Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Melittin Inhibits Growth of Human Osteosarcoma 143B Cells through Induction of Apoptosis via Suppressing the Wnt/β-catenin Signaling Pathway

Author(s): Xiaoliang Xie, Yumei Li, Haixia Zhu, Lin Chen, Deta Chen, Shengming Lin and Tianyou Fan*

Volume 22, Issue 18, 2022

Published on: 02 August, 2022

Page: [3172 - 3181] Pages: 10

DOI: 10.2174/1871520622666220509121627

Price: $65

Open Access Journals Promotions 2
Abstract

Background and Purpose: Osteosarcoma is the most commonly seen type of primary malignant bone tumors in children and adolescents. Partial patients with osteosarcoma cannot tolerate the side effects of chemotherapy drugs. Hence, it is urgent to find anti-osteosarcoma drugs with low side effects. Melittin is an anti-tumor Traditional Chinese Medicine with low side effects. The purpose of this study was to explore the anti-osteosarcoma effect of melittin and its possible molecular mechanisms.

Methods: The effects of melittin on cell growth were detected by CCK-8, clonal formation, and flow cytometry. The related molecules were also investigated by Real-time PCR and Western blot. A xenograft model in nude mice was established to observe the effects of melittin on tumor growth and the related molecular expression was detected by immunohistochemistry.

Results: Melittin can inhibit the proliferation of osteosarcoma 143B cells, reduce colony formation, and induce apoptosis while significantly up-regulating the expression of Bax and Caspase-3 and down-regulating the expression of Bcl-2 proteins. Moreover, treatment with melittin significantly reduced the mRNA and protein levels of β-catenin and Wnt/β- catenin related genes (LRP5, c-Myc, and Survivin) in osteosarcoma 143B cells in vitro. The xenograft model found that melittin significantly inhibited tumor growth and decreased the protein expression levels of β-catenin and Wnt/β- catenin related genes in vivo.

Conclusion: These findings show that melittin could inhibit the growth of osteosarcoma 143B cells, which may be related to the inhibition of Wnt/β-catenin signaling pathway activity and induce apoptosis by up-regulating the ratio of Bax/Bcl-2 in osteosarcoma 143B cells. Therefore, melittin is a promising anti-tumor drug for the treatment of osteosarcoma.

Keywords: Melittin, osteosarcoma, cell proliferation, apoptosis, xenografts, β-catenin.

Graphical Abstract
[1]
Messerschmitt, P.J.; Garcia, R.M.; Abdul-Karim, F.W.; Greenfield, E.M.; Getty, P.J. Osteosarcoma. J. Am. Acad. Orthop. Surg., 2009, 17(8), 515-527.
[http://dx.doi.org/10.5435/00124635-200908000-00005] [PMID: 19652033]
[2]
Lindsey, B.A.; Markel, J.E.; Kleinerman, E.S. Osteosarcoma overview. Rheumatol. Ther., 2017, 4(1), 25-43.
[http://dx.doi.org/10.1007/s40744-016-0050-2] [PMID: 27933467]
[3]
He, A.; Yang, X.; Huang, Y.; Feng, T.; Wang, Y.; Sun, Y.; Shen, Z.; Yao, Y. CD133(+) CD44(+) cells mediate in the lung metastasis of osteosarcoma. J. Cell. Biochem., 2015, 116(8), 1719-1729.
[http://dx.doi.org/10.1002/jcb.25131] [PMID: 25736420]
[4]
Heare, T.; Hensley, M.A.; Dell’Orfano, S. Bone tumors: Osteosarcoma and ewing’s sarcoma. Curr. Opin. Pediatr., 2009, 21(3), 365-372.
[http://dx.doi.org/10.1097/MOP.0b013e32832b1111] [PMID: 19421061]
[5]
Meyers, P.A.; Heller, G.; Healey, J.; Huvos, A.; Lane, J.; Marcove, R.; Applewhite, A.; Vlamis, V.; Rosen, G. Chemotherapy for nonmet-astatic osteogenic sarcoma: The memorial sloan-kettering experience. J. Clin. Oncol., 1992, 10(1), 5-15.
[http://dx.doi.org/10.1200/JCO.1992.10.1.5] [PMID: 1370176]
[6]
Ali, M. Studies on bee venom and its medical uses. Int. J. Adv. Res. Technol., 2012, 1(1), 69-83.
[7]
Chen, Q.; Lin, W.; Yin, Z. Melittin inhibits hypoxia-induced vasculogenic mimicry formation and epithelial-mesenchymal transition through suppression of hif-1α/akt pathway in liver cancer. Evid.-. Based Complement. Altern. Med., 2019, 2019(4), 1-10.
[8]
Zhang, S.F.; Chen, Z. Melittin exerts an antitumor effect on non small cell lung cancer cells. Mol. Med. Rep., 2017, 16(3), 3581-3586.
[http://dx.doi.org/10.3892/mmr.2017.6970] [PMID: 28713976]
[9]
Jamasbi, E.; Lucky, S.S.; Li, W.; Hossain, M.A.; Gopalakrishnakone, P.; Separovic, F. Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids, 2018, 50(8), 1101-1110.
[http://dx.doi.org/10.1007/s00726-018-2587-6] [PMID: 29770868]
[10]
Yao, J.; Zhang, Z.; Li, S.; Li, B.; Wang, X.H. Melittin inhibits proliferation, migration and invasion of bladder cancer cells by regulating key genes based on bioinformatics and experimental assays. J. Cell. Mol. Med., 2020, 24(1), 655-670.
[http://dx.doi.org/10.1111/jcmm.14775] [PMID: 31691530]
[11]
Qin, G.; Chen, Y.; Li, H.; Xu, S.; Li, Y.; Sun, J.; Rao, W.; Chen, C.; Du, M.; He, K.; Ye, Y. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse mod-el. Mol. Med. Rep., 2016, 14(1), 57-68.
[http://dx.doi.org/10.3892/mmr.2016.5215] [PMID: 27177128]
[12]
Nusse, R. Wnt signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(5), 570-581.
[http://dx.doi.org/10.1101/cshperspect.a011163] [PMID: 22550232]
[13]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[14]
Lin, C.H.; Ji, T.; Chen, C.F.; Hoang, B.H. Wnt signaling in osteosarcoma. Adv. Exp. Med. Biol., 2014, 804, 33-45.
[http://dx.doi.org/10.1007/978-3-319-04843-7_2] [PMID: 24924167]
[15]
Dai, G.; Zheng, D.; Wang, Q.; Yang, J.; Liu, G.; Song, Q.; Sun, X.; Tao, C.; Hu, Q.; Gao, T.; Yu, L.; Guo, W. Baicalein inhibits progression of osteosarcoma cells through inactivation of the Wnt/β-catenin signaling pathway. Oncotarget, 2017, 8(49), 86098-86116.
[http://dx.doi.org/10.18632/oncotarget.20987] [PMID: 29156780]
[16]
Kaykas, A.; Moon, R.T. Wnt/β-catenin signaling pathway. In: Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine; Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp. 2004-2007.
[17]
Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999.
[http://dx.doi.org/10.1016/j.cell.2017.05.016] [PMID: 28575679]
[18]
Wang, G.; Sun, M.; Jiang, Y.; Zhang, T.; Sun, W.; Wang, H.; Yin, F.; Wang, Z.; Sang, W.; Xu, J.; Mao, M.; Zuo, D.; Zhou, Z.; Wang, C.; Fu, Z.; Wang, Z.; Duan, Z.; Hua, Y.; Cai, Z. Anlotinib, a novel small molecular tyrosine kinase inhibitor, suppresses growth and metastasis via dual blockade of VEGFR2 and MET in osteosarcoma. Int. J. Cancer, 2019, 145(4), 979-993.
[http://dx.doi.org/10.1002/ijc.32180] [PMID: 30719715]
[19]
Gu, L.; Feng, J.; Zheng, Z.; Xu, H.; Yu, W. Polyphyllin I inhibits the growth of ovarian cancer cells in nude mice. Oncol. Lett., 2016, 12(6), 4969-4974.
[http://dx.doi.org/10.3892/ol.2016.5348] [PMID: 28105203]
[20]
Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol., 2015, 33(27), 3029-3035.
[http://dx.doi.org/10.1200/JCO.2014.59.4895] [PMID: 26304877]
[21]
Durfee, R.A.; Mohammed, M.; Luu, H.H. Review of osteosarcoma and current management. Rheumatol. Ther., 2016, 3(2), 221-243.
[http://dx.doi.org/10.1007/s40744-016-0046-y] [PMID: 27761754]
[22]
Faisham, W.I.; Mat Saad, A.Z.; Alsaigh, L.N.; Nor Azman, M.Z.; Kamarul Imran, M.; Biswal, B.M.; Bhavaraju, V.M.; Salzihan, M.S.; Hasnan, J.; Ezane, A.M.; Ariffin, N.; Norsarwany, M.; Ziyadi, M.G.; Wan Azman, W.S.; Halim, A.S.; Zulmi, W. Prognostic factors and survival rate of osteosarcoma: A single-institution study. Asia Pac. J. Clin. Oncol., 2017, 13(2), e104-e110.
[http://dx.doi.org/10.1111/ajco.12346] [PMID: 25870979]
[23]
Li, M.; Lu, Y.; Long, Z.; Li, M.; Kong, J.; Chen, G.; Wang, Z. Prognostic and clinicopathological significance of circulating tumor cells in osteosarcoma. J. Bone Oncol., 2019, 16(100236), 100236.
[http://dx.doi.org/10.1016/j.jbo.2019.100236] [PMID: 31024791]
[24]
Matsuoka, K.; Bakiri, L.; Wolff, L.I.; Linder, M.; Mikels-Vigdal, A.; Patiño-García, A.; Lecanda, F.; Hartmann, C.; Sibilia, M.; Wagner, E.F. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res., 2020, 30(10), 885-901.
[http://dx.doi.org/10.1038/s41422-020-0370-1] [PMID: 32686768]
[25]
Lim, H.N.; Baek, S.B.; Jung, H.J. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules, 2019, 24(5), 1-13.
[http://dx.doi.org/10.3390/molecules24050929] [PMID: 30866426]
[26]
Wang, X.; Li, H.; Lu, X.; Wen, C.; Huo, Z.; Shi, M.; Tang, X.; Chen, H.; Peng, C.; Fang, Y.; Deng, X.; Shen, B. Melittin-induced long non-coding RNA NONHSAT105177 inhibits proliferation and migration of pancreatic ductal adenocarcinoma. Cell Death Dis., 2018, 9(10), 940.
[http://dx.doi.org/10.1038/s41419-018-0965-3] [PMID: 30237397]
[27]
Liu, S.; Yu, M.; He, Y.; Xiao, L.; Wang, F.; Song, C.; Sun, S.; Ling, C.; Xu, Z. Melittin prevents liver cancer cell metastasis through inhibi-tion of the Rac1-dependent pathway. Hepatology, 2008, 47(6), 1964-1973.
[http://dx.doi.org/10.1002/hep.22240] [PMID: 18506888]
[28]
Chu, S.T.; Cheng, H.H.; Huang, C.J.; Chang, H.C.; Chi, C.C.; Su, H.H.; Hsu, S.S.; Wang, J.L.; Chen, I.S.; Liu, S.I.; Lu, Y.C.; Huang, J.K.; Ho, C.M.; Jan, C.R. Phospholipase A2-independent Ca2+ entry and subsequent apoptosis induced by melittin in human MG63 osteosar-coma cells. Life Sci., 2007, 80(4), 364-369.
[http://dx.doi.org/10.1016/j.lfs.2006.09.024] [PMID: 17054998]
[29]
Chen, Y.Q.; Zhu, Z.A.; Hao, Y.Q.; Dai, K.R.; Zhang, C. Effect of melittin on apoptosis and necrosis of U2 OS cells. J. Chin. Integr. Med., 2004, 2(3), 208-209.
[http://dx.doi.org/10.3736/jcim20040317] [PMID: 15339447]
[30]
Zhu, H.; Chen, D.; Xie, X.; Li, Y.; Fan, T. Melittin inhibits lung metastasis of human osteosarcoma: Evidence of wnt/β-catenin signaling pathway participation. Toxicon, 2021, 198(24), 132-142.
[http://dx.doi.org/10.1016/j.toxicon.2021.04.024] [PMID: 33930393]
[31]
Estève, M.A.; Carré, M.; Braguer, D. Microtubules in apoptosis induction: Are they necessary? Curr. Cancer Drug Targets, 2007, 7(8), 713-729.
[http://dx.doi.org/10.2174/156800907783220480] [PMID: 18220532]
[32]
Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol., 2018, 8(5), 1-11.
[http://dx.doi.org/10.1098/rsob.180002] [PMID: 29769323]
[33]
Finucane, D.M.; Bossy-Wetzel, E.; Waterhouse, N.J.; Cotter, T.G.; Green, D.R. Bax-induced caspase activation and apoptosis via cyto-chrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem., 1999, 274(4), 2225-2233.
[http://dx.doi.org/10.1074/jbc.274.4.2225] [PMID: 9890985]
[34]
Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J., 1997, 326(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3260001] [PMID: 9337844]
[35]
Qiu, X.; Zhuang, M.; Lu, Z.; Liu, Z.; Cheng, D.; Zhu, C.; Liu, J. RIPK1 suppresses apoptosis mediated by TNF and caspase-3 in interver-tebral discs. J. Transl. Med., 2019, 17(1), 135.
[http://dx.doi.org/10.1186/s12967-019-1886-3] [PMID: 31029152]
[36]
Lyu, H.; Huang, J.; He, Z.; Liu, B. Epigenetic mechanism of survivin dysregulation in human cancer. Sci. China Life Sci., 2018, 61(7), 808-814.
[http://dx.doi.org/10.1007/s11427-017-9230-2] [PMID: 29318497]
[37]
Kang, S.; Kim, E.O.; Kim, S.H.; Lee, J.H.; Ahn, K.S.; Yun, M.; Lee, S.G. Morusin induces apoptosis by regulating expression of Bax and Survivin in human breast cancer cells. Oncol. Lett., 2017, 13(6), 4558-4562.
[http://dx.doi.org/10.3892/ol.2017.6006] [PMID: 28599457]
[38]
Tanaka, T.; Uchida, H. Inhibition of survivin by adenovirus vector enhanced paclitaxel-induced apoptosis in breast cancer cells. Anticancer Res., 2018, 38(7), 4281-4288.
[http://dx.doi.org/10.21873/anticanres.12725] [PMID: 29970562]
[39]
Zhang, L.; Yan, R.; Zhang, Q.; Wang, H.; Kang, X.; Li, J.; Yang, S.; Zhang, J.; Liu, Z.; Yang, X. Survivin, a key component of the Wnt/β-catenin signaling pathway, contributes to traumatic brain injury-induced adult neurogenesis in the mouse dentate gyrus. Int. J. Mol. Med., 2013, 32(4), 867-875.
[http://dx.doi.org/10.3892/ijmm.2013.1456] [PMID: 23900556]
[40]
Wang, Z.; Ma, L.J.; Kang, Y.; Li, X.; Zhang, X.J. Dickkopf-3 (Dkk3) induces apoptosis in cisplatin-resistant lung adenocarcinoma cells via the Wnt/β-catenin pathway. Oncol. Rep., 2015, 33(3), 1097-1106.
[http://dx.doi.org/10.3892/or.2014.3704] [PMID: 25573172]
[41]
Brenner, C.; Deplus, R.; Didelot, C.; Loriot, A.; Viré, E.; De Smet, C.; Gutierrez, A.; Danovi, D.; Bernard, D.; Boon, T.; Pelicci, P.G.; Ama-ti, B.; Kouzarides, T.; de Launoit, Y.; Di Croce, L.; Fuks, F. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J., 2005, 24(2), 336-346.
[http://dx.doi.org/10.1038/sj.emboj.7600509] [PMID: 15616584]
[42]
Tian, J.; He, H.; Lei, G. Wnt/β-catenin pathway in bone cancers. Tumour Biol., 2014, 35(10), 9439-9445.
[http://dx.doi.org/10.1007/s13277-014-2433-8] [PMID: 25117074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy