Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Strategies for Targeting KRAS: A Challenging Drug Target

Author(s): Abdul Wadood*, Amar Ajmal and Ashfaq Ur Rehman

Volume 28, Issue 23, 2022

Published on: 24 June, 2022

Page: [1897 - 1901] Pages: 5

DOI: 10.2174/1381612828666220506144046

Price: $65

Open Access Journals Promotions 2
Abstract

In the developed world, cancer is the most common cause of death. Among the 36 human genes of the RAS family, KRAS, NRAS, and HRAS play a prominent role in human cancer. KRAS belongs to the Ras superfamily of proteins and is a small GTPase signal transduction protein. Among the RAS isoform, KRAS is the dominant mutant that induces approximately 86% of the RAS mutations. The most frequently mutated KRAS isoform is KRAS4B. About 90% of pancreatic cancer, 30-40% of colon cancer, and 15 to 20% of lung cancers are caused by mutations KRAS4B isoform. Liver cancer, bladder cancer, breast cancer, and myeloid leukaemia are also caused by mutations in KRAS but are rare. The FDA has recently approved sotorasib for the treatement of KRASG12C-mutated advanced non-small cell lung cancer (NSCLC) patients. However, no FDAapproved drugs are available for other KRAS-driven cancer. As the KRAS proteins lack a druggable pocket accessible to the chemical inhibitors, the cancer-causing mutant proteins are almost identical to their essential wild-type counterparts. Therefore, they are considered undruggable. The new insights into the structure and function of RAS have changed this understanding and encouraged the development of many drug candidates. This review provides information about the different strategies for targeting KRAS, a challenging drug target that might be valuable for the scientific community.

Keywords: KRAS oncogene, KRAS signalling, KRAS structure, targeted therapy, KRAS4B isoform, drug target.

[1]
Keeton AB, Salter EA, Piazza GA. RAS-effector interaction as a drug target. Cancer Res 2017; 77(2): 221-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0938]
[2]
Liu P, Wang Y, Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B 2019; 9(5): 871-9.
[http://dx.doi.org/10.1016/j.apsb.2019.03.002] [PMID: 31649840]
[3]
Kessler D, Gmachl M, Mantoulidi A, et al. Drugging an undruggable pocket on KRAS. PNAS 2019; 116(32): 15823-9.
[http://dx.doi.org/10.1073/pnas.1904529116]
[4]
Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J 2019; 18: 189-98.
[http://dx.doi.org/10.1016/j.csbj.2019.12.004] [PMID: 31988705]
[5]
Singh MP, Misra S, Rathanaswamy SP, et al. Clinical profile and epidemiological factors of oral cancer patients from North India. Natl J Maxillofac Surg 2015; 6(1): 21-4.
[http://dx.doi.org/10.4103/0975-5950.168215] [PMID: 26668448]
[6]
Gysin S, Megan S, Amy FM, et al. Therapeutic strategies for targeting RAS proteins. Genes Cancer 2011; 2(3): 359-72.
[7]
Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92(17): 7686-9.
[http://dx.doi.org/10.1073/pnas.92.17.7686] [PMID: 7644477]
[8]
Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998; 273(29): 18623-32.
[http://dx.doi.org/10.1074/jbc.273.29.18623] [PMID: 9660836]
[9]
Williams DH, Wilkinson SE, Purton T, Lamont A, Flotow H, Murray EJ. Ro 09-2210 exhibits potent anti-proliferative effects on activated T cells by selectively blocking MKK activity. Biochemistry 1998; 37(26): 9579-85.
[http://dx.doi.org/10.1021/bi972914c] [PMID: 9649341]
[10]
Frémin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 2010; 3(1): 8-8.
[http://dx.doi.org/10.1186/1756-8722-3-8] [PMID: 20149254]
[11]
Consortium APG. AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discov 2017; 7(8): 818-31.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0151] [PMID: 28572459]
[12]
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013; 503(7477): 548-51.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
[13]
Merz V, Gaule M, Zecchetto C, et al. Targeting KRAS: The elephant in the room of epithelial cancers. Front Oncol 2021; 11.
[http://dx.doi.org/10.3389/fonc.2021.638360]
[14]
Kwan AK, Piazza GA, Keeton AB, Leite CA. The path to the clinic: A comprehensive review on direct KRASG12C inhibitors. J Exp Clin Cancer Res 2022; 41(1): 27.
[http://dx.doi.org/10.1186/s13046-021-02225-w] [PMID: 35045886]
[15]
Nussinov R, Zhang M, Tsai CJ, Liao TJ, Fushman D, Jang H. Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: A comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10(5): 1263-82.
[http://dx.doi.org/10.1007/s12551-018-0461-0] [PMID: 30269291]
[16]
Tanaka T, Nakazawa H, Kuriyama N, Kaneki M. Farnesyltransferase inhibitors prevent HIV protease inhibitor (lopinavir/] ritonavir)-induced lipodystrophy and metabolic syndrome in mice. Exp Ther Med 2018; 15(2): 1314-20.
[PMID: 29434718]
[17]
Lee KH, Koh M, Moon A. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Oncol Lett 2016; 12(3): 2222-6.
[http://dx.doi.org/10.3892/ol.2016.4837] [PMID: 27602167]
[18]
Nagasaka M, Li Y, Sukari A, Ou SI, Al-Hallak MN, Azmi AS. KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne? Cancer Treat Rev 2020; 84: 101974.
[http://dx.doi.org/10.1016/j.ctrv.2020.101974] [PMID: 32014824]
[19]
McCormick F. Targeting KRAS directly. Annual Review of Cancer Biology 2018; 2(1): 81-90.
[http://dx.doi.org/10.1146/annurev-cancerbio-050216-122010]
[20]
Maurer T, Lindsay SG, Angela O, et al. Small-molecule ligands bind to a distinct pocket in RAS and inhibit SOS-mediated nucleotide exchange activity. PNAS 2012; 109(14): 5299-304.
[http://dx.doi.org/10.1073/pnas.1116510109]
[21]
Sun Q, Burke JP, Phan J, et al. Discovery of small molecules that bind to K-Ras and inhibit SOS-mediated activation. Angew Chem Int Ed Engl 2012; 51(25): 6140-3.
[http://dx.doi.org/10.1002/anie.201201358] [PMID: 22566140]
[22]
Cruz-Migoni A, Peter C, Camilo EQ, et al. Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds. PNAS 2019; 116(7): 2545-50.
[http://dx.doi.org/10.1073/pnas.1811360116]
[23]
Nyíri K, Koppány G, Vértessy BG. Structure-based inhibitor design of mutant RAS proteins-a paradigm shift. Cancer Metastasis Rev 2020; 39(4): 1091-105.
[http://dx.doi.org/10.1007/s10555-020-09914-6] [PMID: 32715349]
[24]
Davidson SM, Papagiannakopoulos T, Olenchock BA, et al. Environment impacts the metabolic dependencies of RAS-driven non-small cell lung cancer. Cell Metab 2016; 23(3): 517-28.
[http://dx.doi.org/10.1016/j.cmet.2016.01.007] [PMID: 26853747]
[25]
Vernieri C, Signorelli D, Galli G, et al. Exploiting fasting-mimicking diet and metformin to improve the efficacy of platinum-pemetrexed chemotherapy in advanced LKB1-inactivated lung adenocarcinoma: The FAME trial. Clin Lung Cancer 2019; 20(3): e413-7.
[http://dx.doi.org/10.1016/j.cllc.2018.12.011] [PMID: 30617039]
[26]
Caiola E, Broggini M, Marabese M. LKB1ness dictates ERK inhibitors response in NSCLC. J Thorac Oncol 2020; 15(4): e59.
[http://dx.doi.org/10.1016/j.jtho.2020.02.006] [PMID: 32216950]
[27]
Aubert L, Nandagopal N, Steinhart Z, et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun 2020; 11(1): 3701.
[http://dx.doi.org/10.1038/s41467-020-17549-y] [PMID: 32709883]
[28]
Hofmann MH, Gmachl M, Ramharter J, et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov 2021; 11(1): 142-57.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0142] [PMID: 32816843]
[29]
Fell JB, Fischer JP, Baer BR, et al. Identification of the clinical development candidate MRTX849, a Covalent KRASG12C inhibitor for the treatment of cancer. J Med Chem 2020; 63(13): 6679-93.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02052] [PMID: 32250617]
[30]
Kazi A, Xiang S, Yang H, et al. Dual farnesyl and geranylgeranyl transferase inhibitor thwarts mutant KRAS-driven patient-derived pancreatic tumors. Clin Cancer Res 2019; 25(19): 5984-96.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3399] [PMID: 31227505]
[31]
Marín-Ramos NI, Ortega-Gutiérrez S, López-Rodríguez ML. Blocking RAS inhibition as an antitumor strategy. In: Seminars in Cancer Biology. Academic Press 2019; 54: pp. 91-100.
[http://dx.doi.org/10.1016/j.semcancer.2018.01.017]
[32]
Manu KA, Chai TF, Teh JT, Zhu WL, Casey PJ, Wang M. Inhibition of isoprenylcysteine carboxylmethyltransferase induces cell-cycle arrest and apoptosis through p21 and p21-regulated BNIP3 induction in pancreatic cancer. Mol Cancer Ther 2017; 16(5): 914-23.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0703] [PMID: 28167504]
[33]
Patgiri A, Yadav KK, Arora PS, Bar-Sagi D. An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 2011; 7(9): 585-7.
[http://dx.doi.org/10.1038/nchembio.612] [PMID: 21765406]
[34]
Ragon BK, Odenike O, Baer MR, et al. Oral MEK 1/2 inhibitor trametinib in combination with AKT inhibitor GSK2141795 in patients with acute myeloid leukemia with RAS mutations: A phase II study. Clin Lymphoma Myeloma Leuk 2019; 19(7): 431-440.e13.
[http://dx.doi.org/10.1016/j.clml.2019.03.015] [PMID: 31056348]
[35]
Rosenberg L, Yoon CH, Sharma G, Bertagnolli MM, Cho NL. Sorafenib inhibits proliferation and invasion in desmoid-derived cells by targeting Ras/MEK/ERK and PI3K/Akt/mTOR pathways. Carcinogenesis 2018; 39(5): 681-8.
[http://dx.doi.org/10.1093/carcin/bgy038] [PMID: 29538717]
[36]
Dong M, Liu X, Evert K, et al. Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model. Cell Death Dis 2018; 9(2): 31.
[http://dx.doi.org/10.1038/s41419-017-0183-4] [PMID: 29348467]
[37]
Canon J, Rex K, Saiki AY, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019; 575(7781): 217-23.
[http://dx.doi.org/10.1038/s41586-019-1694-1] [PMID: 31666701]
[38]
Hong DS, Fakih MG, Strickler JH, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med 2020; 383(13): 1207-17.
[http://dx.doi.org/10.1056/NEJMoa1917239] [PMID: 32955176]
[39]
Skoulidis F, Li BT, Dy GK, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med 2021; 384(25): 2371-81.
[http://dx.doi.org/10.1056/NEJMoa2103695] [PMID: 34096690]
[40]
Désage A-L, Léonce C, Swalduz A, Ortiz-Cuaran S. Targeting KRAS mutant in non-small cell lung cancer: Novel insights into therapeutic strategies. Front Oncol 2022; 12: 796832.
[http://dx.doi.org/10.3389/fonc.2022.796832] [PMID: 35251972]
[41]
Jänne PA, Rybkin II, Spira AI, et al. KRYSTAL-1: Activity and safety of adagrasib (MRTX849) in advanced/metastatic non-small-cell lung cancer (NSCLC) harboring KRAS G12C mutation. Eur J Cancer 2020; 138: S1-2.
[http://dx.doi.org/10.1016/S0959-8049(20)31076-5]
[42]
Tzekova V, et al. Efficacy and safety of AZD6244 (ARRY-142886) as second/third-line treatment of patients (pts) with advanced non-small cell lung cancer (NSCLC). J Clin Oncol 2008; 26(15)(Suppl.): 8029-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy