[4]
Kaur, R.; Mehan, S.; Singh, S. Understanding multifactorial architecture of Parkinson’s disease: Pathophysiology to management. In: Neurological Sciences; Springer: Verlag Italia, , 2019; p. 40, pp. 13-23.
[11]
Joseph, J. Motor fluctuations and dyskinesias in Parkinson’s disease: Clinical manifestations. Mov. Disord., 2005, 20(Suppl. 11), S11-S16.
[12]
Angela, M.C. Presynaptic mechanisms of l-DOPA-induced dyskinesia: The findings, the debate, and the therapeutic implications. Front. Neurol., 2014, 242, 5.
[16]
Antonini, A; Abbruzzese, G; Barone, P; Bonuccelli, U; Lopiano, L.; Onofrj, M. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): Relevance for motor and non-motor features. Neuropsychiatr Dis Treat, 2008, 4(1 A), 1-9.
[33]
Lenz, F.A. Ablative surgery for the treatment of Parkinson’s disease. Handbook of Clinical Neurology; Elsevier, 2007, pp. 243-260.
[37]
Kuhn, W; Müller, T. Medications for treating Parkinson’s disease. 8.
[38]
Perez-Lloret, S.; Barrantes, F.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Park. Dis., 2016, 2(1), 1-12.
[45]
Semwal, R.; Upadhyaya, K.; Semwal, R.B.; Semwal, D.K. Acceptability of nose-to-brain drug targeting in context to its advances and challenges. Drug Deliv. Lett., 2017, 8(1), 20-28.
[47]
Alexander, A.; Agrawal, M.; Bhupal Chougule, M.; Saraf, S.; Saraf, S. Nose-to-brain drug delivery: An alternative approach for effective brain drug targeting. an alternative approach for effective brain drug targeting. In: Nanopharmaceuticals: Volume 1: Expectations and Realities of Multifunctional Drug Delivery Systems; Elsevier Inc. 2020, pp. 175-200.
[60]
van Rumund, A.; Pavelka, L.; Esselink, R.A.J.; Geurtz, B.P.M.; Wevers, R.A.; Mollenhauer, B. Peripheral decarboxylase inhibitors paradoxically induce aromatic L-amino acid decarboxylase. NPJ Park Dis, 2021, 7(1), 1-5.
[72]
Sridhar, V. Gaud, R.; Bajaj, A.; Wairkar, S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine (Lond.), 2018, 14(8), 2609-2618.
[75]
Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Res. Int., 2019, 2019, 2382563.
[76]
Pangeni, R. Sharma, S.; Mustafa, G.; Ali, J.; Baboota, S.Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology, 2014, 25(48), 485102.
[78]
Mandal, S.; Das Mandal, S.; Chuttani, K.; Sawant, K.K.; Subudhi, B.B. Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPTP induced Parkinson model. J. Pharm. Investig., 2015, 46(1), 41-53.
[98]
Agrahari, V.; Burnouf, P-A.; Burnouf, T.; Agrahari, V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev., 2019, 148, 146-180.
[99]
Dey, S.; Mahanti, B.; Mazumder, B.; Malgope, A.; Sandeepan, A. Nasal drug delivery: An approach of drug delivery through nasal route. Der Chem Sin., 2011, 2(3), 94-106.
[104]
Prasad, K.M.; Ravindranath, B.S.; Sheetal, B.G. Nasal insitu gel: A novel approach for nasal drug delivery system. World J. Pharm. Res., 2015, 4(2), 686-708.
[108]
Trenkel, M.; Scherließ, R. Nasal powder formulations: In-vitro characterisation of the impact of powders on nasal residence time and sensory effects. Pharm, 2021, 13(3), 385.
[114]
Ladel, S.; Schlossbauer, P.; Flamm, J.; Luksch, H.; Mizaikoff, B.; Schindowski, K. Improved in vitro model for intranasal mucosal drug delivery: Primary olfactory and respiratory epithelial cells compared with the permanent nasal cell line RPMI 2650. Pharm, 2019, 11(8), 367.
[117]
Trenfield, SJ; Awad, A; Madla, CM; Hatton, GB; Firth, J; Goyanes, A Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. 2019, 16(10), 1081-1094.
[126]
Kundoor, V.; Dalby, R.N. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method. Pharm. Res., 2009, 27(1), 30-36.
[130]
Ladel, S.; Flamm, J.; Zadeh, A.S.; Filzwieser, D.; Walter, J-C. Schlossbauer, P Allogenic Fc domain-facilitated uptake of IgG in nasal lamina propria: Friend or foe for intranasal CNS delivery? Pharm, 2018, 10(3), 107.
[132]
Kanazawa, T.; Fukuda, M.; Suzuki, N.; Suzuki, T. Novel methods for intranasal administration under inhalation anesthesia to evaluate nose-to-brain drug delivery. J. Vis. Exp., 2018, 2018(141), p.e58485.
[143]
Aly, A.E-E.; Waszczak, B.L. Intranasal gene delivery for treating Parkinsons disease: Overcoming the blood-brain barrier. Exp. Opin. Drug Deliv. Informa Healthcare, 2015, 12, 1923-1941.
[148]
Samaridou, E.; Alonso, M.J.; María, J.A.; Epithelium, O. Nose-to-brain peptide delivery-the potential of nanotechnology. Bioorg. Med. Chem., 2018, 26(10), 2888-2905.
[150]
Duarte-Neves, J.; Cavadas, C.; Pereira de Almeida, L.; Neuropeptide, Y. NPY) intranasal delivery alleviates Machado-Joseph disease. Sci. Reports, 2021, 11(1), 1-9.
[151]
Intranasal administration of neuropeptide Y in healthy male volunteers - full text view. ClinicalTrials.gov
[161]
Tenenbaum, L.; Chtarto, A.; Lehtonen, E.; Velu, T.; Brotchi, J.; Levivier, M. Recombinant AAV-mediated gene delivery to the central nervous system. J. Gene Med., 2004, 6(Suppl. 1), S212-S222.
[163]
Chang, J-C.; Chao, Y-C.; Chang, H-S.; Wu, Y-L.; Chang, H-J. Lin, Y-S Intranasal delivery of mitochondria for treatment of Parkinson’s Disease model rats lesioned with 6-hydroxydopamine. Sci. Reports, 2021, 11(1), 1-14.