Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advances and Therapeutic Journey of Schiff Base Complexes with Selected Metals (Pt, Pd, Ag, Au) as Potent Anticancer Agents: A Review

Author(s): Sikandar Khan*, Fahad A. Alhumaydhi, Munjed M. Ibrahim*, Ali Alqahtani, Meshal Alshamrani, Abdullah S. Alruwaili, Athar A. Hassanian and Sajad Khan

Volume 22, Issue 18, 2022

Published on: 02 August, 2022

Page: [3086 - 3096] Pages: 11

DOI: 10.2174/1871520622666220511125600

Price: $65

conference banner
Abstract

Schiff bases and their transition metal complexes play an important role in the field of medicine, in particular in the treatment of cancer. Since the discovery of the cisplatin anticancer activity, great efforts have focused on the rational design of metal-based anticancer drugs that can be potentially used for the treatment of cancer. However, drug resistance and significant side effects greatly limit its clinical application. This has inspired medicinal chemists to employ various strategies in the development of novel and effective anticancer drugs. Recently, a greater number of transition metal complexes have been designed and evaluated for their anticancer activities, and some of them were at different stages of clinical studies. Amongst these, platinum, palladium, gold and silver complexes have an important place within medicinal and inorganic chemistry. This review article discusses Schiff bases and their complexes with selected transition metals (Pd, Pt, Ag, Au) for anticancer activity against different cancer cell lines.

Keywords: Schiff base, Polydentate, anti-cancer, biological applications, transition metal, platinum, palladium, gold.

Graphical Abstract
[1]
Hashmi, A.S.K. Introduction: Gold chemistry. Chem. Rev., 2021, 121(14), 8309-8310.
[http://dx.doi.org/10.1021/acs.chemrev.1c00393] [PMID: 34315211]
[2]
Takemoto, S.; Matsuzaka, H. Recent advances in the chemistry of ruthenium carbido complexes. Coordin. Chem. Rev., 2012, 574-588.
[http://dx.doi.org/10.1016/j.ccr.2011.10.025]
[3]
Rocchigiani, L.; Bochmann, M. Recent advances in gold(III) chemistry: Structure, bonding, reactivity, and role in homogeneous catalysis. Chem. Rev., 2021, 121(14), 8364-8451.
[http://dx.doi.org/10.1021/acs.chemrev.0c00552] [PMID: 32966741]
[4]
Theppitak, C.; Kielar, F.; Dungkaew, W.; Sukwattanasinitt, M.; Kangkaew, L.; Sahasithiwat, S.; Zenno, H.; Hayami, S.; Chainok, K. The coordination chemistry of benzhydrazide with lanthanide(Iii) ions: Hydrothermal in situ ligand formation, structures, magnetic and photo-luminescence sensing properties. RSC Advances, 2021, 11(40), 24709-24721.
[http://dx.doi.org/10.1039/D1RA03106F]
[5]
Du, J.; Ren, J.; Shu, M.; Xu, X.; Niu, Z.; Shi, W.; Si, R.; Cheng, P. Insights into the capacity and rate performance of transition-metal coor-dination compounds for reversible lithium storage. Angew. Chem. Int. Ed. Engl., 2021, 60(8), 4142-4149.
[http://dx.doi.org/10.1002/anie.202013912] [PMID: 33169906]
[6]
Han, X.; Jiang, H-L.; Yang, S-J.; Liu, W-T.; Niu, J. 1D/2D Co(II) coordination polymers: Magnetic properties and application values on the ischemic myocardial infarction by regulating the JAK signaling pathway. J. Polym. Res., 2021, 28(8), 1-10.
[http://dx.doi.org/10.1007/s10965-021-02649-0]
[7]
Muhammad, M.; Khan, S.; Fayaz, H. Charge-transfer complex-based spectrophotometric method for the determination of mesotrione in environmental samples. Environ. Monit. Assess., 2021, 193(10), 681.
[http://dx.doi.org/10.1007/s10661-021-09432-0] [PMID: 34591205]
[8]
Khan, S.; Chen, X.; Almahri, A.; Allehyani, E.S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Ali, S. Recent developments in fluorescent and color-imetric chemosensors based on schiff bases for metallic cations detection: A review. J. Environ. Chem. Eng., 2021, 9(6), 106381.
[http://dx.doi.org/10.1016/j.jece.2021.106381]
[9]
Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal importance, coordination chemistry with selected metals (Cu, Ag, Au) and chemo-sensing of thiourea derivatives: A review. Crit. Rev. Anal. Chem., 2021, 51(8), 812-834.
[http://dx.doi.org/10.1080/10408347.2020.1777523]
[10]
Saddam Hossain, M.; Md Zakaria, C.; Kanti Roy, P. Kudrat-E-Zahan, M.; Md Kudrat-E-Zahan, C.; Zakaria, C. Selected schiff base coor-dination complexes and their microbial application: A review studies on the synthesis, characterization and biological applications of metal schiff base complexes view project synthesis and characterization of some nano-materials and investigation of their catalytic activity view project selected schiff base coordination complexes and their microbial application: A review. Int. J. Chem. Stud., 2018, 6(1), 19-31.
[11]
Ghosh, P.; Dey, S.K.; Hosna Ara, M.; Md Rezaul Karim, K.; Nazmul Islam, A. A review on synthesis and versatile applications of some selected schiff bases with their transition metal complexes. Egypt. J. Chem., 2019, 63, 523-547.
[http://dx.doi.org/10.21608/ejchem.2019.13741.1852]
[12]
Kargar, H.; Behjatmanesh-Ardakani, R.; Torabi, V.; Kashani, M.; Chavoshpour-Natanzi, Z.; Kazemi, Z.; Mirkhani, V.; Sahraei, A.; Tahir, M.N.; Ashfaq, M.; Munawar, K.S. Synthesis, characterization, crystal structures, DFT, TD-DFT, molecular docking and dna binding stud-ies of novel copper(II) and Zinc(II) complexes bearing halogenated bidentate N,O-Donor schiff base ligands. Polyhedron, 2021, 195, 114988.
[http://dx.doi.org/10.1016/j.poly.2020.114988]
[13]
Kargar, H.; Ardakani, A.A.; Tahir, M.N.; Ashfaq, M.; Munawar, K.S. Synthesis, spectral characterization, crystal structure and antibacteri-al activity of Nickel(II), Copper(II) and Zinc(II) complexes containing ONNO donor schiff base ligands. J. Mol. Struct., 2021, 1233, 130112.
[http://dx.doi.org/10.1016/j.molstruc.2021.130112]
[14]
Thakurta, S.; Maiti, M.; Rosair, G.M.; Kuznetsov, A. A rare angular trinuclear mixed valence cobalt(III-II-III) complex with azido bridges and salpn-type schiff-base ligand: Synthesis, crystal structure and DFT study. J. Mol. Struct., 2021, 1230, 129863.
[http://dx.doi.org/10.1016/j.molstruc.2020.129863]
[15]
Saikumari, N. Synthesis and characterization of amino acid schiff base and its copper (II) complex and its antimicrobial studies. Mater. Today Proc., 2021, 47, 1777-1781.
[http://dx.doi.org/10.1016/j.matpr.2021.02.607]
[16]
Kargar, H.; Fallah-Mehrjardi, M. Novel dioxomolybdenum complexes containing ONO-tridentate schiff base ligands derived from 4-aminobenzohydrazide: Synthesis, spectral characterization, and application as efficient homogeneous catalysts for selective sulfoxidation. J. Iran. Chem. Soc., 2021, 2021(12), 1-14.
