch, R.; Hoff, P.; Häupl, T.; Hofmann-Amtenbrink, M.; Poole, A.R.; Hofmann, H.; Buttgereit, F. Effects of PVA coated nanoparticles on human immune cells. Int. J. Nanomedicine, 2015, 10, 3429-3445.
[http://dx.doi.org/10.2147/IJN.S75936] [PMID: 26056442]
[52]
Abdollah, M.R.A.; Carter, T.J.; Jones, C.; Kalber, T.L.; Rajkumar, V.; Tolner, B.; Gruettner, C.; Zaw-Thin, M.; Baguña Torres, J.; Ellis, M.; Robson, M.; Pedley, R.B.; Mulholland, P. T M de Rosales, R.; Chester, K.A. Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles. ACS Nano, 2018, 12(2), 1156-1169.
[http://dx.doi.org/10.1021/acsnano.7b06734] [PMID: 29341587]
[53]
Singh, A.V.; Dad Ansari, M.H.; Dayan, C.B.; Giltinan, J.; Wang, S.; Yu, Y.; Kishore, V.; Laux, P.; Luch, A.; Sitti, M. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 2019, 219119394.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119394] [PMID: 31382208]
[54]
Andrade, Â.L.; Valente, M.A.; Ferreira, J.M.F.; Fabris, J.D. Preparation of size-controlled nanoparticles of magnetite. J. Magn. Magn. Mater., 2012, 324, 1753-1757.
[http://dx.doi.org/10.1016/j.jmmm.2011.12.033]
[55]
Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol., 2015, 88(1054), 20150207.
[http://dx.doi.org/10.1259/bjr.20150207] [PMID: 25969868]
[56]
Tran, N.; Webster, T. J. Magnetic nanoparticles: Biomedical applications and challenges. J. Mater. Chem., 2010, 20, 8760-8767.
[http://dx.doi.org/10.1039/c0jm00994f]
[57]
Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev., 2019, 138, 302-325.
[http://dx.doi.org/10.1016/j.addr.2019.01.005] [PMID: 30639256]
[58]
Martinkova, P.; Brtnicky, M.; Kynicky, J.; Pohanka, M. Iron oxide nanoparticles: Innovative tool in cancer diagnosis and therapy. Adv. Healthc. Mater., 2018, 7(5), 1700932.
[http://dx.doi.org/10.1002/adhm.201700932] [PMID: 29205944]
[59]
Herrmann, R.; Bodoky, G.; Ruhstaller, T.; Glimelius, B.; Bajetta, E.; Schüller, J.; Saletti, P.; Bauer, J.; Figer, A.; Pestalozzi, B.; Köhne, C.H.; Mingrone, W.; Stemmer, S.M.; Tàmas, K.; Kornek, G.V.; Koeberle, D.; Cina, S.; Bernhard, J.; Dietrich, D.; Scheithauer, W. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: A randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. J. Clin. Oncol., 2007, 25(16), 2212-2217.
[http://dx.doi.org/10.1200/JCO.2006.09.0886] [PMID: 17538165]
[60]
El Maalouf, G.; Le Tourneau, C.; Batty, G.N.; Faivre, S.; Raymond, E. Markers involved in resistance to cytotoxics and targeted therapeutics in pancreatic cancer. Cancer Treat. Rev., 2009, 35(2), 167-174.
[http://dx.doi.org/10.1016/j.ctrv.2008.10.002] [PMID: 19027240]
[61]
Personalized therapy for pancreatic cancer: Do we need better targets, arrows, or both? - Kevin M O’Hayer - Discovery medicine. Available from: https://www.discoverymedicine.com/Kevin-M-OHayer/2016/02/personalized-therapy-for-pancreatic-cancer-do-we-need-better-targets-arrows-or-both/ Accessed on Aug 15, 2021
[62]
Martinez-Bosch, N.; Vinaixa, J.; Navarro, P. Immune evasion in pancreatic cancer: From mechanisms to therapy. Cancers, 2018, 10, 6.
[63]
Wang, Z.; Li, Y.; Ahmad, A.; Banerjee, S.; Azmi, A.S.; Kong, D.; Sarkar, F.H. Pancreatic cancer: Understanding and overcoming chemoresistance. Nat. Rev. Gastroenterol. Hepatol., 2011, 81, 27-33.
[64]
Geller, L.T.; Barzily-Rokni, M.; Danino, T.; Jonas, O.H.; Shental, N.; Nejman, D.; Gavert, N.; Zwang, Y.; Cooper, Z.A.; Shee, K.; Thaiss, C.A.; Reuben, A.; Livny, J.; Avraham, R.; Frederick, D.T.; Ligorio, M.; Chatman, K.; Johnston, S.E.; Mosher, C.M.; Brandis, A.; Fuks, G.; Gurbatri, C.; Gopalakrishnan, V.; Kim, M.; Hurd, M.W.; Katz, M.; Fleming, J.; Maitra, A.; Smith, D.A.; Skalak, M.; Bu, J.; Michaud, M.; Trauger, S.A.; Barshack, I.; Golan, T.; Sandbank, J.; Flaherty, K.T.; Mandinova, A.; Garrett, W.S.; Thayer, S.P.; Ferrone, C.R.; Huttenhower, C.; Bhatia, S.N.; Gevers, D.; Wargo, J.A.; Golub, T.R.; Straussman, R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357, 1156-1160.
[65]
Subramaniam, D.; Kaushik, G.; Dandawate, P.; Anant, S. Targeting cancer stem cells for chemoprevention of pancreatic cancer. Curr. Med. Chem., 2018, 25(22), 2585-2594.
[http://dx.doi.org/10.2174/0929867324666170127095832] [PMID: 28137215]
[66]
Amrutkar, M.; Gladhaug, I.P. Pancreatic cancer chemoresistance to gemcitabine. Cancers, 2017, 9, 157.
[67]
Wang, H.; Ning, Z.; Li, Y.; Zhu, X.; Meng, Z. Bufalin suppresses cancer stem-like cells in gemcitabine-resistant pancreatic cancer cells via Hedgehog signaling. Mol. Med. Rep., 2016, 14(3), 1907-1914.
[http://dx.doi.org/10.3892/mmr.2016.5471] [PMID: 27432228]
[68]
Cunningham, D.; Chau, I.; Stocken, D.D.; Valle, J.W.; Smith, D.; Steward, W.; Harper, P.G.; Dunn, J.; Tudur-Smith, C.; West, J.; Falk, S.; Crellin, A.; Adab, F.; Thompson, J.; Leonard, P.; Ostrowski, J.; Eatock, M.; Scheithauer, W.; Herrmann, R.; Neoptolemos, J.P. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J. Clin. Oncol., 2009, 27(33), 5513-5518.
[http://dx.doi.org/10.1200/JCO.2009.24.2446] [PMID: 19858379]
[69]
Khan, S.; Setua, S.; Kumari, S.; Dan, N.; Massey, A.; Hafeez, B.B.; Yallapu, M.M.; Stiles, Z.E.; Alabkaa, A.; Yue, J.; Ganju, A.; Behrman, S.; Jaggi, M.; Chauhan, S.C. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials, 2019, 208, 83-97.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.005] [PMID: 30999154]
[70]
Mardhian, D.F.; Storm, G.; Bansal, R.; Prakash, J. Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J. Control. Release, 2018, 290, 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.031] [PMID: 30287265]
[71]
Mulens-Arias, V.; Rojas, J.M.; Pérez-Yagüe, S.; Morales, M.P.; Barber, D.F. Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells. J. Control. Release, 2015, 216, 78-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.009] [PMID: 26264831]
[72]
Sivakumar, B.; Aswathy, R.G.; Nagaoka, Y.; Iwai, S.; Hasumura, T.; Venugopal, K.; Kato, K.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D.N. Augmented cellular uptake and antiproliferation against pancreatic cancer cells induced by targeted curcumin and SPION encapsulated PLGA nanoformulation. Mater. Express, 2014, 4, 183-195.
[http://dx.doi.org/10.1166/mex.2014.1160]
[73]
Albukhaty, S.; Al-Musawi, S.; Abdul Mahdi, S.; Sulaiman, G.M.; Alwahibi, M.S.; Dewir, Y.H.; Soliman, D.A.; Rizwana, H. Investigation of dextran-coated superparamagnetic nanoparticles for targeted vinblastine controlled release, delivery, apoptosis induction, and gene expression in pancreatic cancer cells. Molecules, 2020, 25(20), 25.
[http://dx.doi.org/10.3390/molecules25204721] [PMID: 33076247]
[74]
Mahajan, U.M.; Teller, S.; Sendler, M.; Palankar, R.; van den Brandt, C.; Schwaiger, T.; Kühn, J.P.; Ribback, S.; Glöckl, G.; Evert, M.; Weitschies, W.; Hosten, N.; Dombrowski, F.; Delcea, M.; Weiss, F.U.; Lerch, M.M.; Mayerle, J. Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut, 2016, 65(11), 1838-1849.
[http://dx.doi.org/10.1136/gutjnl-2016-311393] [PMID: 27196585]
[75]
Garza-Treviño, E.N.; Said-Fernández, S.L.; Martínez-Rodríguez, H.G. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int., 2015, 151, 1-9.
[76]
Yusoff, H.M.N.N.M.A.A.; Daud, N.; Noor, N.M.; Rahim, A.A. Participation and barriers to colorectal cancer screening in Malaysia. Asian Pac. J. Cancer Prev., 2012, 13(8), 3983-3987.
[http://dx.doi.org/10.7314/APJCP.2012.13.8.3983] [PMID: 23098504]
[77]
Prasad, S.; Dangi, J.S. Development and characterization of pH responsive polymeric nanoparticles of SN-38 for colon cancer. Artif. Cells Nanomed. Biotechnol., 2015, 44, 1824-1834.
[http://dx.doi.org/10.3109/21691401.2015.1105239]
[78]
Licciardi, M.; Scialabba, C.; Puleio, R.; Cassata, G.; Cicero, L.; Cavallaro, G.; Giammona, G. Smart copolymer coated SPIONs for colon cancer chemotherapy. Int. J. Pharm., 2019, 556, 57-67.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.069] [PMID: 30529663]
[79]
Kotelevets, L.; Chastre, E.; Desmaële, D.; Couvreur, P. Nanotechnologies for the treatment of colon cancer: From old drugs to new hope. Int. J. Pharm., 2016, 514(1), 24-40.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.005] [PMID: 27863668]
[80]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4), 381-403.
[http://dx.doi.org/10.1016/j.bioeng.2007.06.001] [PMID: 17627883]
[81]
Banerjee, A.; Pathak, S.; Subramanium, V.D. G, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: Current trends and future perspectives. Drug Discov. Today, 2017, 22(8), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2017.05.006] [PMID: 28545838]
[82]
Creixell, M.; Herrera, A.P.; Ayala, V.; Latorre-Esteves, M.; Pérez-Torres, M.; Torres-Lugo, M.; Rinaldi, C. Preparation of Epidermal Growth Factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells. J. Magn. Magn. Mater., 2010, 322, 2244-2250.
[http://dx.doi.org/10.1016/j.jmmm.2010.02.019]
[83]
Jalalian, S.H.; Taghdisi, S.M.; Shahidi Hamedani, N.; Kalat, S.A.M.; Lavaee, P.; Zandkarimi, M.; Ghows, N.; Jaafari, M.R.; Naghibi, S.; Danesh, N.M.; Ramezani, M.; Abnous, K. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur. J. Pharm. Sci., 2013, 50(2), 191-197.
[http://dx.doi.org/10.1016/j.ejps.2013.06.015] [PMID: 23835028]
[84]
Dutta, R.K.; Sahu, S. Development of a novel probe sonication assisted enhanced loading of 5-FU in SPION encapsulated pectin nanocarriers for magnetic targeted drug delivery system. Eur. J. Pharm. Biopharm., 2012, 82(1), 58-65.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.007] [PMID: 22634237]
[85]
Jeon, H.; Kim, J.; Lee, Y.M.; Kim, J.; Choi, H.W.; Lee, J.; Park, H.; Kang, Y.; Kim, I.S.; Lee, B.H.; Hoffman, A.S.; Kim, W.J. Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system. J. Control. Release, 2016, 231, 68-76.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.006] [PMID: 26780174]
[86]
Qiu, S.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Pouget, C.; Micallef, L.; Sothea-Ouk, T.; Leger, D.Y.; Liagre, B.; Chaleix, V.; Sol, V. Delivery of tanshinone IIA and α-mangostin from gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorg. Med. Chem. Lett., 2016, 26(10), 2503-2506.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.097] [PMID: 27040657]
[87]
Sedki, M.; Khalil, I.A.; El-Sherbiny, I.M. Hybrid nanocarrier system for guiding and augmenting simvastatin cytotoxic activity against prostate cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 3), S641-S650.
[http://dx.doi.org/10.1080/21691401.2018.1505743] [PMID: 30295086]
[88]
Bouchelouche, K.; Choyke, P.L.; Capala, J. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides. Discov. Med., 2010, 9(44), 55-61.
[PMID: 20102687]
[89]
Haberkorn, U.; Eder, M.; Kopka, K.; Babich, J.W.; Eisenhut, M. New strategies in prostate cancer: Prostate-Specific Membrane Antigen (PSMA) ligands for diagnosis and therapy. Clin. Cancer Res., 2016, 22(1), 9-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0820] [PMID: 26728408]
[90]
Ritch, C.; Cookson, M. Recent trends in the management of advanced prostate cancer. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.15382.1] [PMID: 30345007]
[91]
Figg, W.D.; Woo, S.; Zhu, W.; Chen, X.; Ajiboye, A.S.; Steinberg, S.M.; Price, D.K.; Wright, J.J.; Parnes, H.L.; Arlen, P.M.; Gulley, J.L.; Dahut, W.L. A phase I clinical study of high dose ketoconazole plus weekly docetaxel for metastatic castration resistant prostate cancer. J. Urol., 2010, 183(6), 2219-2226.
[http://dx.doi.org/10.1016/j.juro.2010.02.020] [PMID: 20399458]
[92]
Rosenberg, J.E.; Ryan, C.J.; Weinberg, V.K.; Smith, D.C.; Hussain, M.; Beer, T.M.; Ryan, C.W.; Mathew, P.; Pagliaro, L.C.; Harzstark, A.L.; Sharib, J.; Small, E.J.; Phase, I. Phase I study of ixabepilone, mitoxantrone, and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel-based therapy: A study of the department of defense prostate cancer clinical trials consortium. J. Clin. Oncol., 2009, 27(17), 2772-2778.
[http://dx.doi.org/10.1200/JCO.2008.19.8002] [PMID: 19349545]
[93]
Zhang, L.; Zhang, N. How nanotechnology can enhance docetaxel therapy. Int. J. Nanomedicine, 2013, 8, 2927-2941.
[http://dx.doi.org/10.2147/IJN.S46921] [PMID: 23950643]
[94]
Nagesh, P.K.B.; Johnson, N.R.; Boya, V.K.N.; Chowdhury, P.; Othman, S.F.; Khalilzad-Sharghi, V.; Hafeez, B.B.; Ganju, A.; Khan, S.; Behrman, S.W.; Zafar, N.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf. B Biointerfaces, 2016, 144, 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[95]
Singh, N.; Sallem, F.; Mirjolet, C.; Nury, T.; Sahoo, S.K.; Millot, N.; Kumar, R. Polydopamine modified superparamagnetic iron oxide nanoparticles as multifunctional nanocarrier for targeted prostate cancer treatment. Nanomaterials (Basel), 2019, 9(2), 1-20.
[http://dx.doi.org/10.3390/nano9020138] [PMID: 30678236]
[96]
Youhannayee, M.; Nakhaei-Rad, S.; Haghighi, F.; Klauke, K.; Janiak, C.; Ahmadian, M.R.; Rabenalt, R.; Albers, P.; Getzlaff, M. Physical characterization and uptake of iron oxide nanoparticles of different prostate cancer cells. J. Magn. Magn. Mater., 2019, 473, 205-214.
[http://dx.doi.org/10.1016/j.jmmm.2018.10.062]
[97]
Tang, H.; Zhang, H.; Ye, H.; Zheng, Y. Receptor-mediated endocytosis of nanoparticles: Roles of shapes, orientations, and rotations of nanoparticles. J. Phys. Chem. B, 2018, 122(1), 171-180.
[http://dx.doi.org/10.1021/acs.jpcb.7b09619] [PMID: 29199830]
[98]
Ding, H.M.; Ma, Y.Q. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2012, 33(23), 5798-5802.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.055] [PMID: 22607914]
[99]
Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater., 2020, 32(13), e1901989.
[http://dx.doi.org/10.1002/adma.201901989] [PMID: 31286573]
[100]
Wang, Y.; Sun, S.; Zhang, Z.; Shi, D. Nanomaterials for cancer precision medicine. Adv. Mater., 2018, 30(17), e1705660.
[http://dx.doi.org/10.1002/adma.201705660] [PMID: 29504159]
[101]
Soltani, M.; Kashkooli, F.M.; Souri, M.; Harofte, S.Z.; Harati, T.; Khadem, A.; Pour, M.H.; Raahemifar, K. Enhancing clinical translation of cancer using nanoinformatics. Cancers, 2021, 13, 2481.
[102]
Rubio-Perez, C.; Tamborero, D.; Schroeder, M.P.; Antolín, A.A.; Deu-Pons, J.; Perez-Llamas, C.; Mestres, J.; Gonzalez-Perez, A.; Lopez-Bigas, N. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell, 2015, 27(3), 382-396.
[http://dx.doi.org/10.1016/j.ccell.2015.02.007] [PMID: 25759023]
[103]
Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw., 2015, 61, 85-117.
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[104]
Davoudizadeh, T.; Sajjadi, S.M.; Ma’mani, L. Exhaustive investigation of drug delivery systems to achieve optimal condition of drug release using non-linear generalized artificial neural network method: Feedback from the loading step of drug. J. Iran. Chem. Soc, 2018, 159, 1999-2006.
[105]
Boztepe, C.; Künkül, A.; Yüceer, M. Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly(NIPAAm-Co-AAc)-PEG IPN hydrogel. J. Drug Deliv. Sci. Technol., 2020, 57, 101603.
[http://dx.doi.org/10.1016/j.jddst.2020.101603]
[106]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[107]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[108]
Winkler, D.A.; Mombelli, E.; Pietroiusti, A.; Tran, L.; Worth, A.; Fadeel, B.; McCall, M.J. Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential. Toxicology, 2013, 313(1), 15-23.
[http://dx.doi.org/10.1016/j.tox.2012.11.005] [PMID: 23165187]
[109]
Gilbertson, L.M.; Melnikov, F.; Wehmas, L.C.; Anastas, P.T.; Tanguay, R.L.; Zimmerman, J.B. Toward safer multi-walled carbon nanotube design: Establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology, 2016, 10(1), 10-19.
[http://dx.doi.org/10.3109/17435390.2014.996193] [PMID: 25676623]
[110]
Xu, W-J.; Li, N.; Gao, C. Preparation of controlled porosity osmotic pump tablets for salvianolic acid and optimization of the formulation using an artificial neural network method. Acta Pharm. Sin. B, 2011, 1, 64-70.
[http://dx.doi.org/10.1016/j.apsb.2011.04.002]
[111]
Saddek, B. Prevention of obesity using artificial intelligence techniques socioeconomic and age-incidence of breast cancer: Modeling using artificial intelligence technique view project radiofrequencies effects on rats view project prevention of obesity using artificial intelligence techniques. Int. J. Sci. Eng. Investig., 2012, 1, 146-450.
[112]
de Matas, M.; Shao, Q.; Biddiscombe, M.F.; Meah, S.; Chrystyn, H.; Usmani, O.S. Predicting the clinical effect of a short acting bronchodilator in individual patients using artificial neural networks. Eur. J. Pharm. Sci., 2010, 41(5), 707-715.
[http://dx.doi.org/10.1016/j.ejps.2010.09.018] [PMID: 20932900]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy