Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Antidiabetic Agents from Fungi with Special Reference to α-Glucosidase Inhibitors

Author(s): Sunil Kumar Deshmukh*, Manish Kumar Gupta and Shivankar Agrawal

Volume 17, Issue 1, 2023

Published on: 08 September, 2022

Page: [24 - 61] Pages: 38

DOI: 10.2174/1872208316666220512122439

Price: $65

Abstract

The enzyme α-glucosidases (EC 3.2.1.20) catalyzes the hydrolysis of α-1,4- glucopyranoside bond in oligosaccharides and disaccharides, and thus plays an essential role in regulating glucose content and the level of postprandial hyperglycemia. The inhibition of α-glucosidases is considered a viable strategy to develop new and effective antidiabetic drugs. Many patents like ZA201905405B; US9073897B2 have been published on α- glucosidase inhibitors. In recent years, several classes of fungal metabolites possessing a varying degree of α-glucosidases inhibitory activity have been reported. The primary chemical classes include xanthone, phenanthrene, terpenoid, coumarin, isocoumarin, naphthalene, piperazine, and polyketides. Few of the identified inhibitors exhibited severalfold better activities than well-known α-glucosidases inhibitor acarbose and can be used as a lead to develop new antidiabetic drugs. The present review highlights the recent development in the identification of α-glucosidases inhibitors from various fungal sources. Their chemical class, structures, and inhibitory activity in terms of IC50 or MIC are discussed here.

Keywords: α-glucosidase, antidiabetic, diabetes mellitus, fungal metabolites, monosaccharides, digestion.

Graphical Abstract
[1]
Agrawal S, Samanta S, Deshmukh SK. The antidiabetic potential of endophytic fungi: Future prospects as therapeutic agents. Biotechnol Appl Biochem 2022; 69(3): 1159-65.
[http://dx.doi.org/10.1002/bab.2192] [PMID: 33998044]
[2]
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J Epidemiol Glob Health 2020; 10(1): 107-11.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[3]
Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol 2020; 18(2): 104-9.
[http://dx.doi.org/10.2174/1570161117666190405165911] [PMID: 30961501]
[4]
Ceriello A, Hanefeld M, Leiter L, et al. Postprandial glucose regulation and diabetic complications. Arch Intern Med 2004; 164(19): 2090-5.
[http://dx.doi.org/10.1001/archinte.164.19.2090] [PMID: 15505121]
[5]
Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes Pharmacogn Rev 2011; 5(9): 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[6]
Ghani U. Alpha-glucosidase inhibitors: Clinically promising candidates for anti-diabetic drug discovery. Elsevier 2019.
[7]
Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr 2020; 8(12): 6320-37.
[http://dx.doi.org/10.1002/fsn3.1987] [PMID: 33312519]
[8]
Jimei M, Hong J, Lingyun X, et al. Application of the L ascorbyls glucoside compound in α-glucosidase inhibitors are prepared. CN Patent 105267231A 2016.
[9]
Hongjin T, Junfeng S, Zhenglian X, Fei G, Longbao Z, Ping S. Virtual screening method of alpha-glucosidase inhibitor. CN Patent 108830041A 2018.
[10]
Ki-hwan L, Muhammad R, Muhammad S. Novel 1,3,4-oxadiazole compound and pharmaceutical composition for lowering blood glucose comprising the same. KR Patent 0054434A 2019.
[11]
Xuetao X, Jie C, Zhiqing L, Dongli L, Kun Z. Alphaglucosidase inhibitor and application thereof. CN Patent 111588718A 2020.
[12]
Al-Majid MA, Islam MS, Barakat A, Choudhary MI, Yousuf S. α-glucosidase inhibitors. US Patent 9802894A1 2017.
[13]
Hua Z, Xiuqing S, Jia S, Jinhai Y, Junsheng Z, Jie B. Two isopentenyl substituted indole alkaloids with alpha- glucosidase inhibition effect, and preparation method and application thereof. CN Patent 111747881A 2020.
[14]
Xuetao X, Jie C, Xuyang D, et al. Alpha-glucosidase inhibitor and application thereof. CN Patent 111889080A 2020.
[15]
Zhiguo Y, Jian W, Jiaofeng W, Yunli Z, Baichun H. Application of benserazide as alpha-glucosidase inhibitor. CN Patent 111627504A 2020.
[16]
Wei X, Xinjie L, Yanheng C, Jianbo Z. Oligopeptide with alpha-glucosidase inhibitory activity and application thereof. CN Patent 110734475A 2020.
[17]
Suzuki J, Yoshida A. α-glucosidase inhibitor. JP Patent 6661597B2 2020.
[18]
Truscheit E, Frommer W, Junge B, Müller L, Schmidt DD, Wingender W. Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angew Chem Int Ed Engl 1981; 20(9): 744-61.
[http://dx.doi.org/10.1002/anie.198107441]
[19]
Inouye S, Tsuruoka T, Ito T, Niida T. Structure and synthesis of nojirimycin. Tetrahedron 1968; 24(5): 2125-44.
[http://dx.doi.org/10.1016/0040-4020(68)88115-3] [PMID: 5636917]
[20]
Asano N, Tomioka E, Kizu H, Matsui K. Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydr Res 1994; 253: 235-45.
[http://dx.doi.org/10.1016/0008-6215(94)80068-5] [PMID: 8156550]
[21]
Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur J Med Chem 2019; 176: 343-77.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.025] [PMID: 31112894]
[22]
Ancheeva E, Daletos G, Proksch P. Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 2020; 27(11): 1836-54.
[http://dx.doi.org/10.2174/0929867326666190916144709] [PMID: 31526342]
[23]
Deshmukh SK, Gupta MK, Prakash V, Saxena S. Endophytic fungi: A source of potential antifungal compounds. J Fungi (Basel) 2018; 4(3): 77.
[http://dx.doi.org/10.3390/jof4030077] [PMID: 29941838]
[24]
He W, Xu Y, Wu D, et al. New alkaloids from the diversity-enhanced extracts of an endophytic fungus Aspergillus flavus GZWMJZ-288. Bioorg Chem 2021; 107: 104623.
[http://dx.doi.org/10.1016/j.bioorg.2020.104623] [PMID: 33444984]
[25]
Malik A, Ardalani H, Anam S, et al. Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia 2020; 142: 104522.
[http://dx.doi.org/10.1016/j.fitote.2020.104522] [PMID: 32088281]
[26]
Al-Hosni S, Rizvi TS, Khan A, et al. Diketopeprazin and Methyl-5-docosenoate from endophytic fungi Aureobasidium pollulan BSS6 with α-glucosidase inhibition and its validation through molecular docking. S Afr J Bot 2020; 134: 322-8.
[http://dx.doi.org/10.1016/j.sajb.2020.03.007]
[27]
Ranjan A, Singh RK, Khare S, et al. Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity. Sci Rep 2019; 9(1): 17302.
[http://dx.doi.org/10.1038/s41598-019-53227-w] [PMID: 31754154]
[28]
Bilal S, Ali L, Khan AL, et al. Endophytic fungus Paecilomyces formosus LHL10 produces sester-terpenoid YW3548 and cyclic peptide that inhibit urease and α-glucosidase enzyme activities. Arch Microbiol 2018; 200(10): 1493-502.
[http://dx.doi.org/10.1007/s00203-018-1562-7] [PMID: 30167726]
[29]
Indrianingsih AW, Tachibana S. α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp QGS 01 from Quercus gilva Blume Food Sci Hum Wellness 2017; 6(2): 88-95.
[http://dx.doi.org/10.1016/j.fshw.2017.05.001]
[30]
Rangel-Grimaldo M, Rivero-Cruz I, Madariaga-Mazón A, Figueroa M, Mata R. α-glucosidase inhibitors from Preussia minimoides J Nat Prod 2017; 80(3): 582-7.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00574] [PMID: 27673367]
[31]
Wang Y, Liu HX, Chen YC, et al. Two new metabolites from the endophytic fungus Alternaria sp. A744 derived from Morinda officinalis. Molecules 2017; 22(5): 765.
[http://dx.doi.org/10.3390/molecules22050765] [PMID: 28481313]
[32]
Centko RM, Ratnaweera PB, Tysoe C, Withers SG, de Silva ED, Andersen RJ. Alpha-glucosidase and alpha-amylase inhibiting thiodiketopiperazines from the endophytic fungus Setosphaeria rostrate isolated from the medicinal plant Costus speciosus in Sri Lanka. Phytochem Lett 2017; 22: 76-80.