[http://dx.doi.org/10.1007/s13738-021-02282-0]
[17]
Noor, S.; Goddard, R.; Khatoon, F.; Kumar, S.; Seidel, R.W. Structural characterization of heterodinuclear ZnII-LnIII complexes (Ln = Pr, Nd) with a ring-contracted h2valdien-derived schiff base ligand. J. Chem. Crystallogr., 2021, 2021(1), 1-8.
[http://dx.doi.org/10.1007/s10870-021-00891-4]
[18]
Zhang, H.; Ren, Q.; Mohd, S.; Yang, C.; Li, J.; Pei, Y.; Luo, X. Early-warning and semi-quantitative colorimetric detection of Hg(II) with lysine-bis-schiff base cellulose membranes designed by simple interfacial covalent bonding. Sens. Actuators B Chem., 2021, 346, 130435.
[http://dx.doi.org/10.1016/j.snb.2021.130435]
[19]
Ghosh, S.; Singharoy, D.; Naskar, J.P.; Chandra Bhattacharya, S. Selective sensing of Cu2+ Ion by naphthalene based schiff base. J. Indian Chem. Soc., 2021, 98(5), 100062.
[http://dx.doi.org/10.1016/j.jics.2021.100062]
[20]
Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.R. Multidentate unsymmetrically-substituted schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordin. Chem. Rev., 2018, 144-172.
[http://dx.doi.org/10.1016/j.ccr.2017.11.030]
[21]
Gupta, K.C.; Sutar, A.K. Catalytic activities of schiff base transition metal complexes. Coordin. Chem. Rev., 2008, 1420-1450.
[http://dx.doi.org/10.1016/j.ccr.2007.09.005]
[22]
Jeewoth, T.; Kam, L.H. H.; Bhowon, M.G.; Ghoorohoo, D.; Babooram, K. Synthesis and anti-bacterial/catalytic properties of schiff bases and schiff base metal complexes derived from 2,3-diaminopyridine. Synth. React. Inorg. Met.-Org. Chem., 2000, 30(6), 1023-1038.
[http://dx.doi.org/10.1080/00945710009351817]
[23]
Dharani, S.; Kalaiarasi, G.; Sindhuja, D.; Lynch, V.M.; Shankar, R.; Karvembu, R.; Prabhakaran, R. Tetranuclear palladacycles of 3-acetyl-7-methoxy-2 H-chromen-2-one derived schiff bases: Efficient catalysts for suzuki-miyaura coupling in an aqueous medium. Inorg. Chem., 2019, 58(12), 8045-8055.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00794] [PMID: 31124672]
[24]
Jafari-Moghaddam, F.; Beyramabadi, S.A.; Khashi, M.; Morsali, A. Three VO2+ complexes of the pyridoxal-derived schiff bases: Synthe-sis, experimental and theoretical characterizations, and catalytic activity in a cyclocondensation reaction. J. Mol. Struct., 2018, 1153, 149-156.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.007]
[25]
Kumar, S. Recent advances in the schiff bases and N-heterocyclic carbenes as ligands in the cross-coupling reactions: A comprehensive review. J. Heterocycl. Chem., 2019, 56(4), 1168-1230.
[http://dx.doi.org/10.1002/jhet.3504]
[26]
More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem., 2019, 14, 100195.
[http://dx.doi.org/10.1016/j.mtchem.2019.100195] [PMID: 32289101]
[27]
Biswas, C.; Chatterjee, A.; Bhattacharya, S.; Mandal, D.P.; Bhattacharjee, S.; Ghosh, R. Synthesis, X-ray structures and cytotoxic effects of a Cu(II)- and a Zn(II) thiosemicarbazones on human epidermoid carcinoma cell A431. J. Chem. Sci., 2021, 133(2), 45.
[http://dx.doi.org/10.1007/s12039-021-01906-5]
[28]
Saha, N.C.; Biswas, C.; Ghorai, A.; Ghosh, U.; Seth, S.K.; Kar, T. Synthesis, structural characterisation and cytotoxicity of new Iron(III) complexes with pyrazolyl thiosemicabazones. Polyhedron, 2012, 34(1), 1-12.
[http://dx.doi.org/10.1016/j.poly.2011.10.033]
[29]
Chatterjee, A.; Seikh, M.M.; Chowdhury, S.; Ghosh, R. Catecholase and catechol cleavage activities of a dinuclear phenoxobridged Cu(II) complex: Synthesis, structure and magnetostructural studies. Inorg. Chim. Acta, 2021, 521, 120345.
[http://dx.doi.org/10.1016/j.ica.2021.120345]
[30]
Biswas, N.; Khanra, S.; Sarkar, A.; Bhattacharjee, S.; Prasad Mandal, D.; Chaudhuri, A.; Chakraborty, S.; Roy Choudhury, C. One new azido bridged dinuclear Copper(II) thiosemicarbazide complex: Synthesis, DNA/protein binding, molecular docking study and cytotoxicity activity. New J. Chem., 2017, 41(21), 12996-13011.
[http://dx.doi.org/10.1039/C7NJ01998J]
[31]
Zhang, C.X.; Lippard, S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol., 2003, 7(4), 481-489.
[http://dx.doi.org/10.1016/S1367-5931(03)00081-4] [PMID: 12941423]
[32]
Salassa, L. Polypyridyl metal complexes with biological activity. Eur. J. Inorg. Chem., 2011, 2011(32), 4931-4947.
[http://dx.doi.org/10.1002/ejic.201100376]
[33]
Schattschneider, C.; Doniz Kettenmann, S.; Hinojosa, S.; Heinrich, J.; Kulak, N. Biological activity of amphiphilic metal complexes. Coord. Chem. Rev., 2019, 385, 191-207.
[http://dx.doi.org/10.1016/j.ccr.2018.12.007]
[34]
Reedijk, J. Medicinal applications of metal complexes binding to biological macromolecules. Macromol. Symp., 2008, 270(1), 193-201.
[http://dx.doi.org/10.1002/masy.200851023]
[35]
Kilah, N.L.; Meggers, E.; Kilah, N.L.; Meggers, E. Sixty years young: The diverse biological activities of metal polypyridyl complexes pioneered by francis P. Dwyer. Aust. J. Chem., 2012, 65(9), 1325-1332.
[http://dx.doi.org/10.1071/CH12275]
[36]
Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Pt(II) and Au(III) complexes containing Schiff-base ligands: A promising source for antitumor treatment. Eur. J. Med. Chem., 2021, 211, 113098.
[http://dx.doi.org/10.1016/j.ejmech.2020.113098] [PMID: 33348237]
[37]
Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) com-plexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 213-222.
[http://dx.doi.org/10.1016/j.saa.2015.02.030] [PMID: 25782179]
[38]
Li, L.J.; Fu, B.; Qiao, Y.; Wang, C.; Huang, Y.Y.; Liu, C.C.; Tian, C.; Du, J.L. Synthesis, characterization and cytotoxicity studies of Plati-num(II) complexes with reduced amino acid ester schiff-bases as ligands. Inorg. Chim. Acta, 2014, 419, 135-140.
[http://dx.doi.org/10.1016/j.ica.2014.04.036]
[39]
Li, L.J.; Wang, C.; Tian, C.; Yang, X.Y.; Hua, X.X.; Du, J.L. Water-soluble platinum(II) complexes of reduced amino acid schiff bases: Synthesis, characterization, and antitumor activity. Res. Chem. Intermed., 2013, 39(2), 733-746.
[http://dx.doi.org/10.1007/s11164-012-0593-y]
[40]
Bekhit, A.A.; El-Sayed, O.A.; Al-Allaf, T.A.K.; Aboul-Enein, H.Y.; Kunhi, M.; Pulicat, S.M.; Al-Hussain, K.; Al-Khodairy, F.; Arif, J. Synthesis, characterization and cytotoxicity evaluation of some new platinum(II) complexes of tetrazolo[1,5-a]quinolines. Eur. J. Med. Chem., 2004, 39(6), 499-505.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.003] [PMID: 15183908]
[41]
Proetto, M.; Liu, W.; Hagenbach, A. Synthesis, characterization and in vitro antitumour activity of a series of novel platinum (II) complex-es bearing schiff base ligands. Eur. J. Med. Chem., 2012, 53, 168-175.
[42]
Li, L.; Wang, C.; Qiao, Y.; Yang, X. Platinum (II) complexes of reduced amino acid ester schiff bases: Synthesis, characterization, and antitumor activity. Res. Chem. Intermed., 2014, 40(1), 413-424.
[43]
Sankarganesh, M.; Vijay Solomon, R.; Dhaveethu Raja, J. Platinum complex with pyrimidine- and morpholine-based ligand: Synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. J. Biomol. Struct. Dyn., 2020, 39(3), 1055-1067.
[http://dx.doi.org/10.1080/07391102.2020.1727364] [PMID: 32036758]
[44]
Yan, Q.Q.; Yuan, Z.; Liu, G.J.; Lv, Z.H.; Fu, B.; Du, J.L.; Li, L.J. Synthesis, characterization and cytotoxicity of Platinum(II) complexes containing reduced amino acid ester schiff bases. Appl. Organomet. Chem., 2017, 31(6), e3689.
[http://dx.doi.org/10.1002/aoc.3689]
[45]
Al-Aghbari, S.; Al-Shuja’a, O. Synthesis, characterization and anticancer activity studies of new schiff base pt (II) complex. J. Mater. Sci. Chem. Eng., 2019, 7(08), 1.
[46]
Deng, J.; Yu, P.; Zhang, Z.; Zhang, J.; Zhewen, S.; Metallomics, M.C. Novel pt(Ii) complexes with modified aroyl-hydrazone schiff-base ligands: Synthesis, cytotoxicity and action mechanism. 2019. Metallomics, 2019, 11, 1847-1863.
[47]
Alsalme, A.; Laeeq, S.; Dwivedi, S. Synthesis, characterization of α-amino acid schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 163, 1-7.
[48]
Li, L.; Tian, C.; Wang, C.; Wang, G.; Wang, L.; Du, J. Platinum(II) complexes with tetradentate schiff bases as ligands: Synthesis, charac-terization and detection of DNA interaction by differential pulse voltammetry. E-J. Chem., 2012, 9(3), 1422-1430.
[49]
Ghammamy, S.; Rezakhani, M.R.; Tanhayi, M.; Sedaghat, S. Synthesis, characterization and antitumor study of N, N-Bis ’ (5-Chloro-2-Hydroxybenzaldehyde) 1, 2-pheylenediimine and its pt complex. Middle East J. Sci. Res., 2013, 13(1), 69-73.
[http://dx.doi.org/10.5829/idosi.mejsr.2013.13.1.6413]
[50]
Rahman, F.; Ali, A.; Duong, H. ONS-donor ligand based pt (II) complexes display extremely high anticancer potency through autophagic cell death pathway. Eur. J. Med. Chem., 2019, 164, 546-561.
[51]
Ali, A.Q.; Teoh, S.G.; Salhin, A.; Eltayeb, N.E.; Ahamed, M.B.K.; Majid, A.M.S.A. Synthesis of platinum(II) complexes of isatin thio-semicarbazones derivatives: In vitro anti-cancer and deoxyribose nucleic acid binding activities. Inorg. Chim. Acta, 2014, 416, 235-244.
[http://dx.doi.org/10.1016/j.ica.2014.03.029]
[52]
Cabrera, A.; Espinosa-Bustos, C. New imidoyl-indazole platinum (II) complexes as potential anticancer agents: Synthesis, evaluation of cytotoxicity, cell death and experimental-theoretical DNA. JAMA, 2020, 323, 1897-1898.
[53]
Patterson, A.; Miller, J.; Miles, B. Synthesis, characterization and anticancer properties of (Salicylaldiminato) platinum (II) complexes. Inorg. Chim. Acta, 2014, 415, 88-94.
[54]
Li, L-J.; Yan, Q-Q.; Liu, G-J.; Yuan, Z.; Lv, Z-H.; Fu, B.; Han, Y-J.; Du, J-L. Synthesis characterization and cytotoxicity studies of plati-num(II) complexes with reduced amino pyridine schiff base and its derivatives as ligands. Biosci. Biotechnol. Biochem., 2017, 81(6), 1081-1089.
[http://dx.doi.org/10.1080/09168451.2016.1259550] [PMID: 28290776]
[55]
Shabbir, M.; Akhter, Z.; Ahmad, I.; Ahmed, S.; Shafiq, M.; Mirza, B.; McKee, V.; Munawar, K.S.; Ashraf, A.R. Schiff Base Tri-phenylphosphine Palladium (II) Complexes: Synthesis, structural elucidation, electrochemical and biological evaluation. J. Mol. Struct., 2016, 1118, 250-258.
[http://dx.doi.org/10.1016/j.molstruc.2016.04.003]
[56]
Zianna, A.; Geromichalos, G.D.; Pekou, A.; Hatzidimitriou, A.G.; Coutouli-Argyropoulou, E.; Lalia-Kantouri, M.; Pantazaki, A.A.; Pso-mas, G. A palladium(II) complex with the Schiff base 4-chloro-2-(N-ethyliminomethyl)-phenol: Synthesis, structural characterization, and in vitro and in silico biological activity studies. J. Inorg. Biochem., 2019, 199, 110792.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110792] [PMID: 31365891]
[57]
Abu-Surrah, A.S.; Safieh, K.A.A.; Ahmad, I.M.; Abdalla, M.Y.; Ayoub, M.T.; Qaroush, A.K.; Abu-Mahtheieh, A.M. New palladium(II) complexes bearing pyrazole-based schiff base ligands: Synthesis, characterization and cytotoxicity. Eur. J. Med. Chem., 2020, 45(2), 471-475.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.029]
[58]
Faghih, Z.; Neshat, A.; Wojtczak, A. Palladium (II) complexes based on schiff base ligands derived from ortho-vanillin: Synthesis, charac-terization and cytotoxic studies. Inorg. Chim. Acta, 2018, 471, 404-412.
[59]
Zhang, B.; Luo, H.; Xu, Q.; Lin, L.; Oncotarget, B.Z. Antitumor activity of a trans-thiosemicarbazone schiff base palladium (II) complex on human gastric adenocarcinoma cells. 2017. Oncotarget, 2017, 8, 13620-13631.
[60]
Reddy, E.R.; Trivedi, R.; Sarma, A.V.; Sridhar, B.; Anantaraju, H.S.; Sriram, D.; Yogeeswari, P.; Nagesh, N.; Yogeeswari, P. Sugar-boronate ester scaffold tethered pyridyl-imine palladium(II) complexes: Synthesis and their in vitro anticancer evaluation. Dalton Trans., 2015, 44(40), 17600-17616.
[http://dx.doi.org/10.1039/C5DT03266K] [PMID: 26394366]
[61]
Kalaiarasi, G.; Jeya Rajkumar, R.S.; Dharani, S.; Prabhakaran, R. Synthesis, spectral, structural characterization and biological activity of new Palladium(II) complexes containing 3-acetyl-8-methoxy-2h-chromen-2-one derived schiff bases. Appl. Organomet. Chem., 2018, 32(9), e4466.
[http://dx.doi.org/10.1002/aoc.4466]
[62]
Tan, X.; Liu, H.; Ye, C.; Lou, J.; Liu, Y.; Xing, D.; Polyhedron, S.L. Synthesis, characterization and in vitro cytotoxic properties of new silver (I) complexes of two novel schiff bases derived from thiazole and pyrazine. Polyhedron, 2014, 71, 119-132.
[63]
Zheng, J.; Letters, L.M-C.C. Assessment of silver (I) complexes of salicylaldehyde derivatives-histidine schiff base as novel α-glucosidase inhibitors. Chin. Chem. Lett., 2016, 27(02), 283-286. Available from: http://www.ccspublishing.org.cn/article/doi/10.1016/ j.cclet.2015.11.015?pageType=en
[64]
Bharathi, S.; Mahendiran, D. Silver(I) metallodrugs of thiosemicarbazones and naproxen: Biocompatibility, in vitro anti-proliferative activ-ity and in silico interaction studies with EGFR, VEGFR2. Toxicol. Res., 2020, 9(1), 28-44.
[65]
Navarro, M. Gold complexes as potential anti-parasitic agents. Coord. Chem. Rev., 2009, 253(11–12), 1619-1626.
[http://dx.doi.org/10.1016/j.ccr.2008.12.003]
[66]
Kean, W.F.; Lock, C.J.L.; Howard-Lock, H. Gold complex research in medical science. Difficulties with experimental design. Inflamm. Pharmacol., 1991, 1(2), 103-114.
[http://dx.doi.org/10.1007/BF02735392]
[67]
Kean, W.F.; Kean, I.R.L. Clinical pharmacology of gold. Inflammopharmacology, 2008, 16(3), 112-125.
[http://dx.doi.org/10.1007/s10787-007-0021-x]
[68]
Naglah, A.M.; Al-Omar, M.A.; Kalmouch, A.; Gobouri, A.A.; Abdel-Hafez, S.H.; El-Megharbel, S.M.; Refat, M.S. Synthesis, spectrosco-py, and anticancer activity of two new nanoscale Au(III) N4 schiff base complexes. Russ. J. Gen. Chem., 2019, 89(8), 1702-1706.
[http://dx.doi.org/10.1134/S1070363219080255]
[69]
Sankarganesh, M.; Raja, J. Gold (III) complex from pyrimidine and morpholine analogue schiff base ligand: Synthesis, characterization, DFT, TDDFT, catalytic, anticancer, molecular modeling with DNA and BSA and DNA binding studies. J. Mol. Liquids, 2019, 294(15), 2019, 111655. Available from: https://en.x-mol.com/paper/article/5832745
[70]
Mohammed, L.A.; Mehdi, R.T.; Allah, A.; Ali, M. Synthesis and biological screening of the gold complex as anticancer and some transi-tion metal complexes with new heterocyclic ligand derived from 4-amino antipyrine. Nano Biomed. Eng., 2018, 10(3), 199-212.
[http://dx.doi.org/10.5101/nbe.v10i3.p199-212]
[71]
Bian, M.; Wang, X.; Sun, Y. Synthesis and biological evaluation of gold (III) schiff base complexes for the treatment of hepatocellular carcinoma through attenuating TrxR activity. Eur. J. Med. Chem., 2020, 193, 112234.
[72]
Abou Melha, K.S.A.; Al-Hazmi, G.A.A.; Refat, M.S. Synthesis of nano-metric gold complexes with new schiff bases derived from 4-aminoantipyrene, their structures and anticancer activity. Russ. J. Gen. Chem., 2017, 3043-3051.
[http://dx.doi.org/10.1134/S1070363217120519]
[73]
Carcelli, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur. J. Med. Chem., 2020, 194, 112266.
[http://dx.doi.org/10.1016/j.ejmech.2020.112266] [PMID: 32248006]
[74]
Malarz, K.; Zych, D.; Kuczak, M. Musioł R.; Mrozek-Wilczkiewicz, A. Anticancer activity of 4′-phenyl-2,2′:6′,2″- terpyridines - behind the metal complexation. Eur. J. Med. Chem., 2020, 189, 112039.
[http://dx.doi.org/10.1016/j.ejmech.2020.112039] [PMID: 31962262]
[75]
Shao, M.; Liu, X.; Sun, Y.; Dou, S.; Chen, Q.; Yuan, X.A.; Tian, L.; Liu, Z. Preparation and the anticancer mechanism of configuration-controlled Fe(II)-Ir(III) heteronuclear metal complexes. Dalton Trans., 2020, 49(36), 12599-12609.
[http://dx.doi.org/10.1039/D0DT02408B] [PMID: 32857087]
[76]
Marker, S.C.; King, A.P.; Granja, S.; Vaughn, B.; Woods, J.J.; Boros, E.; Wilson, J.J. Exploring the in vivo and in vitro anticancer activity of rhenium isonitrile complexes. Inorg. Chem., 2020, 59(14), 10285-10303.
[http://dx.doi.org/10.1021/acs.inorgchem.0c01442] [PMID: 32633531]
[77]
Li, X.; Gorle, A.K.; Sundaraneedi, M.K.; Keene, F.R.; Collins, J.G. Kinetically-inert Polypyridylruthenium(II) complexes as therapeutic agents. Coord. Chem. Rev., 2017, 134-147.
[http://dx.doi.org/10.1016/j.ccr.2017.11.011]
[78]
Anjum, R.; Palanimuthu, D.; Kalinowski, D.S.; Lewis, W.; Park, K.C.; Kovacevic, Z.; Khan, I.U.; Richardson, D.R. Synthesis, characteriza-tion, and in vitro anticancer activity of copper and zinc Bis(Thiosemicarbazone) complexes. Inorg. Chem., 2019, 58(20), 13709-13723.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01281] [PMID: 31339305]
[79]
Yugandhar, P.; Vasavi, T.; Uma Maheswari Devi, P.; Savithramma, N. Bioinspired green synthesis of copper oxide nanoparticles from syzygium alternifolium (Wt.) walp: Characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl. Nanosci., 2017, 7(7), 417-427.
[http://dx.doi.org/10.1007/s13204-017-0584-9]
[80]
Balsa, L.M.; Ferraresi-Curotto, V.; Lavecchia, M.J.; Echeverría, G.A.; Piro, O.E.; García-Tojal, J.; Pis-Diez, R.; González-Baró, A.C.; León, I.E. Anticancer activity of a new copper(II) complex with a hydrazone ligand. Structural and spectroscopic characterization, computational simulations and cell mechanistic studies on 2D and 3D breast cancer cell models. Dalton Trans., 2021, 50(28), 9812-9826.
[http://dx.doi.org/10.1039/D1DT00869B] [PMID: 34190268]
[81]
Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chemistry, 2020, 6(1), 41-60.
[http://dx.doi.org/10.1016/j.chempr.2019.10.013] [PMID: 32864503]
[82]
Bruijnincx, P.C.; Sadler, P.J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol., 2008, 12(2), 197-206.
[http://dx.doi.org/10.1016/j.cbpa.2007.11.013] [PMID: 18155674]
[83]
Gill, M.R.; Vallis, K.A. Transition metal compounds as cancer radiosensitizers. Chem. Soc. Rev., 2019, 48(2), 540-557.
[http://dx.doi.org/10.1039/C8CS00641E] [PMID: 30499573]
[84]
Yu, Y.; Xu, Q.; He, S.; Xiong, H.; Zhang, Q.; Xu, W.; Ricotta, V.; Bai, L.; Zhang, Q.; Yu, Z.; Ding, J.; Xiao, H.; Zhou, D. Recent advances in delivery of photosensitive metal-based drugs. Coord. Chem. Rev., 2019, 387, 154-179.
[http://dx.doi.org/10.1016/j.ccr.2019.01.020]
[85]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[86]
Simpson, P.V.; Desai, N.M.; Casari, I.; Massi, M.; Falasca, M. Metal-based antitumor compounds: Beyond cisplatin. Future Med. Chem., 2019, 11(2), 119-135.
[http://dx.doi.org/10.4155/fmc-2018-0248] [PMID: 30644327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy