Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Role of Heat Shock Protein 40 in Carcinogenesis and Biology of Colorectal Cancer

Author(s): Fereshteh Asgharzadeh, Reyhaneh Moradi-Marjaneh* and Mahdi Moradi Marjaneh*

Volume 28, Issue 18, 2022

Published on: 24 June, 2022

Page: [1457 - 1465] Pages: 9

DOI: 10.2174/1381612828666220513124603

open access plus

conference banner
Abstract

Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. The accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence shows that protein family members of DnaJ/Hsp40 play both roles, enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge of the molecular mechanisms responsible for DnaJ/Hsp40 in CRC carcinogenesis and biology.

Keywords: Heat shock protein 40, chaperone DnaJ, colorectal cancer, carcinogenesis, metastasis, treatment.

[1]
Lichtenstern CR, Ngu RK, Shalapour S, Karin M. Immunotherapy, inflammation and colorectal cancer. Cells 2020; 9(3): 618.
[http://dx.doi.org/10.3390/cells9030618] [PMID: 32143413]
[2]
Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: A promising therapeutic approach. Int J Mol Sci 2017; 18(9): 1978.
[http://dx.doi.org/10.3390/ijms18091978] [PMID: 28914774]
[3]
Mitra A, Shevde LA, Samant RS. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis 2009; 26(6): 559-67.
[http://dx.doi.org/10.1007/s10585-009-9255-x] [PMID: 19340594]
[4]
Amin-Wetzel N, Saunders RA, Kamphuis MJ, Rato C, Preissler S, Harding HP, et al. A J-protein co-chaperone recruits BiP to monomer-ize IRE1 and repress the unfolded protein response. Cell 2017; 171(7): 1625-37.
[5]
Bascos NAD, Mayer MP, Bukau B, Landry SJ. The Hsp40 J-domain modulates Hsp70 conformation and ATPase activity with a semi-elliptical spring. Protein Sci 2017; 26(9): 1838-51.
[http://dx.doi.org/10.1002/pro.3223] [PMID: 28685898]
[6]
Park S-Y, Choi H-K, Seo JS, et al. DNAJB1 negatively regulates MIG6 to promote epidermal growth factor receptor signaling. Biochim Biophys Acta 2015; 1853(10 Pt A): 2722-30.
[http://dx.doi.org/10.1016/j.bbamcr.2015.07.024] [PMID: 26239118]
[7]
Uno Y, Kanda M, Miwa T, et al. Increased expression of DNAJC12 is associated with aggressive phenotype of gastric cancer. Ann Surg Oncol 2019; 26(3): 836-44.
[http://dx.doi.org/10.1245/s10434-018-07149-y] [PMID: 30617870]
[8]
Zhang TT, Jiang YY, Shang L, et al. Overexpression of DNAJB6 promotes colorectal cancer cell invasion through an IQGAP1/ERK-dependent signaling pathway. Mol Carcinog 2015; 54(10): 1205-13.
[http://dx.doi.org/10.1002/mc.22194] [PMID: 25044025]
[9]
Izawa I, Nishizawa M, Ohtakara K, Ohtsuka K, Inada H, Inagaki M. Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein. J Biol Chem 2000; 275(44): 34521-7.
[http://dx.doi.org/10.1074/jbc.M003492200] [PMID: 10954706]
[10]
Kim S-W, Hayashi M, Lo J-F, et al. Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of inter-leukin-8. Cancer Res 2005; 65(19): 8784-91.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4422] [PMID: 16204048]
[11]
Tsai M-F, Wang C-C, Chang G-C, et al. A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst 2006; 98(12): 825-38.
[http://dx.doi.org/10.1093/jnci/djj229] [PMID: 16788156]
[12]
Jiang Y, Rossi P, Kalodimos CG. Structural basis for client recognition and activity of Hsp40 chaperones. Science 2019; 365(6459): 1313-9.
[http://dx.doi.org/10.1126/science.aax1280] [PMID: 31604242]
[13]
Craig EA, Marszalek J. How do J-proteins get Hsp70 to do so many different things? Trends Biochem Sci 2017; 42(5): 355-68.
[http://dx.doi.org/10.1016/j.tibs.2017.02.007] [PMID: 28314505]
[14]
Behnke J, Mann MJ, Scruggs F-L, Feige MJ, Hendershot LM. Members of the Hsp70 family recognize distinct types of sequences to execute ER quality control. Mol Cell 2016; 63(5): 739-52.
[http://dx.doi.org/10.1016/j.molcel.2016.07.012] [PMID: 27546788]
[15]
Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol 2019; 20(11): 665-80.
[http://dx.doi.org/10.1038/s41580-019-0133-3] [PMID: 31253954]
[16]
Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14(10): 630-42.
[http://dx.doi.org/10.1038/nrm3658] [PMID: 24026055]
[17]
Pullen MY, Weihl CC, True HL. Client processing is altered by novel myopathy-causing mutations in the HSP40 J domain. PLoS One 2020; 15(6): e0234207.
[http://dx.doi.org/10.1371/journal.pone.0234207] [PMID: 32497100]
[18]
Hageman J, Rujano MA, van Waarde MA, et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic pro-tein aggregation. Mol Cell 2010; 37(3): 355-69.
[http://dx.doi.org/10.1016/j.molcel.2010.01.001] [PMID: 20159555]
[19]
Jiang Y, Kalodimos CG. Confirmation for conformational selection. eLife 2018; 7: 7.
[http://dx.doi.org/10.7554/eLife.34923] [PMID: 29460777]
[20]
Shiber A, Ravid T. Chaperoning proteins for destruction: Diverse roles of Hsp70 chaperones and their co-chaperones in targeting mis-folded proteins to the proteasome. Biomolecules 2014; 4(3): 704-24.
[http://dx.doi.org/10.3390/biom4030704] [PMID: 25036888]
[21]
Yang S, Ren X, Liang Y, et al. KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene 2020; 39(2): 249-61.
[http://dx.doi.org/10.1038/s41388-019-0978-0] [PMID: 31477839]
[22]
Terada K, Yomogida K, Imai T, et al. A type I DnaJ homolog, DjA1, regulates androgen receptor signaling and spermatogenesis. EMBO J 2005; 24(3): 611-22.
[http://dx.doi.org/10.1038/sj.emboj.7600549] [PMID: 15660130]
[23]
Terada K, Kanazawa M, Bukau B, Mori M. The human DnaJ homologue dj2 facilitates mitochondrial protein import and luciferase re-folding. J Cell Biol 1997; 139(5): 1089-95.
[http://dx.doi.org/10.1083/jcb.139.5.1089] [PMID: 9382858]
[24]
Meshalkina DA, Shevtsov MA, Dobrodumov AV, et al. Knock-down of Hdj2/DNAJA1 co-chaperone results in an unexpected burst of tumorigenicity of C6 glioblastoma cells. Oncotarget 2016; 7(16): 22050-63.
[http://dx.doi.org/10.18632/oncotarget.7872] [PMID: 26959111]
[25]
Stark JL, Mehla K, Chaika N, et al. Structure and function of human DnaJ homologue subfamily a member 1 (DNAJA1) and its relation-ship to pancreatic cancer. Biochemistry 2014; 53(8): 1360-72.
[http://dx.doi.org/10.1021/bi401329a] [PMID: 24512202]
[26]
Wang C-C, Liao Y-P, Mischel PS, Iwamoto KS, Cacalano NA, McBride WH. HDJ-2 as a target for radiosensitization of glioblastoma multiforme cells by the farnesyltransferase inhibitor R115777 and the role of the p53/p21 pathway. Cancer Res 2006; 66(13): 6756-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0185] [PMID: 16818651]
[27]
Edwards KM, Münger K. Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 2004; 23(52): 8419-31.
[http://dx.doi.org/10.1038/sj.onc.1207732] [PMID: 15156195]
[28]
Syken J, De-Medina T, Münger K. TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci USA 1999; 96(15): 8499-504.
[http://dx.doi.org/10.1073/pnas.96.15.8499] [PMID: 10411904]
[29]
Cheng H, Cenciarelli C, Shao Z, et al. Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol 2001; 11(22): 1771-5.
[http://dx.doi.org/10.1016/S0960-9822(01)00540-1] [PMID: 11719219]
[30]
Canamasas I, Debes A, Natali PG, Kurzik-Dumke U. Understanding human cancer using Drosophila: Tid47, a cytosolic product of the DNAJ-like tumor suppressor gene l2Tid, is a novel molecular partner of patched related to skin cancer. J Biol Chem 2003; 278(33): 30952-60.
[http://dx.doi.org/10.1074/jbc.M304225200] [PMID: 12783860]
[31]
Trentin GA, He Y, Wu DC, Tang D, Rozakis-Adcock M. Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Lett 2004; 578(3): 323-30.
[http://dx.doi.org/10.1016/j.febslet.2004.11.034] [PMID: 15589840]
[32]
Kurzik-Dumke U, Hörner M, Nicotra MR, Koslowski M, Natali PG. In vivo evidence of htid suppressive activity on ErbB-2 in breast cancers over expressing the receptor. J Transl Med 2010; 8(1): 58.
[http://dx.doi.org/10.1186/1479-5876-8-58] [PMID: 20565727]
[33]
Kurzik-Dumke U, Czaja J. Htid-1, the human homolog of the Drosophila melanogaster l(2)tid tumor suppressor, defines a novel physio-logical role of APC. Cell Signal 2007; 19(9): 1973-85.
[http://dx.doi.org/10.1016/j.cellsig.2007.05.008] [PMID: 17588722]
[34]
Kurzik-Dumke U, Hörner M, Czaja J, et al. Progression of colorectal cancers correlates with overexpression and loss of polarization of expression of the htid-1 tumor suppressor. Int J Mol Med 2008; 21(1): 19-31.
[http://dx.doi.org/10.3892/ijmm.21.1.19] [PMID: 18097612]
[35]
Traicoff JL, Chung J-Y, Braunschweig T, et al. Expression of EIF3-p48/INT6, TID1 and Patched in cancer, a profiling of multiple tumor types and correlation of expression. J Biomed Sci 2007; 14(3): 395-405.
[http://dx.doi.org/10.1007/s11373-007-9149-3] [PMID: 17385060]
[36]
Acun T, Doberstein N, Habermann JK, et al. HLJ1 (DNAJB4) gene is a novel biomarker candidate in breast cancer. OMICS 2017; 21(5): 257-65.
[http://dx.doi.org/10.1089/omi.2017.0016] [PMID: 28481734]
[37]
Chen C-H, Chang WH, Su KY, et al. HLJ1 is an endogenous Src inhibitor suppressing cancer progression through dual mechanisms. Oncogene 2016; 35(43): 5674-85.
[http://dx.doi.org/10.1038/onc.2016.106] [PMID: 27065329]
[38]
Lin S-Y, Hsueh C-M, Yu S-L, et al. HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma. Nucleic Acids Res 2010; 38(18): 6148-58.
[http://dx.doi.org/10.1093/nar/gkq412] [PMID: 20494979]
[39]
Liu Y, Zhou J, Zhang C, et al. HLJ1 is a novel biomarker for colorectal carcinoma progression and overall patient survival. Int J Clin Exp Pathol 2014; 7(3): 969-77.
[PMID: 24696714]
[40]
Marjaneh RM, Rahmani F, Hassanian SM, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 2018; 233(10): 6785-98.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[41]
Moradi-Marjaneh R, Hassanian SM, Rahmani F, Aghaee-Bakhtiari SH, Avan A, Khazaei M. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Curr Pharm Des 2018; 24(39): 4626-38.
[http://dx.doi.org/10.2174/1381612825666190110145151] [PMID: 30636578]
[42]
Hashemzehi M, Behnam-Rassouli R, Hassanian SM, et al. Phytosomal-curcumin antagonizes cell growth and migration, induced by thrombin through AMP-Kinase in breast cancer. J Cell Biochem 2018; 119(7): 5996-6007.
[http://dx.doi.org/10.1002/jcb.26796] [PMID: 29600521]
[43]
Moradi-Marjaneh R, Hassanian SM, Shahidsales S, Avan A, Khazaei M. Curcumin effects on the Wnt signaling pathway in colorectal cancer stem cells. Basic Clin Can Res 2018; 10(2): 33-48.
[44]
Moradi MR, Hassanian SM, Avan A, Khazaei M. Role of curcumin in prevention and treatment of colorectal cancer: The mechanisms. J Isfaham Med Schoo 2017; 35(44): 969-77.
[45]
Chen H-W, Lee J-Y, Huang J-Y, et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 2008; 68(18): 7428-38.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6734] [PMID: 18794131]
[46]
Wang C-C, Lin S-Y, Lai Y-H, Liu Y-J, Hsu Y-L, Chen JJ. Dimethyl sulfoxide promotes the multiple functions of the tumor suppressor HLJ1 through activator protein-1 activation in NSCLC cells. PLoS One 2012; 7(4): e33772.
[http://dx.doi.org/10.1371/journal.pone.0033772] [PMID: 22529897]
[47]
Lai Y-H, Yu S-L, Chen H-Y, Wang C-C, Chen H-W, Chen JJ. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis 2013; 34(5): 1069-80.
[http://dx.doi.org/10.1093/carcin/bgt005] [PMID: 23306212]
[48]
Ko S-H, Huang L-M, Tarn W-Y. The host heat shock protein MRJ/DNAJB6 modulates virus infection. Front Microbiol 2019; 10: 2885.
[http://dx.doi.org/10.3389/fmicb.2019.02885] [PMID: 31921062]
[49]
Bhowmick R, Li M, Sun J, Baker SA, Insinna C, Besharse JC. Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin. Traffic 2009; 10(6): 648-63.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00896.x] [PMID: 19302411]
[50]
Mitra A, Fillmore RA, Metge BJ, et al. Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res 2008; 10(2): R22.
[http://dx.doi.org/10.1186/bcr1874] [PMID: 18328103]
[51]
Watson ED, Mattar P, Schuurmans C, Cross JC. Neural stem cell self-renewal requires the MRJ co-chaperone. Dev Dyn 2009; 238(10): 2564-74.
[http://dx.doi.org/10.1002/dvdy.22088] [PMID: 19777589]
[52]
Yu VZ, Wong VC-L, Dai W, Ko JM-Y, Lam AK-Y, Chan KW, et al. Nuclear localization of DNAJB6 is associated with survival of pa-tients with esophageal cancer and reduces AKT signaling and proliferation of cancer cells. Gastroenterology 2015; 149(7): 1825-36.
[http://dx.doi.org/10.1053/j.gastro.2015.08.025]
[53]
Shi Z-Z, Zhang Y-M, Shang L, et al. Genomic profiling of rectal adenoma and carcinoma by array-based comparative genomic hybridi-zation. BMC Med Genomics 2012; 5(1): 52.
[http://dx.doi.org/10.1186/1755-8794-5-52] [PMID: 23158542]
[54]
Alemayehu M, Dragan M, Pape C, et al. β-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One 2013; 8(2): e56174.
[http://dx.doi.org/10.1371/journal.pone.0056174] [PMID: 23405264]
[55]
Casteel DE, Turner S, Schwappacher R, et al. Rho isoform-specific interaction with IQGAP1 promotes breast cancer cell proliferation and migration. J Biol Chem 2012; 287(45): 38367-78.
[http://dx.doi.org/10.1074/jbc.M112.377499] [PMID: 22992742]
[56]
Tekletsadik YK, Sonn R, Osman MA. A conserved role of IQGAP1 in regulating TOR complex 1. J Cell Sci 2012; 125(Pt 8): 2041-52.
[http://dx.doi.org/10.1242/jcs.098947] [PMID: 22328503]
[57]
Hage B, Meinel K, Baum I, Giehl K, Menke A. Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells. Cell Commun Signal 2009; 7(1): 23.
[http://dx.doi.org/10.1186/1478-811X-7-23] [PMID: 19737400]
[58]
Jeong H-W, Li Z, Brown MD, Sacks DB. IQGAP1 binds Rap1 and modulates its activity. J Biol Chem 2007; 282(28): 20752-62.
[http://dx.doi.org/10.1074/jbc.M700487200] [PMID: 17517894]
[59]
Hayashi H, Nabeshima K, Aoki M, et al. Overexpression of IQGAP1 in advanced colorectal cancer correlates with poor prognosis-critical role in tumor invasion. Int J Cancer 2010; 126(11): 2563-74.
[http://dx.doi.org/10.1002/ijc.24987] [PMID: 19856315]
[60]
Itoh Y, Seiki M. MT1-MMP: A potent modifier of pericellular microenvironment. J Cell Physiol 2006; 206(1): 1-8.
[http://dx.doi.org/10.1002/jcp.20431] [PMID: 15920734]
[61]
Song H, Li Y, Lee J, Schwartz AL, Bu G. Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 2009; 69(3): 879-86.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3379] [PMID: 19176371]
[62]
Fortier A-M, Asselin E, Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensi-tivity through claudin1 up-regulation. J Biol Chem 2013; 288(16): 11555-71.
[http://dx.doi.org/10.1074/jbc.M112.428920] [PMID: 23449973]
[63]
Lin Y, Peng N, Zhuang H, Zhang D, Wang Y, Hua Z-C. Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor. BMC Cancer 2014; 14(1): 639.
[http://dx.doi.org/10.1186/1471-2407-14-639] [PMID: 25175595]
[64]
Watson ED, Geary-Joo C, Hughes M, Cross JC. The Mrj co-chaperone mediates keratin turnover and prevents the formation of toxic inclusion bodies in trophoblast cells of the placenta. Development 2007; 134(9): 1809-17.
[http://dx.doi.org/10.1242/dev.02843] [PMID: 17409114]
[65]
Gonias SL, Hembrough TA, Sankovic M. Cytokeratin 8 functions as a major plasminogen receptor in select epithelial and carcinoma cells. Front Biosci 2001; 6(3): D1403-11.
[http://dx.doi.org/10.2741/A689] [PMID: 11689350]
[66]
He H-L, Lee Y-E, Chen H-P, et al. Overexpression of DNAJC12 predicts poor response to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Exp Mol Pathol 2015; 98(3): 338-45.
[http://dx.doi.org/10.1016/j.yexmp.2015.03.029] [PMID: 25805104]
[67]
Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett 2011; 312(2): 129-42.
[http://dx.doi.org/10.1016/j.canlet.2011.08.019] [PMID: 21925790]
[68]
Yamashita M, Hirohashi Y, Torigoe T, et al. Dnajb8, a member of the heat shock protein 40 family has a role in the tumor initiation and resistance to docetaxel but is dispensable for stress response. PLoS One 2016; 11(1): e0146501.
[http://dx.doi.org/10.1371/journal.pone.0146501] [PMID: 26751205]
[69]
Meng E, Shevde LA, Samant RS. Emerging roles and underlying molecular mechanisms of DNAJB6 in cancer. Oncotarget 2016; 7(33): 53984-96.
[http://dx.doi.org/10.18632/oncotarget.9803] [PMID: 27276715]
[70]
Menezes ME, Devine DJ, Shevde LA, Samant RS. Dickkopf1: A tumor suppressor or metastasis promoter? Int J Cancer 2012; 130(7): 1477-83.
[http://dx.doi.org/10.1002/ijc.26449] [PMID: 21953410]
[71]
Mitra A, Menezes ME, Shevde LA, Samant RS. DNAJB6 induces degradation of β-catenin and causes partial reversal of mesenchymal phenotype. J Biol Chem 2010; 285(32): 24686-94.
[http://dx.doi.org/10.1074/jbc.M109.094847] [PMID: 20522561]
[72]
Mitra A, Rostas JW, Dyess DL, Shevde LA, Samant RS. Micro-RNA-632 downregulates DNAJB6 in breast cancer. Lab Invest 2012; 92(9): 1310-7.
[http://dx.doi.org/10.1038/labinvest.2012.87] [PMID: 22710984]
[73]
Mathonnet M, Perraud A, Christou N, et al. Hallmarks in colorectal cancer: Angiogenesis and cancer stem-like cells. World J Gastroenterol 2014; 20(15): 4189-96.
[http://dx.doi.org/10.3748/wjg.v20.i15.4189] [PMID: 24764657]
[74]
Hirohashi Y, Torigoe T, Tsukahara T, Kanaseki T, Kochin V, Sato N. Immune responses to human cancer stem-like cells/cancer-initiating cells. Cancer Sci 2016; 107(1): 12-7.
[http://dx.doi.org/10.1111/cas.12830] [PMID: 26440127]
[75]
Morita R, Nishizawa S, Torigoe T, et al. Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells. Cancer Sci 2014; 105(4): 389-95.
[http://dx.doi.org/10.1111/cas.12362] [PMID: 24450541]
[76]
Nishizawa S, Hirohashi Y, Torigoe T, et al. HSP DNAJB8 controls tumor-initiating ability in renal cancer stem-like cells. Cancer Res 2012; 72(11): 2844-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3062] [PMID: 22552285]
[77]
Tadano H, Tsukahara T, Mizushima E, et al. Development of an artificial antibody specific for HLA/peptide complex derived from can-cer stem-like cell/cancer-initiating cell antigen DNAJB8. Br J Cancer 2020; 123(9): 1387-94.
[http://dx.doi.org/10.1038/s41416-020-1017-1] [PMID: 32753678]
[78]
Ben Aicha S, Lessard J, Pelletier M, Fournier A, Calvo E, Labrie C. Transcriptional profiling of genes that are regulated by the endoplas-mic reticulum-bound transcription factor AIbZIP/CREB3L4 in prostate cells. Physiol Genomics 2007; 31(2): 295-305.
[http://dx.doi.org/10.1152/physiolgenomics.00097.2007] [PMID: 17712038]
[79]
Choi J, Djebbar S, Fournier A, Labrie C. The co-chaperone DNAJC12 binds to Hsc70 and is upregulated by endoplasmic reticulum stress. Cell Stress Chaperones 2014; 19(3): 439-46.
[http://dx.doi.org/10.1007/s12192-013-0471-6] [PMID: 24122553]
[80]
Bubnov V, Moskalev E, Petrovskiy Y, Bauer A, Hoheisel J, Zaporozhan V. Hypermethylation of TUSC5 genes in breast cancer tissue. Exp Oncol 2012; 34(4): 370-2.
[PMID: 23302999]
[81]
De Bessa SA, Salaorni S, Patrão DF, Neto MM, Brentani MM, Nagai MA. JDP1 (DNAJC12/Hsp40) expression in breast cancer and its association with estrogen receptor status. Int J Mol Med 2006; 17(2): 363-7.
[http://dx.doi.org/10.3892/ijmm.17.2.363] [PMID: 16391838]

© 2024 Bentham Science Publishers | Privacy Policy