[http://dx.doi.org/10.1016/j.phytol.2017.09.004]
[33]
Govindappa M, Sadananda T, Ramachandra Y, Chandrappa C, Rai PS, Prasad SK. In vitro and in vivo antidiabetic activity of lectin (N-acetyl-galactosamine, 64 kDa) isolated from endophytic fungi, Alternaria species from Viscum album on alloxan induced diabetic rats. Integr Diabetes Obesity 2015; 1: 11-9.
[34]
Rivera-Chávez J, Figueroa M, González MC, Glenn AE, Mata R. α-glucosidase inhibitors from a Xylaria feejeensis associated with Hintonia latiflora J Nat Prod 2015; 78(4): 730-5.
[http://dx.doi.org/10.1021/np500897y] [PMID: 25706243]
[35]
Debbab A, Aly AH, Proksch P. Mangrove derived fungal endophytes–a chemical and biological perception. Fungal Divers 2013; 61(1): 1-27.
[http://dx.doi.org/10.1007/s13225-013-0243-8]
[36]
Deshmukh SK, Agrawal S, Prakash V, Gupta MK, Reddy MS. Anti-infectives from mangrove endophytic fungi. S Afr J Bot 2020; 134: 237-63.
[http://dx.doi.org/10.1016/j.sajb.2020.01.006]
[37]
Bao J, Li XX, Zhu K, et al. Bioactive aromatic butenolides from a mangrove sediment originated fungal species, Aspergillus terreus SCAU011. Fitoterapia 2021; 150: 104856.
[http://dx.doi.org/10.1016/j.fitote.2021.104856] [PMID: 33582267]
[38]
Zhang B, Wu JT, Zheng CJ, et al. Bioactive cyclohexene derivatives from a mangrove-derived fungus Cladosporium sp. JJM22. Fitoterapia 2021; 149: 104823.
[http://dx.doi.org/10.1016/j.fitote.2020.104823] [PMID: 33387642]
[39]
Mei RQ, Wang B, Zeng WN, Huang GL, Chen GY, Zheng CJ. Bioactive isocoumarins isolated from a mangrove-derived fungus Penicillium sp. MGP11. Nat Prod Res 2022; 36(50): 1260-5.
[http://dx.doi.org/10.1080/14786419.2021.1873981] [PMID: 33459051]
[40]
Hou B, Liu S, Huo R, et al. New diterpenoids and isocoumarin derivatives from the mangrove-derived fungus Hypoxylon sp. Mar Drugs 2021; 19(7): 362.
[http://dx.doi.org/10.3390/md19070362] [PMID: 34202523]
[41]
Guo HX, Huang CY, Yan ZY, Chen T, Hong K, Long YH. New furo[3,2-h]isochroman from the mangrove endophytic fungus Aspergillus sp. 085242. Chin J Nat Med 2020; 18(11): 855-9.
[http://dx.doi.org/10.1016/S1875-5364(20)60028-0] [PMID: 33308608]
[42]
Yan Z, Huang C, Guo H, et al. Isobenzofuranone monomer and dimer derivatives from the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002 possess α-glucosidase inhibitory and antioxidant activity. Bioorg Chem 2020; 94 1 03407
[http://dx.doi.org/10.1016/j.bioorg.2019.103407] [PMID: 31711768]
[43]
Liao HX, Zheng CJ, Huang GL, et al. Bioactive polyketide derivatives from the mangrove-derived fungus Daldinia eschscholtzii HJ004. J Nat Prod 2019; 82(8): 2211-9.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00241] [PMID: 31373815]
[44]
Cai R, Jiang H, Zang Z, Li C, She Z. New benzofuranoids and phenylpropanoids from the mangrove endophytic fungus, Aspergillus sp. ZJ-68. Mar Drugs 2019; 17(8): 478.
[http://dx.doi.org/10.3390/md17080478] [PMID: 31426620]
[45]
Lopéz D, Cherigo L, Mejia LC, Loza-Mejía MA, Martínez-Luis S. α-glucosidase inhibitors from a mangrove associated fungus, Zasmidium sp. strain EM5-10. BMC Chem 2019; 13(1): 22.
[http://dx.doi.org/10.1186/s13065-019-0540-8] [PMID: 31384771]
[46]
He F, Li X, Yu JH, et al. Secondary metabolites from the mangrove sediment-derived fungus Penicillium pinophilum SCAU037. Fitoterapia 2019; 136: 104177.
[http://dx.doi.org/10.1016/j.fitote.2019.104177] [PMID: 31128244]
[47]
Qiu P, Liu Z, Chen Y, Cai R, Chen G, She Z. Secondary metabolites with α-glucosidase inhibitory activity from the mangrove fungus Mycosphaerella sp. SYSU-DZG01. Mar Drugs 2019; 17(8): 483.
[http://dx.doi.org/10.3390/md17080483] [PMID: 31434338]
[48]
Chen Y, Yang W, Zou G, Chen S, Pang J, She Z. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 2019; 139: 104369.
[http://dx.doi.org/10.1016/j.fitote.2019.104369] [PMID: 31626911]
[49]
Zheng CJ, Huang GL, Liao HX, et al. Bioactive cytosporone derivatives isolated from the mangrove-derived fungus Dothiorella sp. ML002. Bioorg Chem 2019; 85: 382-5.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.015] [PMID: 30665032]
[50]
Cai R, Wu Y, Chen S, et al. Peniisocoumarins A–J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel. J Nat Prod 2018; 81(6): 1376-83.
[http://dx.doi.org/10.1021/acs.jnatprod.7b01018] [PMID: 29792702]
[51]
Wu Y, Chen Y, Huang X, et al. α-glucosidase inhibitors: Diphenyl ethers and phenolic bisabolane sesquiterpenoids from the mangrove endophytic fungus Aspergillus flavus QQSG-3. Mar Drugs 2018; 16(9): 307.
[http://dx.doi.org/10.3390/md16090307] [PMID: 30200400]
[52]
Cui H, Liu Y, Li T, et al. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS025. Fitoterapia 2018; 124: 177-81.
[http://dx.doi.org/10.1016/j.fitote.2017.11.006] [PMID: 29126957]
[53]
Zhang L, Niaz SI, Khan D, et al. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (strain 307) by co-cultivation with Acinetobacter johnsonii (strain B2). Mar Drugs 2017; 15(2): 35.
[http://dx.doi.org/10.3390/md15020035] [PMID: 28208607]
[54]
Zhang L, Niaz SI, Wang Z, et al. α-glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Nat Prod Res 2018; 32(24): 2887-92.
[http://dx.doi.org/10.1080/14786419.2017.1385023] [PMID: 29022767]
[55]
Cui H, Liu Y, Nie Y, et al. Polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and their α-glucosidase inhibitory activity. Mar Drugs 2016; 14(5): 86.
[http://dx.doi.org/10.3390/md14050086] [PMID: 27136568]
[56]
Chen S, Liu Y, Liu Z, et al. Isocoumarins and benzofurans from the mangrove endophytic fungus Talaromyces amestolkiae possess α-glucosidase inhibitory and antibacterial activities. RSC Adv 2016; 6(31): 26412-20.
[http://dx.doi.org/10.1039/C6RA02566H]
[57]
Liu Y, Yang Q, Xia G, et al. Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J Nat Prod 2015; 78(8): 1816-22.
[http://dx.doi.org/10.1021/np500885f] [PMID: 26230970]
[58]
Liu Y, Chen S, Liu Z, et al. Bioactive metabolites from mangrove endophytic fungus Aspergillus sp. 16-5B. Mar Drugs 2015; 13(5): 3091-102.
[http://dx.doi.org/10.3390/md13053091] [PMID: 25996099]
[59]
Chen S, Liu Z, Liu Y, Lu Y, He L, She Z. New depsidones and isoindolinones from the mangrove endophytic fungus Meyerozyma guilliermondii (HZ-Y2) isolated from the South China Sea. Beilstein J Org Chem 2015; 11: 1187-93.
[http://dx.doi.org/10.3762/bjoc.11.133] [PMID: 26425177]
[60]
Chen S, Liu Z, Li H, et al. β-Resorcylic acid derivatives with α-glucosidase inhibitory activity from Lasiodiplodia sp. ZJ-HQ 1, an endophytic fungus in the medicinal plant Acanthus Ilicifolius. Phytochem Lett 2015; 13: 141-6.
[61]
Liu Y, Xia G, Li H, et al. Vermistatin derivatives with α-glucosidase inhibitory activity from the mangrove endophytic fungus Penicillium sp. HN29-3B1. Planta Med 2014; 80(11): 912-7.
[http://dx.doi.org/10.1055/s-0034-1382859] [PMID: 25116120]
[62]
Xiao Z, Chen S, Cai R, Lin S, Hong K, She Z. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein J Org Chem 2016; 12: 2077-85.
[http://dx.doi.org/10.3762/bjoc.12.196] [PMID: 27829913]
[63]
Cai R, Chen S, Long Y, Li C, Huang X, She Z. Depsidones from Talaromyces stipitatus SK-4, an endophytic fungus of the mangrove plant Acanthus ilicifolius. Phytochem Lett 2017; 20: 196-9.
[http://dx.doi.org/10.1016/j.phytol.2017.04.023]
[64]
Tran TMD, Nguyen VK, Duong TH, et al. Maydisone, a novel oxime polyketide from the cultures of Bipolaris maydis. Nat Prod Res 2021; 36(1): 102-7.
[http://dx.doi.org/10.1080/14786419.2020.1817010] [PMID: 32400180]
[65]
Huang H, Liu T, Wu X, et al. A new antibacterial chromone derivative from mangrove-derived fungus Penicillium aculeatum (No. 9EB). Nat Prod Res 2017; 31(22): 2593-8.
[http://dx.doi.org/10.1080/14786419.2017.1283498] [PMID: 28147702]
[66]
Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK. Marine fungi: An untapped bioresource for future cosmeceuticals. Phytochem Lett 2018; 23: 15-20.
[http://dx.doi.org/10.1016/j.phytol.2017.11.003]
[67]
Deshmukh SK, Prakash V, Ranjan N. Marine fungi: A source of potential anticancer compounds. Front Microbiol 2018; 8: 2536.
[http://dx.doi.org/10.3389/fmicb.2017.02536] [PMID: 29354097]
[68]
Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q. Antibacterial and antifungal compounds from marine fungi. Mar Drugs 2015; 13(6): 3479-513.
[http://dx.doi.org/10.3390/md13063479] [PMID: 26042616]
[69]
Chen W, Chen C, Long J, et al. Bioactive secondary metabolites from the deep-sea derived fungus Aspergillus sp. SCSIO 41029. J Antibiot (Tokyo) 2021; 74(2): 156-9.
[http://dx.doi.org/10.1038/s41429-020-00378-y] [PMID: 33106626]
[70]
Wang JF, Zhou LM, Chen ST, et al. New chlorinated diphenyl ethers and xanthones from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001. Fitoterapia 2018; 125: 49-54.
[http://dx.doi.org/10.1016/j.fitote.2017.12.012] [PMID: 29269234]
[71]
Kong F, Zhao C, Hao J. etal New α-glucosidase inhibitors from a marine sponge-derived fungus, Aspergillus sp. OUCMDZ-1583. RSC Adv 2015; 5(84): 68852-63.
[http://dx.doi.org/10.1039/C5RA11185D]
[72]
Sun Y, Liu J, Li L, et al. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg Med Chem Lett 2018; 28(3): 315-8.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.049] [PMID: 29295795]
[73]
Liu M, Qi C, Sun W. et al. α-glucosidase inhibitors from the coral-associated fungus Aspergillus terreus. Front Chem 2018; 6: 422.
[http://dx.doi.org/10.3389/fchem.2018.00422] [PMID: 30271773]
[74]
Liu M, Sun W, Wang J, et al. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg Chem 2018; 80: 525-30.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.029] [PMID: 30014920]
[75]
Liu SS, Yang L, Kong FD, et al. Three new quinazoline-containing indole alkaloids from the marine-derived fungus Aspergillus sp. HNMF114. Front Microbiol 2021; 12: 680879.
[http://dx.doi.org/10.3389/fmicb.2021.680879] [PMID: 34149672]
[76]
Sun K, Zhu G, Hao J, Wang Y, Zhu W. Chemical-epigenetic method to enhance the chemodiversity of the marine Algicolous fungus, Aspergillus terreus OUCMDZ-2739. Tetrahedron 2018; 74(1): 83-7.
[http://dx.doi.org/10.1016/j.tet.2017.11.039]
[77]
Ren J, Ding SS, Zhu A, Cao F, Zhu HJ. Bioactive azaphilone derivatives from the fungus Talaromyces Aculeatus. J Nat Prod 2017; 80(8): 2199-203.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00032] [PMID: 28749670]
[78]
Wang C, Guo L, Hao J, Wang L, Zhu W. α- glucosidase inhibitors from the marine-derived fungus Aspergillus flavipes HN4-13. J Nat Prod 2016; 79(11): 2977-81.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00766] [PMID: 27933892]
[79]
Zhang LH, Feng BM, Zhao YQ, et al. Polyketide butenolide, diphenyl ether, and benzophenone derivatives from the fungus Aspergillus flavipes PJ03-11. Bioorg Med Chem Lett 2016; 26(2): 346-50.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.009] [PMID: 26706176]
[80]
Zhang LH, Feng BM, Sun Y, et al. Flaviphenalenones A–C, three new phenalenone derivatives from the fungus Aspergillus flavipes PJ03-11. Tetrahedron Lett 2016; 57(6): 645-9.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.099]
[81]
Saxena S, Chhibber M, Singh IP. Fungal bioactive compounds in pharmaceutical research and development. Curr Bioact Compd 2019; 15(2): 211-31.
[http://dx.doi.org/10.2174/1573407214666180622104720]
[82]
Del Valle P, Martínez AL, Figueroa M, Raja HA, Mata R. Alkaloids from the fungus Penicillium spathulatum as α-glucosidase inhibitors. Planta Med 2016; 82(14): 1286-94.
[http://dx.doi.org/10.1055/s-0042-111393] [PMID: 27399232]
[83]
Zhou P, Yan S, Lu Y, et al. Five new secondary metabolites from the fungus Phomopsis asparagi. Fitoterapia 2021; 150: 104840.
[http://dx.doi.org/10.1016/j.fitote.2021.104840] [PMID: 33535108]
[84]
Ying YM, Fang CA, Yao FQ, et al. Bergamotane sesquiterpenes with alpha-glucosidase inhibitory activity from the plant pathogenic fungus Penicillium expansum. Chem Biodivers 2017; 14(1): e160018.
[http://dx.doi.org/10.1002/cbdv.201600184] [PMID: 27582055]
[85]
Lindequist U. Macrofungi in pharmacy, medicine, cosmetics and nutrition an appraisal. In: Sridhar KR, Deshmukh SK, Eds. Advances in Macrofungi: Pharmaceuticals and Cosmeceuticals. CRC Press 2021; pp. 1-6.
[http://dx.doi.org/10.1201/9781003191278-1]
[86]
Wang K, Bao L, Ma K, et al. Eight new alkaloids with PTP1B and α-glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron 2015; 71(51): 9557-63.
[http://dx.doi.org/10.1016/j.tet.2015.10.068]
[87]
Wang K, Bao L, Qi Q, et al. Erinacerins C-L, isoindolin-1-ones with α-glucosidase inhibitory activity from cultures of the medicinal mushroom Hericium erinaceus. J Nat Prod 2015; 78(1): 146-54.
[http://dx.doi.org/10.1021/np5004388] [PMID: 25565282]
[88]
Lee SK, Ryu SH, Turk A, et al. Characterization of α-glucosidase inhibitory constituents of the fruiting body of lion’s mane mushroom (Hericium erinaceus). J Ethnopharmacol 2020; 262: 113197.
[http://dx.doi.org/10.1016/j.jep.2020.113197] [PMID: 32738392]
[89]
Chen B, Han J, Bao L, Wang W, Ma K, Liu H. Identification and α-glucosidase inhibitory activity of meroterpenoids from Hericium erinaceus. Planta Med 2020; 86(8): 571-8.
[http://dx.doi.org/10.1055/a-1146-8369] [PMID: 32325508]
[90]
Zhao XR, Huo XK, Dong PP, et al. Inhibitory effects of highly oxygenated lanostane derivatives from the fungus Ganoderma lucidum on P-glycoprotein and a-glucosidase. J Nat Prod 2015; 78(8): 1868-76.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00132] [PMID: 26222905]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy