Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Structural Optimization for 4-hydroxyphenylpyruvate Dioxygenase Inhibitors Based on 3D-QSAR, Molecular Docking, SBP Modeling and MOLCAD Studies

Author(s): Jiaqin He, Mei Zhang, Keying Chen, Xiaomeng Wang, Juan Wang* and Zhihua Lin*

Volume 20, Issue 12, 2023

Published on: 06 September, 2022

Page: [1922 - 1935] Pages: 14

DOI: 10.2174/1570180819666220510110045

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The research based on natural product herbicides has been increasingly attractive in the field of agriculture. 4-hydroxyphenylpyruvate dioxygenase (HPPD) is one of the most promising compounds in the field of herbicide innovation.

Objective: This paper aims to study the relationship between the activity and structure of quinazoline- 2,4-dione derivatives, and to design novel HPPD inhibitors.

Methods: A set of quinazoline-2,4-dione derivatives underwent 3D-QSAR studies as well as molecular docking. MOLCAD analysis and 8-point pharmacophore model provided an important reference for us to understand the interaction mode of HPPD and antagonists.

Results: The CoMFA (n = 5; q2 = 0.778; r2 = 0.985) and CoMSIA (n = 6; q2 = 0.776; r2 = 0.95) models had remarkable stability and predictability. MOLCAD studies and pharmacophore modeling proved the validity of the 3D-QSAR model. On the basis of the gained information, nine novel derivatives as potential candidates of HPPD inhibitors with better predicted activities were designed, mainly binding to HPPD via lipophilic interaction and hydrogen bonding. The key hydrophobic residues of HPPD, Phe381, His308, Asn282, Phe392 and Leu368, were found to be antagonist binding sites that are important factors for the stability of the antagonist binding site.

Conclusion: The structural basis and activity of HPPD inhibitors were revealed, which might provide clear and solid insights to guide the rational design of novel HPPD inhibitors.

Keywords: HPPD inhibitor, 3D-QSAR, molecular docking, MOLCAD, SBP, antagonists.

Graphical Abstract
[1]
Neidig, M.L.; Kavana, M.; Moran, G.R.; Solomon, E.I. CD and MCD studies of the non-heme ferrous active site in (4-hydroxyphenyl)pyruvate dioxygenase: Correlation between oxygen activation in the extradiol and α-KG-dependent dioxygenases. J. Am. Chem. Soc., 2004, 126(14), 4486-4487.
[http://dx.doi.org/10.1021/ja0316521] [PMID: 15070344]
[2]
Rocaboy-Faquet, E.; Barthelmebs, L.; Calas-Blanchard, C.; Noguer, T. A novel amperometric biosensor for ß-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione. Talanta, 2016, 146, 510-516.
[http://dx.doi.org/10.1016/j.talanta.2015.09.030] [PMID: 26695298]
[3]
Dayan, F.E. Current status and future prospects in herbicide discovery. Plants, 2019, 8(9), 341.
[http://dx.doi.org/10.3390/plants8090341] [PMID: 31514265]
[4]
He, B.; Dong, J.; Lin, H.Y.; Wang, M.Y.; Li, X.K.; Zheng, B.F.; Chen, Q.; Hao, G.F.; Yang, W.C.; Yang, G.F. Pyrazoleisoindoline-1,3-dione hybrid: A promising scaffold for 4-hydroxyphenylpyruvate dioxygenase inhibitors. J. Agric. Food Chem., 2019, 67(39), 10844-10852.
[http://dx.doi.org/10.1021/acs.jafc.9b04917] [PMID: 31525997]
[5]
Zhao, L.X.; Jiang, M.J.; Hu, J.J.; Zou, Y.L.; Cheng, Y.; Ren, T.; Gao, S.; Fu, Y.; Ye, F. Design, synthesis, and herbicidal activity of novel diphenyl ether derivatives containing fast degrading tetrahydrophthalimide. J. Agric. Food Chem., 2020, 68(12), 3729-3741.
[http://dx.doi.org/10.1021/acs.jafc.0c00947] [PMID: 32125836]
[6]
Weichenthal, S.; Moase, C.; Chan, P. A review of pesticide exposure and cancer incidence in the Agricultural Health Study cohort. Environ. Health Perspect., 2010, 118(8), 1117-1125.
[http://dx.doi.org/10.1289/ehp.0901731] [PMID: 20444670]
[7]
Wang, D.W.; Lin, H.Y.; Cao, R.J.; Ming, Z.Z.; Chen, T.; Hao, G.F.; Yang, W.C.; Yang, G.F. Design, synthesis and herbicidal activity of novel quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Pest Manag. Sci., 2015, 71(8), 1122-1132.
[http://dx.doi.org/10.1002/ps.3894] [PMID: 25185782]
[8]
Ndikuryayo, F.; Moosavi, B.; Yang, W.C.; Yang, G.F. 4-hydroxyphenylpyruvate dioxygenase inhibitors: From chemical biology to agrochemicals. J. Agric. Food Chem., 2017, 65(39), 8523-8537.
[http://dx.doi.org/10.1021/acs.jafc.7b03851] [PMID: 28903556]
[9]
Ye, F.; Ma, P.; Zhang, Y.Y.; Li, P.; Yang, F.; Fu, Y. Herbicidal activity and molecular docking study of novel ACCase inhibitors. Front. Plant Sci., 2018, 9, 1850.
[http://dx.doi.org/10.3389/fpls.2018.01850] [PMID: 30619418]
[10]
Ece, A. Towards more effective acetylcholinesterase inhibitors: A comprehensive modelling study based on human acetylcholinesterase protein-drug complex. J. Biomol. Struct. Dyn., 2020, 38(2), 565-572.
[http://dx.doi.org/10.1080/07391102.2019.1583606] [PMID: 30806174]
[11]
Taft, C.A.; Da Silva, V.B.; Da Silva, C.H. Current topics in computer-aided drug design. J. Pharm. Sci., 2008, 97(3), 1089-1098.
[http://dx.doi.org/10.1002/jps.21293] [PMID: 18214973]
[12]
Fu, Y.; Liu, Y.X.; Yi, K.H.; Li, M.Q.; Li, J.Z.; Ye, F. Quantitative structure activity relationship studies and molecular dynamics simulations of 2-(aryloxyacetyl)cyclohexane-1,3-diones derivatives as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Front Chem., 2019, 7, 556.
[http://dx.doi.org/10.3389/fchem.2019.00556] [PMID: 31482084]
[13]
Fu, Y.; Sun, Y.N.; Yi, K.H.; Li, M.Q.; Cao, H.F.; Li, J.Z.; Ye, F. 3D pharmacophore-based virtual screening and docking approaches toward the discovery of novel HPPD Inhibitors. Molecules, 2017, 22(6), E959.
[http://dx.doi.org/10.3390/molecules22060959] [PMID: 28598377]
[14]
Qu, R.Y.; Nan, J.X.; Yan, Y.C.; Chen, Q.; Ndikuryayo, F.; Wei, X.F.; Yang, W.C.; Lin, H.Y.; Yang, G.F. Structure-guided discovery of silicon-containing subnanomolar inhibitor of hydroxyphenylpyruvate dioxygenase as a potential herbicide. J. Agric. Food Chem., 2021, 69(1), 459-473.
[http://dx.doi.org/10.1021/acs.jafc.0c03844] [PMID: 33395281]
[15]
Safarizadeh, H.; Garkani-Nejad, Z. Molecular docking, molecular dynamics simulations and QSAR studies on some of 2-arylethenylquinoline derivatives for inhibition of Alzheimer’s amyloid-beta aggregation: Insight into mechanism of interactions and parameters for design of new inhibitors. J. Mol. Graph. Model., 2019, 87, 129-143.
[http://dx.doi.org/10.1016/j.jmgm.2018.11.019] [PMID: 30537643]
[16]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges - ScienceDirect. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[17]
Yan, G.; Yang, X.; Albijanic, B.; Zhou, Y.; Zhou, Y.; Zhu, X. A new tool to rationally design highly efficient organic sensitizers for dye-sensitized solar cells: A three-dimensional quantitative structureactivity relationship (3D-QSAR) perspective. Sol. Energy, 2019, 184, 187-194.
[http://dx.doi.org/10.1016/j.solener.2019.03.092]
[18]
Sepehri, B.; Omidikia, N.; Kompany-Zareh, M.; Ghavami, R. Predictive and descriptive CoMFA models: The effect of variable selection. Comb. Chem. High Throughput Screen., 2018, 21(2), 117-124.
[http://dx.doi.org/10.2174/1386207321666180212162028] [PMID: 29437001]
[19]
Abdizadeh, R.; Hadizadeh, F.; Abdizadeh, T. QSAR analysis of coumarin-based benzamides as histone deacetylase inhibitors using CoMFA, CoMSIA and HQSAR methods. J. Mol. Struct., 2020, 1199, 126961.
[http://dx.doi.org/10.1016/j.molstruc.2019.126961]
[20]
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem., 1994, 37(24), 4130-4146.
[http://dx.doi.org/10.1021/jm00050a010] [PMID: 7990113]
[21]
Cichero, E.; Calautti, A.; Francesconi, V.; Tonelli, M.; Schenone, S.; Fossa, P. Probing in silico the benzimidazole privileged scaffold for the development of drug-like anti-RSV agents. Pharmaceuticals (Basel), 2021, 14(12), 1307.
[http://dx.doi.org/10.3390/ph14121307] [PMID: 34959708]
[22]
Tong, L.; Guo, L.; Lv, X.; Li, Y. Modification of polychlorinated phenols and evaluation of their toxicity, biodegradation and bioconcentration using three-dimensional quantitative structure-activity relationship models. J. Mol. Graph. Model., 2017, 71, 1-12.
[http://dx.doi.org/10.1016/j.jmgm.2016.10.012] [PMID: 27825025]
[23]
Yang, J.; Ma, M.; Wang, X.D.; Jiang, X.J.; Zhang, Y.Y.; Yang, W.Q.; Li, Z.C.; Wang, X.H.; Yang, B.; Ma, M.L. Synthesis and quantitative structure-activity relationships study for phenylpropenamide derivatives as inhibitors of hepatitis B virus replication. Eur. J. Med. Chem., 2015, 99, 82-91.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.032] [PMID: 26057705]
[24]
Golbraikh, A.; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des., 2002, 16(5-6), 357-369.
[http://dx.doi.org/10.1023/A:1020869118689] [PMID: 12489684]
[25]
Ojha, P.K.; Mitra, I.; Das, R.N.; Roy, K. Further exploring rm2 metrics for validation of QSPR models. Chemom. Intell. Lab. Syst., 2011, 107(1), 194-205.
[http://dx.doi.org/10.1016/j.chemolab.2011.03.011]
[26]
Righetti, G.; Casale, M.; Liessi, N.; Tasso, B.; Salis, A.; Tonelli, M.; Millo, E.; Pedemonte, N.; Fossa, P.; Cichero, E. Molecular docking and QSAR studies as computational tools exploring the rescue ability of F508del CFTR correctors. Int. J. Mol. Sci., 2020, 21(21), E8084.
[http://dx.doi.org/10.3390/ijms21218084] [PMID: 33138251]
[27]
Jain, A.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem., 2003, 46(4), 499-511.
[http://dx.doi.org/10.1021/jm020406h] [PMID: 12570372]
[28]
Sanders, M.; Mcguire, R.; Roumen, L.; Esch, I.; Vlieg, J.D.; Klomp, J. From the protein’s perspective: The benefits and challenges of protein structure-based pharmacophore modeling. Med-ChemComm, 2012, 3(1), 28-38.
[http://dx.doi.org/10.1039/C1MD00210D]
[29]
Shiri, F.; Pirhadi, S.; Rahmani, A. Identification of new potential HIV-1 reverse transcriptase inhibitors by QSAR modeling and structure-based virtual screening. J. Recept. Signal Transduct. Res., 2018, 38(1), 37-47.
[http://dx.doi.org/10.1080/10799893.2017.1414844] [PMID: 29254400]
[30]
Ren, J.X.; Cheng, Z.; Huang, Y.X.; Zhao, J.F.; Guo, P.; Zou, Z.M.; Xie, Y. Identification of novel dual-specificity phosphatase 26 inhibitors by a hybrid virtual screening approach based on pharmacophore and molecular docking. Biomed. Pharmacother., 2017, 89, 376-385.
[http://dx.doi.org/10.1016/j.biopha.2017.02.064] [PMID: 28249240]
[31]
Patel, B.; Patel, A.; Patel, A.; Bhatt, H.G. CoMFA, CoMSIA, molecular docking and MOLCAD studies of pyrimidinone derivatives to design novel and selective tankyrase inhibitors. J. Mol. Struct., 2020, 1221, 128783.
[http://dx.doi.org/10.1016/j.molstruc.2020.128783]
[32]
Exner, T; Keil, M; Moeckel, G; Brickmann, J Identifification of substrate channels and protein cavities. Mol. Modeling Annual., 1998, 4(10), 340-3.
[http://dx.doi.org/10.1007/s008940050091]
[33]
Brickmann, J.; Exner, T.E.; Keil, M.; Marh-Fer, R.J. Molecular graphics-trends and perspectives. Mol. Modeling Annual., 2000, 6(2), 328-340.
[http://dx.doi.org/10.1007/s0089400060328]
[34]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy