Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Biological Importance of Flavonoid Bavachinin in the Medicine: Perspectives of Medicinal Importance, Pharmacological Activities and Analytical Techniques

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 13, Issue 4, 2023

Published on: 13 October, 2022

Article ID: e280422204210 Pages: 10

DOI: 10.2174/2210315512999220428121509

Price: $65

Abstract

Backgrounds: Phytochemicals are an important class of natural compounds present in vegetables, herbs, fruits, and seeds. Phytochemicals have been used in medicine for the treatment of human disorders in the form of drugs, medicine, and Nutraceuticals. Flavonoid class secondary metabolites were found to be present in medicinal plants and some food materials derived from plants. Flavonoid class phytochemicals have beneficial health aspects and numerous pharmacological activities in the medicine. Psoralea corylifolia has been widely used in medicine for the treatment of skin diseases, including vitiligo, alopecia areata, leukoderma, and psoriasis. More than 90 different types of phytocompounds have been separated and isolated from Psoralea corylifolia. Bavachinin is a flavonoid class phytochemical, found to be present in the seeds of Psoralea corylifolia. Bavachinin possesses anti-bacterial, anti-oxidative, anti-inflammatory, α-glucosidase and nitric oxide inhibitory potential.

Methods: Scientific data on bavachinin have been collected from different literature databases such as Google, Google Scholar, PubMed, Science Direct and Scopus in the present work and analyzed to know the biological importance of bavachinin. Scientific research data on bavachinin have been collected in the present work for their medicinal importance, pharmacological activities and analytical aspects. Further, all the collected scientific data have been separated into different sub-sections i.e., Medicinal importance, pharmacological activities and analytical aspects of bavachinin. Detailed pharmacological activity data of bavachinin have been analyzed in the present work to know the therapeutic potential of bavachinin in medicine. Analytical data of bavachinin have been collected and analyzed in the present work to know the biological importance of bavachinin in modern medicine for the standardization of Psoralea corylifolia.

Results: Literature data analysis of different scientific research works revealed the biological importance of flavonoids in medicine. Flavonoid class phytochemicals have anti-inflammatory, antioxidant, anti-viral, anti-cancer and anti-ageing properties in medicine. Scientific data analysis revealed the effectiveness of bavachinin in cancer, blood glucose, Alzheimer's disease, Parkinson's disease, inflammation, immune system, T cell differentiation, oxidative damage and enzymes. However, therapeutic efficacy, metabolism, biotransformation, pharmaceutical product development and pharmacokinetic parameters of bavachinin have also been discussed in the present work. Analytical data signified the importance of modern analytical tools for the separation, isolation and identification of bavachinin.

Conclusion: Scientific data analysis of different research work revealed the biological importance and therapeutic benefit of bavachinin in medicine.

Keywords: Flavonoid, bavachinin, cancer, blood glucose, Alzheimer's, Parkinson's, inflammation, immunomodulation, oxidative damage, enzymes.

Graphical Abstract
[1]
Oteiza, P.I.; Fraga, C.G.; Galleano, M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol., 2021, 42, 101914.
[http://dx.doi.org/10.1016/j.redox.2021.101914] [PMID: 33750648]
[2]
Patel, D.K. Medicinal importance of flavonoid “eupatorin” in the health sectors: Therapeutic benefit and pharmacological activities through scientific data analysis. Curr. Chinese Sci., 2021, 1, 629-638.
[http://dx.doi.org/10.2174/2210298101666210804141644]
[3]
Patel, K.; Patel, D.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr. Bioact. Compd., 2020, 16, 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[4]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Pat. Antiinfect. Drug Discov., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[5]
Patel, K.; Patel, D.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr. Bioact. Compd., 2021, 17, 206-213.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[6]
Vazhappilly, C.G.; Amararathna, M.; Cyril, A.C.; Linger, R.; Matar, R.; Merheb, M.; Ramadan, W.S.; Radhakrishnan, R.; Rupasinghe, H.P.V. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J. Nutr. Biochem., 2021, 94, 108623.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108623] [PMID: 33705948]
[7]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[8]
Bhowmik, D.; Nandi, R.; Prakash, A.; Kumar, D. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon, 2021, 7(3), e06515.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06515] [PMID: 33748510]
[9]
Zhang, C.; Jia, X.; Zhao, Y.; Wang, L.; Cao, K.; Zhang, N.; Gao, Y.; Wang, Z. The combined effects of elevated atmospheric CO2 and cadmium exposure on flavonoids in the leaves of Robinia pseudoacacia L. seedlings. Ecotoxicol. Environ. Saf., 2021, 210, 111878.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111878] [PMID: 33418159]
[10]
Patel, K.; Patel, D.K. The beneficial role of rutin, A naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. Bioact. Food as Diet. Interv. Arthritis Relat. Inflamm. Dis; Elsevier, 2019, pp. 457-479.
[11]
Wang, K.; Tan, W.; Liu, X.; Deng, L.; Huang, L.; Wang, X.; Gao, X. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed. Pharmacother., 2021, 137, 111326.
[http://dx.doi.org/10.1016/j.biopha.2021.111326] [PMID: 33556870]
[12]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[13]
Patel, K.; Patel, D.K. Therapeutic benefit and biological importance of ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects. Curr. Bioact. Compd., 2021, 17, e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[14]
Kim, J.Y.; Lee, S.I.; Kim, J.A.; Muthusamy, M.; Jeong, M-J. Specific audible sound waves improve flavonoid contents and antioxidative properties of sprouts. Sci. Hortic. (Amsterdam), 2021, 276, 109746.
[http://dx.doi.org/10.1016/j.scienta.2020.109746]
[15]
Jain, A.S.; Sushma, P.; Dharmashekar, C.; Beelagi, M.S.; Prasad, S.K.; Shivamallu, C.; Prasad, A.; Syed, A.; Marraiki, N.; Prasad, K.S. In silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi J. Biol. Sci., 2021, 28(1), 1040-1051.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.049] [PMID: 33424398]
[16]
Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125.
[http://dx.doi.org/10.2174/1872312814666210726112910] [PMID: 34313205]
[17]
Małecka, M.; Skoczyńska, A.; Goodman, D.M.; Hartinger, C.G.; Budzisz, E. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands. Coord. Chem. Rev., 2021, 436, 213849.
[http://dx.doi.org/10.1016/j.ccr.2021.213849]
[18]
Wang, S.; Wang, M.; Wang, M.; Tian, Y.; Sun, X.; Sun, G.; Sun, X. Bavachinin Induces oxidative damage in HepaRG cells through p38/JNK MAPK pathways. Toxins (Basel), 2018, 10(4), 154.
[http://dx.doi.org/10.3390/toxins10040154] [PMID: 29649125]
[19]
Xu, Q-X.; Hu, Y.; Li, G-Y.; Xu, W.; Zhang, Y-T.; Yang, X-W. Multi-target anti-alzheimer activities of four prenylated compounds from psoralea fructus. Molecules, 2018, 23(3), 614.
[http://dx.doi.org/10.3390/molecules23030614] [PMID: 29518051]
[20]
Liu, J-J.; Zhang, J.; Chen, Z-L. Chiral separation of bavachinin in Fructus Psoraleae and rat plasma by liquid chromatography using permethylated-β-CD as a chiral selector. J. Pharm. Anal., 2013, 3(5), 349-353.
[http://dx.doi.org/10.1016/j.jpha.2012.12.010] [PMID: 29403838]
[21]
Chen, X.; Yang, Y.; Zhang, Y. Isobavachalcone and bavachinin from Psoraleae Fructus modulate Aβ42 aggregation process through different mechanisms in vitro. FEBS Lett., 2013, 587(18), 2930-2935.
[http://dx.doi.org/10.1016/j.febslet.2013.07.037] [PMID: 23907009]
[22]
Zarmouh, N.O.; Mazzio, E.A.; Elshami, F.M.; Messeha, S.S.; Eyunni, S.V.K.; Soliman, K.F.A. Evaluation of the inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B. Evid. Based Complement. Alternat. Med., 2015, 2015, 852194.
[http://dx.doi.org/10.1155/2015/852194] [PMID: 26557867]
[23]
Darzi, S.; Mirzaei, S.A.; Elahian, F.; Shirian, S.; Peymani, A.; Rahmani, B.; Dibazar, S.P.; Aali, E. Enhancing the therapeutic efficacy of daunorubicin and mitoxantrone with bavachinin, candidone, and tephrosin. Evid. Based Complement. Alternat. Med., 2019, 2019, 3291737.
[http://dx.doi.org/10.1155/2019/3291737] [PMID: 31814840]
[24]
Chen, X.; Wen, T.; Wei, J.; Wu, Z.; Wang, P.; Hong, Z.; Zhao, L.; Wang, B.; Flavell, R.; Gao, S.; Wang, M.; Yin, Z. Treatment of allergic inflammation and hyperresponsiveness by a simple compound, Bavachinin, isolated from Chinese herbs. Cell. Mol. Immunol., 2013, 10(6), 497-505.
[http://dx.doi.org/10.1038/cmi.2013.27] [PMID: 24013845]
[25]
Xie, F.; Du, G.; Ma, S.; Li, Y.; Wang, R.; Guo, F. Structural elucidation of in vitro metabolites of bavachinin in rat liver microsomes by LC-ESI-MSn and chemical synthesis. Xenobiotica, 2016, 46(4), 296-306.
[http://dx.doi.org/10.3109/00498254.2015.1074763] [PMID: 26259024]
[26]
Nepal, M.; Choi, H.J.; Choi, B-Y.; Kim, S.L.; Ryu, J-H.; Kim, D.H.; Lee, Y.H.; Soh, Y. Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia-inducible factor-1α. Eur. J. Pharmacol., 2012, 691(1-3), 28-37.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.028] [PMID: 22760073]
[27]
Ge, L.N.; Yan, L.; Li, C.; Cheng, K. Bavachinin exhibits antitumor activity against non-small cell lung cancer by targeting PPARγ. Mol. Med. Rep., 2019, 20(3), 2805-2811.
[http://dx.doi.org/10.3892/mmr.2019.10485] [PMID: 31322235]
[28]
Gupta, N.; Qayum, A.; Raina, A.; Shankar, R.; Gairola, S.; Singh, S.; Sangwan, P.L. Synthesis and biological evaluation of novel bavachinin analogs as anticancer agents. Eur. J. Med. Chem., 2018, 145, 511-523.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.006] [PMID: 29335212]
[29]
Jeong, D.; Watari, K.; Shirouzu, T.; Ono, M.; Koizumi, K.; Saiki, I.; Kim, Y.C.; Tanaka, C.; Higuchi, R.; Miyamoto, T. Studies on lymphangiogenesis inhibitors from Korean and Japanese crude drugs. Biol. Pharm. Bull., 2013, 36(1), 152-157.
[http://dx.doi.org/10.1248/bpb.b12-00871] [PMID: 23302649]
[30]
Kuntz, S.; Wenzel, U.; Daniel, H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur. J. Nutr., 1999, 38(3), 133-142.
[http://dx.doi.org/10.1007/s003940050054] [PMID: 10443335]
[31]
Du, G.; Zhao, Y.; Feng, L.; Yang, Z.; Shi, J.; Huang, C.; Li, B.; Guo, F.; Zhu, W.; Li, Y. Design, synthesis, and structure-activity relationships of bavachinin analogues as peroxisome proliferator-activated receptor γ agonists. ChemMedChem, 2017, 12(2), 183-193.
[http://dx.doi.org/10.1002/cmdc.201600554] [PMID: 27914122]
[32]
Feng, L.; Luo, H.; Xu, Z.; Yang, Z.; Du, G.; Zhang, Y.; Yu, L.; Hu, K.; Zhu, W.; Tong, Q.; Chen, K.; Guo, F.; Huang, C.; Li, Y. Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice. Diabetologia, 2016, 59(6), 1276-1286.
[http://dx.doi.org/10.1007/s00125-016-3912-9] [PMID: 26983922]
[33]
Lee, S.W.; Yun, B.R.; Kim, M.H.; Park, C.S.; Lee, W.S.; Oh, H-M.; Rho, M.C. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation. Planta Med., 2012, 78(9), 903-906.
[http://dx.doi.org/10.1055/s-0031-1298482] [PMID: 22573369]
[34]
Matsuda, H.; Kiyohara, S.; Sugimoto, S.; Ando, S.; Nakamura, S.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXXIII. Inhibitors from the seeds of Psoralea corylifolia on production of nitric oxide in lipopolysaccharide-activated macrophages. Biol. Pharm. Bull., 2009, 32(1), 147-149.
[http://dx.doi.org/10.1248/bpb.32.147] [PMID: 19122298]
[35]
Sharma, M.L.; Singh, B.; Chandan, B.K.; Khajuria, A.; Kaul, A.; Bani, S.; Banerjee, S.K.; Gambhir, S.S. Actions of some flavonoids on specific and non-specific immune mechanisms. Phytomedicine, 1996, 3(2), 191-195.
[http://dx.doi.org/10.1016/S0944-7113(96)80035-3] [PMID: 23194969]
[36]
Chen, X.; Shen, Y.; Liang, Q.; Flavell, R.; Hong, Z.; Yin, Z.; Wang, M. Effect of Bavachinin and its derivatives on T cell differentiation. Int. Immunopharmacol., 2014, 19(2), 399-404.
[http://dx.doi.org/10.1016/j.intimp.2014.01.022] [PMID: 24508059]
[37]
Sun, D-X.; Ge, G-B.; Dong, P-P.; Cao, Y-F.; Fu, Z-W.; Ran, R-X.; Wu, X.; Zhang, Y.Y.; Hua, H.M.; Zhao, Z.; Fang, Z.Z. Inhibition behavior of Fructus Psoraleae’s ingredients towards human carboxylesterase 1 (hCES1). Xenobiotica, 2016, 46(6), 503-510.
[http://dx.doi.org/10.3109/00498254.2015.1091521] [PMID: 26560012]
[38]
Li, Y-G.; Hou, J.; Li, S-Y.; Lv, X.; Ning, J.; Wang, P.; Liu, Z.M.; Ge, G.B.; Ren, J.Y.; Yang, L. Fructus Psoraleae contains natural compounds with potent inhibitory effects towards human carboxylesterase 2. Fitoterapia, 2015, 101, 99-106.
[http://dx.doi.org/10.1016/j.fitote.2015.01.004] [PMID: 25596095]
[39]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J-W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[40]
Cheng, M.; Chen, Z. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking. Electrophoresis, 2017, 38(3-4), 486-493.
[http://dx.doi.org/10.1002/elps.201600367] [PMID: 27862041]
[41]
Lim, S-H.; Ha, T-Y.; Ahn, J.; Kim, S. Estrogenic activities of Psoralea corylifolia L. seed extracts and main constituents. Phytomedicine, 2011, 18(5), 425-430.
[http://dx.doi.org/10.1016/j.phymed.2011.02.002] [PMID: 21382704]
[42]
Luo, J.; Liang, Q.; Shen, Y.; Chen, X.; Yin, Z.; Wang, M. Biotransformation of bavachinin by three fungal cell cultures. J. Biosci. Bioeng., 2014, 117(2), 191-196.
[http://dx.doi.org/10.1016/j.jbiosc.2013.08.001] [PMID: 24012108]
[43]
Lv, X.; Hou, J.; Xia, Y-L.; Ning, J.; He, G-Y.; Wang, P.; Ge, G.B.; Xiu, Z.L.; Yang, L. Glucuronidation of bavachinin by human tissues and expressed UGT enzymes: Identification of UGT1A1 and UGT1A8 as the major contributing enzymes. Drug Metab. Pharmacokinet., 2015, 30(5), 358-365.
[http://dx.doi.org/10.1016/j.dmpk.2015.07.001] [PMID: 26320626]
[44]
Wang, K.; Feng, Y.; Li, S.; Li, W.; Chen, X.; Yi, R.; Zhang, H.; Hong, Z. Oral delivery of bavachinin-loaded PEG-PLGA nanoparticles for asthma treatment in a murine model. J. Biomed. Nanotechnol., 2018, 14(10), 1806-1815.
[http://dx.doi.org/10.1166/jbn.2018.2618] [PMID: 30041726]
[45]
Qian, J.; Xie, F.; Shi, Y.; Li, J.; Zhang, L.; Li, Y.; Guo, F.; Wang, R. Pharmacokinetic and metabolism studies of bavachinin through ultrahigh-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed. Chromatogr., 2018, 32(10), e4293.
[http://dx.doi.org/10.1002/bmc.4293] [PMID: 29782651]
[46]
Liu, L.; Liu, K-N.; Wen, Y-B.; Zhang, H-W.; Lu, Y-X.; Yin, Z. Development of a fully automated on-line solid phase extraction and high-performance liquid chromatography with diode array detection method for the pharmacokinetic evaluation of bavachinin: A study on absolute bioavailability and dose proportionality. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 21-28.
[http://dx.doi.org/10.1016/j.jchromb.2012.02.020] [PMID: 22444438]
[47]
Yang, Y-F.; Zhang, Y-B.; Chen, Z-J.; Zhang, Y-T.; Yang, X-W. Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae Fructus in rats after oral administration. Phytomedicine, 2018, 38, 166-174.
[http://dx.doi.org/10.1016/j.phymed.2017.12.002] [PMID: 29425649]
[48]
Zhou, Z.X.; Yang, L.; Cheng, L.Y.; Yu, Y.L.; Song, L.; Zhou, K.; Wu, Y.L.; Zhang, Y. Simultaneous characterization of multiple Psoraleae Fructus bioactive compounds in rat plasma by ultra-highperformance liquid chromatography coupled with triple quadrupole mass spectrometry for application in sex-related differences in pharmacokinetics. J. Sep. Sci., 2020, 43(14), 2804-2816.
[http://dx.doi.org/10.1002/jssc.202000286] [PMID: 32384213]
[49]
Gao, Q.; Xu, Z.; Zhao, G.; Wang, H.; Weng, Z.; Pei, K.; Wu, L.; Cai, B.; Chen, Z.; Li, W. Simultaneous quantification of 5 main components of Psoralea corylifolia L. in rats’ plasma by utilizing ultra high pressure liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1011, 128-135.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.044] [PMID: 26773881]
[50]
Tang, X.Y.; Dai, Z.Q.; Wu, Q.C.; Zeng, J.X.; Gao, M.X.; Xiao, H.H.; Yao, Z.H.; Dai, Y.; Yao, X.S. Simultaneous determination of multiple components in rat plasma and pharmacokinetic studies at a pharmacodynamic dose of Xian-Ling-Gu-Bao capsule by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 177, 112836.
[http://dx.doi.org/10.1016/j.jpba.2019.112836] [PMID: 31473481]
[51]
Shi, M.; Zhang, J.; Liu, C.; Cui, Y.; Li, C.; Liu, Z.; Kang, W. Ionic liquid-based ultrasonic-assisted extraction to analyze seven compounds in psoralea fructus coupled with HPLC. Molecules, 2019, 24(9), 1699.
[http://dx.doi.org/10.3390/molecules24091699] [PMID: 31052330]
[52]
Du, G.; Feng, L.; Yang, Z.; Shi, J.; Huang, C.; Guo, F.; Li, B.; Zhu, W.; Li, Y. Separation and peroxisome proliferator-activated receptor-γ agonist activity evaluation of synthetic racemic bavachinin enantiomers. Bioorg. Med. Chem. Lett., 2015, 25(12), 2579-2583.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.029] [PMID: 25978962]
[53]
Zhao, H.; Chen, Z. Screening of neuraminidase inhibitors from traditional Chinese medicines by integrating capillary electrophoresis with immobilized enzyme microreactor. J. Chromatogr. A, 2014, 1340, 139-145.
[http://dx.doi.org/10.1016/j.chroma.2014.03.028] [PMID: 24679826]
[54]
Zhang, W.; Zhou, W.; Chen, Z. Graphene/polydopamine-modified polytetrafluoroethylene microtube for the sensitive determination of three active components in Fructus Psoraleae by online solid-phase microextraction with high-performance liquid chromatography. J. Sep. Sci., 2014, 37(21), 3110-3116.
[http://dx.doi.org/10.1002/jssc.201400706] [PMID: 25132311]
[55]
Chen, Q.; Li, Y.; Chen, Z. Separation, identification, and quantification of active constituents in Fructus Psoraleae by high-performance liquid chromatography with UV, ion trap mass spectrometry, and electrochemical detection. J. Pharm. Anal., 2012, 2(2), 143-151.
[http://dx.doi.org/10.1016/j.jpha.2011.11.005] [PMID: 29403734]
[56]
Zhang, Y.; Chen, Z.; Xu, X.; Zhou, Q.; Liu, X.; Liao, L.; Zhang, Z.; Wang, Z. Rapid separation and simultaneous quantitative determination of 13 constituents in Psoraleae Fructus by a single marker using high-performance liquid chromatography with diode array detection. J. Sep. Sci., 2017, 40(21), 4191-4202.
[http://dx.doi.org/10.1002/jssc.201700482] [PMID: 28869337]
[57]
Yin, F.Z.; Li, L.; Lu, T.L.; Li, W.D.; Cai, B.C.; Yin, W. Quality assessment of Psoralea fructus by HPLC fingerprint coupled with multi-components analysis. Indian J. Pharm. Sci., 2015, 77(6), 715-722.
[http://dx.doi.org/10.4103/0250-474X.174996] [PMID: 26997699]
[58]
Yan, C.; Wu, Y.; Weng, Z.; Gao, Q.; Yang, G.; Chen, Z.; Cai, B.; Li, W. Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L. J. Anal. Methods Chem., 2015, 2015, 792637.
[http://dx.doi.org/10.1155/2015/792637] [PMID: 26587307]
[59]
Wang, T.X.; Yin, Z.H.; Zhang, W.; Peng, T.; Kang, W.Y. Chemical constituents from Psoralea corylifolia and their antioxidant alphaglucosidase inhibitory and antimicrobial activities. Zhongguo Zhongyao Zazhi, 2013, 38(14), 2328-2333.
[PMID: 24199566]
[60]
Haraguchi, H.; Inoue, J.; Tamura, Y.; Mizutani, K. Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother. Res., 2002, 16(6), 539-544.
[http://dx.doi.org/10.1002/ptr.972] [PMID: 12237811]
[61]
Xiao, G.; Li, G.; Chen, L.; Zhang, Z.; Yin, J.J.; Wu, T.; Cheng, Z.; Wei, X.; Wang, Z. Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. J. Chromatogr. A, 2010, 1217(34), 5470-5476.
[http://dx.doi.org/10.1016/j.chroma.2010.06.041] [PMID: 20663508]
[62]
Lee, M.H.; Kim, J.Y.; Ryu, J-H. Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-kappaB-alpha degradation in activated microglial cells. Biol. Pharm. Bull., 2005, 28(12), 2253-2257.
[http://dx.doi.org/10.1248/bpb.28.2253] [PMID: 16327160]
[63]
Kim, Y.J.; Lim, H-S.; Lee, J.; Jeong, S-J. Quantitative analysis of Psoralea corylifolia linne and its neuroprotective and antineuroinflammatory effects in HT22 hippocampal cells and BV-2 microglia. Molecules, 2016, 21(8), 1076.
[http://dx.doi.org/10.3390/molecules21081076] [PMID: 27548120]
[64]
Chino, M.; Sato, K.; Yamazaki, T.; Maitani, T. [Constituent of natural food additive hokosshi extract and an analytical method for the additive in foods]. Shokuhin Eiseigaku Zasshi, 2002, 43(6), 352-355.
[http://dx.doi.org/10.3358/shokueishi.43.352] [PMID: 12635337]
[65]
Choi, Y.H.; Yon, G.H.; Hong, K.S.; Yoo, D.S.; Choi, C.W.; Park, WK.; Kong, J.Y.; Kim, Y.S.; Ryu, S.Y. In vitro BACE-1 inhibitory phenolic components from the seeds of Psoralea corylifolia. Planta Med., 2008, 74(11), 1405-1408.
[http://dx.doi.org/10.1055/s-2008-1081301] [PMID: 18666047]
[66]
Qiao, C-F.; Han, Q-B.; Song, J-Z.; Mo, S-F.; Kong, L-D.; Kung, HF.; Xu, H.X. Chemical fingerprint and quantitative analysis of Fructus Psoraleae by high-performance liquid chromatography. J. Sep. Sci., 2007, 30(6), 813-818.
[http://dx.doi.org/10.1002/jssc.200600339] [PMID: 17536725]
[67]
Zhou, W.; Wang, X.; Wang, C.; Li, W.; Chen, Z. Surface area expansion by flower-like nanoscale layered double hydroxides for high efficient stir bar sorptive extraction. Anal. Chim. Acta, 2020, 1116, 45-52.
[http://dx.doi.org/10.1016/j.aca.2020.04.034] [PMID: 32389188]
[68]
Jia, J.; Zang, E.; Lv, L.; Li, Q.; Zhang, C.; Xia, Y. Flavonoids in myocardial ischemia-reperfusion injury: Therapeutic effects and mechanisms. Chin. Herb. Med., 2021, 13, 49-63.
[http://dx.doi.org/10.1016/j.chmed.2020.09.002]
[69]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7, 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[70]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc Hematol Disord Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy