Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Berbamine Exerts an Anti-oncogenic Effect on Pancreatic Cancer by Regulating Wnt and DNA Damage-related Pathways

Author(s): Bingren Hu, Yingnan Yang, Jinfu Tu, Huajie Cai, Shouzhang Yang, Xinwei Chen and Gang Chen*

Volume 23, Issue 2, 2023

Published on: 15 August, 2022

Page: [201 - 209] Pages: 9

DOI: 10.2174/1871520622666220509174306

Price: $65

Open Access Journals Promotions 2
Abstract

Objective: This study aimed to determine the effects of berbamine on pancreatic cancer as well as the underlying mechanisms.

Methods: The pancreatic cancer cells were treated with different concentrations of berbamine and then subjected to cell viability assay, colony formation assay, cell cycle analysis, and apoptosis detection. Western blotting and immunofluorescence analyses were performed to investigate the mechanisms underlying the biological effects of berbamine on the pancreatic cancer cells. Furthermore, the in vivo anti-pancreatic cancer effect of berbamine was examined using a mouse xenograft model.

Results: Berbamine significantly inhibited the proliferation and colony-forming ability of BxPC3 and PANC-1 pancreatic cancer cells while inducing a cell cycle arrest and apoptosis. Moreover, berbamine decreased the expression of β- catenin and phosphorylation of GSK3β but increased the expression of γ-H2AX and 53BP1. Meanwhile, in vivo studies revealed that berbamine attenuated the growth of xenograft tumors derived from PANC-1 cells. Notably, berbamine treatment led to an increase in the expression of Cleaved Caspase 3 and γ-H2AX, as well as a decrease in the expression of Ki-67 and β-catenin in the tumor xenografts.

Conclusion: Berbamine exerts an anti-pancreatic cancer effect, possibly by regulating Wnt and DNA damage-related pathways, suggestive of its therapeutic potential for pancreatic cancer.

Keywords: Berbamine, pancreatic cancer, proliferation, DNA damage, Wnt signaling pathway, anti-oncogenic.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet, 2016, 388(10039), 73-85.
[http://dx.doi.org/10.1016/S0140-6736(16)00141-0] [PMID: 26830752]
[3]
Oettle, H.; Lehmann, T. Gemcitabine-resistant pancreatic cancer: A second-line option. Lancet, 2016, 387(10018), 507-508.
[http://dx.doi.org/10.1016/S0140-6736(15)01035-1] [PMID: 26616909]
[4]
Zhang, X.; Chen, L.X.; Ouyang, L.; Cheng, Y.; Liu, B. Plant natural compounds: Targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif., 2012, 45(5), 466-476.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00833.x] [PMID: 22765290]
[5]
Subramaniam, S.; Selvaduray, K.R.; Radhakrishnan, A.K. Bioactive compounds: Natural defense against cancer? Biomolecules, 2019, 9(12)E758
[http://dx.doi.org/10.3390/biom9120758] [PMID: 31766399]
[6]
Sun, Y.; Yao, T.; Li, H.; Peng, Y.; Zheng, J. In vitro and in vivo metabolic activation of berbamine to quinone methide in-termediate. J. Biochem. Mol. Toxicol., 2017, 31(4)e21876
[http://dx.doi.org/10.1002/jbt.21876] [PMID: 27902864]
[7]
Dong, Q.H.; Zheng, S.; Xu, R.Z.; Lu, Q.; He, L. Study on effect of berbamine on multidrug resistance leukemia K562/Adr cells. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2004, 24(9), 820-822.
[PMID: 15495829]
[8]
Ren, Y.; Lu, L.; Guo, T.B.; Qiu, J.; Yang, Y.; Liu, A.; Zhang, J.Z. Novel immunomodulatory properties of berbamine through selective down-regulation of STAT4 and action of IFN-gamma in experimental autoimmune encephalomyelitis. J. Immunol., 2008, 181(2), 1491-1498.
[http://dx.doi.org/10.4049/jimmunol.181.2.1491] [PMID: 18606704]
[9]
Zhao, Y.; Lv, J.J.; Chen, J.; Jin, X.B.; Wang, M.W.; Su, Z.H.; Wang, L.Y.; Zhang, H.Y. Berbamine inhibited the growth of prostate cancer cells in vivo and in vitro via triggering intrinsic pathway of apoptosis. Prostate Cancer Prostatic Dis., 2016, 19(4), 358-366.
[http://dx.doi.org/10.1038/pcan.2016.29] [PMID: 27431500]
[10]
Zhang, H.; Jiao, Y.; Shi, C.; Song, X.; Chang, Y.; Ren, Y.; Shi, X. Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 532-539.
[http://dx.doi.org/10.1093/abbs/gmy036] [PMID: 29701777]
[11]
Hu, B.; Cai, H.; Yang, S.; Tu, J.; Huang, X.; Chen, G. Ber-bamine enhances the efficacy of gefitinib by suppressing STAT3 signaling in pancreatic cancer cells. OncoTargets Ther., 2019, 12, 11437-11451.
[http://dx.doi.org/10.2147/OTT.S223242] [PMID: 31920333]
[12]
Ram Makena, M.; Gatla, H.; Verlekar, D.; Sukhavasi, S.; K., Pandey M.; C Pramanik, K. Wnt/β-catenin signaling: The cul-prit in pancreatic carcinogenesis and therapeutic resistance. Int. J. Mol. Sci., 2019, 20(17), 4242.
[http://dx.doi.org/10.3390/ijms20174242] [PMID: 31480221]
[13]
Stamos, J.L.; Weis, W.I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol., 2013, 5(1)a007898
[http://dx.doi.org/10.1101/cshperspect.a007898] [PMID: 23169527]
[14]
Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999.
[http://dx.doi.org/10.1016/j.cell.2017.05.016] [PMID: 28575679]
[15]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[16]
Hou, Z.B.; Lu, K.J.; Wu, X.L.; Chen, C.; Huang, X.E.; Yin, H.T. In vitro and in vivo antitumor evaluation of berbamine for lung cancer treatment. APJCP, 2014, 15(4), 1767-1769.
[PMID: 24641406]
[17]
Xia, N.; Yang, N.; Shan, Q.; Wang, Z.; Liu, X.; Chen, Y.; Lu, J.; Huang, W.; Wang, Z. HNRNPC regulates RhoA to induce DNA damage repair and cancer-associated fibroblast activation causing radiation resistance in pancreatic cancer. J. Cell. Mol. Med., 2022. jcmm.17254
[http://dx.doi.org/10.1111/jcmm.17254] [PMID: 35277915]
[18]
Zhang, H.; Jiao, Y.; Shi, C.; Song, X.; Chang, Y.; Ren, Y.; Shi, X. Berbamine suppresses cell viability and induces apoptosis in colorectal cancer via activating p53-dependent apoptotic signaling pathway. Cytotechnology, 2018, 70(1), 321-329.
[http://dx.doi.org/10.1007/s10616-017-0146-8] [PMID: 28965196]
[19]
Meng, Z.; Li, T.; Ma, X.; Wang, X.; Van Ness, C.; Gan, Y.; Zhou, H.; Tang, J.; Lou, G.; Wang, Y.; Wu, J.; Yen, Y.; Xu, R.; Huang, W. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca²⁺ calmodulin-dependent protein kinase II. Mol. Cancer Ther., 2013, 12(10), 2067-2077.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0314] [PMID: 23960096]
[20]
Jin, X.; Wu, Y. Berbamine enhances the antineoplastic activity of gemcitabine in pancreatic cancer cells by activating transforming growth factor-β/Smad signaling. Anat. Rec. (Hoboken), 2014, 297(5), 802-809.
[http://dx.doi.org/10.1002/ar.22897] [PMID: 24619961]
[21]
Li, H.; Luo, K.; Yang, Z.; Chen, M.; Yang, X.; Wang, J.; Ying, Y.; Wu, D.; Wang, Q. Berbamine suppresses the growth of gastric cancer cells by inactivating the BRD4/c-MYC signaling pathway. Drug Des. Devel. Ther., 2022, 16, 129-141.
[http://dx.doi.org/10.2147/DDDT.S338881] [PMID: 35046638]
[22]
Liu, L; Xu, Z; Yu, B; Tao, L; Cao, Y. Berbamine inhibits cell proliferation and migration and induces cell death of lung cancer cells via regulating c-Maf, PI3K/Akt, and MDM2-P53 pathways. Evid.- Based Complementary Altern. Med.: eCAM, , 2021, 2021, 5517143.
[23]
Han, C.; Wang, Z.; Chen, S.; Li, L.; Jin, X. Berbamine sup-presses the progression of bladder cancer by modulating the ROS/NF-κB axis. Oxid. Med. Cell. Longev., 2021, 2021(6), 1-21.
[http://dx.doi.org/10.1155/2021/8851763]
[24]
Speidel, D. The role of DNA damage responses in p53 biolo-gy. Arch. Toxicol., 2015, 89(4), 501-517.
[http://dx.doi.org/10.1007/s00204-015-1459-z] [PMID: 25618545]
[25]
Cai, Z.; Chehab, N.H.; Pavletich, N.P. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell, 2009, 35(6), 818-829.
[http://dx.doi.org/10.1016/j.molcel.2009.09.007] [PMID: 19782031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy