Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nutraceuticals in the Treatment of Inflammatory Bowel Disease: How the Panorama has Changed in the Last Decade?

Author(s): Antonella Smeriglio, Daniele Marcoccia, Marcella Denaro and Domenico Trombetta*

Volume 30, Issue 19, 2023

Published on: 25 August, 2022

Page: [2165 - 2190] Pages: 26

DOI: 10.2174/0929867329666220428110427

Price: $65

Abstract

Background: Inflammatory bowel diseases (IBD), mainly Ulcerative colitis (UC) and Crohn’s disease (CD), are recurrent idiopathic non-infectious chronic diseases widely diffused worldwide and characterized by moderate to severe mucosal damage.

Objective: This study aims to review the literature of the last 10 years to photograph preclinical and clinical data on the use of nutraceuticals in the prevention and treatment, combined with the conventional drugs, of IBD.

Method: PubMed, MEDLINE, Embase, Web of Science, and ClinicalTrials.gov were used to search for the most recent publications on in vitro, in vivo, and clinical evidence on IBD and nutraceuticals, which were then assessed based on the originality and scientific rigor of the studies.

Results: In the last decade, the interest in new healthy or therapeutic complementary or alternative approaches to conventional drugs in IBD has grown inexorably, as well as the incidence of these pathologies and the knowledge of their etiopathogenesis. In this context, a growing development of new nutraceutical products with a consequent increase in pre-clinical studies has been observed. However, this panorama does not yet translate into adequate clinical studies that can effectively endorse what was observed in pre-clinical studies; many of them are mostly aimed at resolving diseases related to IBD rather than IBD itself.

Conclusion: Despite the promising pre-clinical data about nutraceuticals and IBD, we are still very far from being able to postulate an adequate nutraceutical treatment of these pathologies and further studies are necessary to support this hypothesis.

Keywords: Inflammatory bowel diseases, ulcerative colitis, Chron’s disease, etiopathogenesis, nutraceuticals, preclinical studies, clinical studies.

[1]
Shin, D.W.; Lim, B.O. Nutritional interventions using functional foods and nutraceuticals to improve inflammatory bowel disease. J. Med. Food, 2020, 23(11), 1136-1145.
[http://dx.doi.org/10.1089/jmf.2020.4712] [PMID: 33047999]
[2]
Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The epidemiology of inflammatory bowel disease: East meets west. J. Gastroenterol. Hepatol., 2020, 35(3), 380-389.
[http://dx.doi.org/10.1111/jgh.14872] [PMID: 31596960]
[3]
Ng, S.C.; Bernstein, C.N.; Vatn, M.H.; Lakatos, P.L.; Loftus, E.V., Jr; Tysk, C.; O’Morain, C.; Moum, B.; Colombel, J.F. Epidemiology and Natural History Task Force of the International Organization of Inflammatory Bowel Disease (IOIBD). Geographical variability and environmental risk factors in inflammatory bowel disease. Gut, 2013, 62(4), 630-649.
[http://dx.doi.org/10.1136/gutjnl-2012-303661] [PMID: 23335431]
[4]
Burisch, J.; Jess, T.; Martinato, M.; Lakatos, P.L. ECCO -EpiCom. The burden of inflammatory bowel disease in Europe. J. Crohn’s Colitis, 2013, 7(4), 322-337.
[http://dx.doi.org/10.1016/j.crohns.2013.01.010] [PMID: 23395397]
[5]
Mijan, M.A.; Lim, B.O. Diets, functional foods, and nutraceuticals as alternative therapies for inflammatory bowel disease: Present status and future trends. World J. Gastroenterol., 2018, 24(25), 2673-2685.
[http://dx.doi.org/10.3748/wjg.v24.i25.2673] [PMID: 29991873]
[6]
Durchschein, F.; Petritsch, W.; Hammer, H.F. Diet therapy for inflammatory bowel diseases: The established and the new. World J. Gastroenterol., 2016, 22(7), 2179-2194.
[http://dx.doi.org/10.3748/wjg.v22.i7.2179] [PMID: 26900283]
[7]
Paturi, G.; Mandimika, T.; Butts, C.A.; Zhu, S.; Roy, N.C.; McNabb, W.C.; Ansell, J. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a(-/-) mice, a model of inflammatory bowel diseases. Nutrition, 2012, 28(3), 324-330.
[http://dx.doi.org/10.1016/j.nut.2011.07.018] [PMID: 22113065]
[8]
Hur, S.J.; Kang, S.H.; Jung, H.S.; Kim, S.C.; Jeon, H.S.; Kim, I.H.; Lee, J.D. Review of natural products actions on cytokines in inflammatory bowel disease. Nutr. Res., 2012, 32(11), 801-816.
[http://dx.doi.org/10.1016/j.nutres.2012.09.013] [PMID: 23176791]
[9]
Farombi, E.O.; Adedara, I.A.; Ajayi, B.O.; Ayepola, O.R.; Egbeme, E.E. Kolaviron, a natural antioxidant and anti-inflammatory phytochemical prevents dextran sulphate sodium-induced colitis in rats. Basic Clin. Pharmacol. Toxicol., 2013, 113(1), 49-55.
[http://dx.doi.org/10.1111/bcpt.12050] [PMID: 23336970]
[10]
Ali, A.A.; Abd Al Haleem, E.N.; Khaleel, S.A.; Sallam, A.S. Protective effect of cardamonin against acetic acid-induced ulcerative colitis in rats. Pharmacol. Rep., 2017, 69(2), 268-275.
[http://dx.doi.org/10.1016/j.pharep.2016.11.002] [PMID: 28129600]
[11]
Zhang, Y.Z.; Li, Y.Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol., 2014, 20(1), 91-99.
[http://dx.doi.org/10.3748/wjg.v20.i1.91] [PMID: 24415861]
[12]
Baumgart, D.C.; Carding, S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet, 2007, 369(9573), 1627-1640.
[http://dx.doi.org/10.1016/S0140-6736(07)60750-8] [PMID: 17499605]
[13]
Danese, S.; Fiocchi, C. Etiopathogenesis of inflammatory bowel diseases. World J. Gastroenterol., 2006, 12(30), 4807-4812.
[http://dx.doi.org/10.3748/wjg.v12.i30.4807] [PMID: 16937461]
[14]
Podolsky, D.K. Inflammatory bowel disease. N. Engl. J. Med., 2002, 347(6), 417-429.
[http://dx.doi.org/10.1056/NEJMra020831] [PMID: 12167685]
[15]
Costantini, S.; Sharma, A.; Colonna, G. The value of the cytokinome profile, inflammatory diseases - a modern perspective. Intech. 2011, 2011, 103-28. Available from: http://www.intechopen.com/books/inflammatory-diseases-a-modern-perspective/the-value-of-the-cytokinome-profile
[16]
Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev., 2015, 265(1), 130-142.
[http://dx.doi.org/10.1111/imr.12287] [PMID: 25879289]
[17]
Levin, B.R.; Antia, R. Why we don’t get sick: the within-host population dynamics of bacterial infections. Science, 2001, 292(5519), 1112-1115.
[http://dx.doi.org/10.1126/science.1058879] [PMID: 11352067]
[18]
Levin, B.R.; Baquero, F.; Ankomah, P.P.; McCall, I.C. Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol., 2017, 25(11), 878-892.
[http://dx.doi.org/10.1016/j.tim.2017.07.005] [PMID: 28843668]
[19]
Rath, S.; Rud, T.; Karch, A.; Pieper, D.H.; Vital, M. Pathogenic functions of host microbiota. Microbiome, 2018, 6(1), 174.
[http://dx.doi.org/10.1186/s40168-018-0542-0] [PMID: 30266099]
[20]
Martens, E.C.; Neumann, M.; Desai, M.S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol., 2018, 16(8), 457-470.
[http://dx.doi.org/10.1038/s41579-018-0036-x] [PMID: 29904082]
[21]
Hornef, M. Pathogens, commensal symbionts, and pathobionts: Discovery and functional effects on the host. ILAR J., 2015, 56(2), 159-162.
[http://dx.doi.org/10.1093/ilar/ilv007] [PMID: 26323625]
[22]
Proença, J.T.; Barral, D.C.; Gordo, I. Commensal-to-pathogen transition: One-single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage interaction. Sci. Rep., 2017, 7(1), 4504.
[http://dx.doi.org/10.1038/s41598-017-04081-1] [PMID: 28674418]
[23]
O’Toole, A.; Korzenik, J. Environmental triggers for IBD. Curr. Gastroenterol. Rep., 2014, 16(7), 396.
[http://dx.doi.org/10.1007/s11894-014-0396-y] [PMID: 25048010]
[24]
Zhao, M.; Burisch, J. Impact of genes and the environment on the pathogenesis and disease course of inflammatory bowel disease. Dig. Dis. Sci., 2019, 64(7), 1759-1769.
[http://dx.doi.org/10.1007/s10620-019-05648-w] [PMID: 31073736]
[25]
Cosnes, J. What is the link between the use of tobacco and IBD? Inflamm. Bowel Dis., 2008, 14(Suppl. 2), S14-S15.
[http://dx.doi.org/10.1097/00054725-200810001-00007] [PMID: 18816683]
[26]
Ahlawat, S.; Asha; Sharma, K.K. Gut-organ axis: A microbial outreach and networking. Lett. Appl. Microbiol., 2021, 72(6), 636-668.
[http://dx.doi.org/10.1111/lam.13333] [PMID: 32472555]
[27]
Chapman-Kiddell, C.A.; Davies, P.S.; Gillen, L.; Radford-Smith, G.L. Role of diet in the development of inflammatory bowel disease. Inflamm. Bowel Dis., 2010, 16(1), 137-151.
[http://dx.doi.org/10.1002/ibd.20968] [PMID: 19462428]
[28]
Marion-Letellier, R.; Savoye, G.; Ghosh, S. IBD: In food we trust. J. Crohn’s Colitis, 2016, 10(11), 1351-1361.
[http://dx.doi.org/10.1093/ecco-jcc/jjw106] [PMID: 27194533]
[29]
Lucendo, A.J.; De Rezende, L.C. Importance of nutrition in inflammatory bowel disease. World J. Gastroenterol., 2009, 15(17), 2081-2088.
[http://dx.doi.org/10.3748/wjg.15.2081] [PMID: 19418580]
[30]
Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; de Silva, P.; Fuchs, C.S.; Willett, W.C.; Richter, J.M.; Chan, A.T. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut, 2014, 63(5), 776-784.
[http://dx.doi.org/10.1136/gutjnl-2013-305304] [PMID: 23828881]
[31]
Yu, L. Restoring good health in elderly with diverse gut microbiome and food intake restriction to combat COVID-19. Indian J. Microbiol., 2021, 61, 1-4.
[http://dx.doi.org/10.1007/s12088-020-00913-3] [PMID: 33424043]
[32]
Fiocchi, C. Current perspectives in inflammatory bowel disease: Stress response and autophagy, host-microbe mutualism, immune duality and plasticity, and early versus late disease. Curr. Opin. Gastroenterol., 2010, 26(4), 299-301.
[http://dx.doi.org/10.1097/MOG.0b013e32833c114d] [PMID: 20571383]
[33]
Cámara, R.J.; Schoepfer, A.M.; Pittet, V.; Begré, S.; von Känel, R. Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS) Group. Mood and nonmood components of perceived stress and exacerbation of Crohn’s disease. Inflamm. Bowel Dis., 2011, 17(11), 2358-2365.
[http://dx.doi.org/10.1002/ibd.21623] [PMID: 21287671]
[34]
Ahlawat, S.; Kumar, P.; Mohan, H.; Goyal, S.; Sharma, K.K. Inflammatory bowel disease: Tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit. Rev. Microbiol., 2021, 47(2), 254-273.
[http://dx.doi.org/10.1080/1040841X.2021.1876631] [PMID: 33576711]
[35]
Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; Essers, J.; Mitrovic, M.; Ning, K.; Cleynen, I.; Theatre, E.; Spain, S.L.; Raychaudhuri, S.; Goyette, P.; Wei, Z.; Abraham, C.; Achkar, J.P.; Ahmad, T.; Amininejad, L.; Ananthakrishnan, A.N.; Andersen, V.; Andrews, J.M.; Baidoo, L.; Balschun, T.; Bampton, P.A.; Bitton, A.; Boucher, G.; Brand, S.; Büning, C.; Cohain, A.; Cichon, S.; D’Amato, M.; De Jong, D.; Devaney, K.L.; Dubinsky, M.; Edwards, C.; Ellinghaus, D.; Ferguson, L.R.; Franchimont, D.; Fransen, K.; Gearry, R.; Georges, M.; Gieger, C.; Glas, J.; Haritunians, T.; Hart, A.; Hawkey, C.; Hedl, M.; Hu, X.; Karlsen, T.H.; Kupcinskas, L.; Kugathasan, S.; Latiano, A.; Laukens, D.; Lawrance, I.C.; Lees, C.W.; Louis, E.; Mahy, G.; Mansfield, J.; Morgan, A.R.; Mowat, C.; Newman, W.; Palmieri, O.; Ponsioen, C.Y.; Potocnik, U.; Prescott, N.J.; Regueiro, M.; Rotter, J.I.; Russell, R.K.; Sanderson, J.D.; Sans, M.; Satsangi, J.; Schreiber, S.; Simms, L.A.; Sventoraityte, J.; Targan, S.R.; Taylor, K.D.; Tremelling, M.; Verspaget, H.W.; De Vos, M.; Wijmenga, C.; Wilson, D.C.; Winkelmann, J.; Xavier, R.J.; Zeissig, S.; Zhang, B.; Zhang, C.K.; Zhao, H.; Silverberg, M.S.; Annese, V.; Hakonarson, H.; Brant, S.R.; Radford-Smith, G.; Mathew, C.G.; Rioux, J.D.; Schadt, E.E.; Daly, M.J.; Franke, A.; Parkes, M.; Vermeire, S.; Barrett, J.C.; Cho, J.H. International IBD Genetics Consortium (IIBDGC). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491(7422), 119-124.
[http://dx.doi.org/10.1038/nature11582] [PMID: 23128233]
[36]
Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA, 2009, 106(23), 9362-9367.
[http://dx.doi.org/10.1073/pnas.0903103106] [PMID: 19474294]
[37]
Ramos, G.P.; Papadakis, K.A. Mayo Clinic. Mechanisms of disease: Inflammatory bowel diseases. J. Mayocp., 2019, 94(1), 155-165.
[http://dx.doi.org/10.1016/j.mayocp.2018.09.013] [PMID: 30611442]
[38]
Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; Achkar, J.P.; Brant, S.R.; Bayless, T.M.; Kirschner, B.S.; Hanauer, S.B.; Nuñez, G.; Cho, J.H. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 2001, 411(6837), 603-606.
[http://dx.doi.org/10.1038/35079114] [PMID: 11385577]
[39]
Shaw, M.H.; Kamada, N.; Warner, N.; Kim, Y.G.; Nuñez, G. The ever-expanding function of NOD2: Autophagy, viral recognition, and T cell activation. Trends Immunol., 2011, 32(2), 73-79.
[http://dx.doi.org/10.1016/j.it.2010.12.007] [PMID: 21251876]
[40]
Clevers, H.C.; Bevins, C.L. Paneth cells: Maestros of the small intestinal crypts. Annu. Rev. Physiol., 2013, 75, 289-311.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183744] [PMID: 23398152]
[41]
Chan, Y.K.; Estaki, M.; Gibson, D.L. Clinical consequences of diet-induced dysbiosis. Ann. Nutr. Metab., 2013, 63(Suppl. 2), 28-40.
[http://dx.doi.org/10.1159/000354902] [PMID: 24217034]
[42]
Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med., 2016, 8(1), 42.
[http://dx.doi.org/10.1186/s13073-016-0303-2] [PMID: 27098727]
[43]
Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science, 2012, 336(6086), 1262-1267.
[http://dx.doi.org/10.1126/science.1223813] [PMID: 22674330]
[44]
Albenberg, L.G.; Lewis, J.D.; Wu, G.D. Food and the gut microbiota in inflammatory bowel diseases: A critical connection. Curr. Opin. Gastroenterol., 2012, 28(4), 314-320.
[http://dx.doi.org/10.1097/MOG.0b013e328354586f] [PMID: 22573192]
[45]
Fassarella, M.; Blaak, E.E.; Penders, J.; Nauta, A.; Smidt, H.; Zoetendal, E.G. Gut microbiome stability and resilience: Elucidating the response to perturbations in order to modulate gut health. Gut, 2021, 70(3), 595-605.
[http://dx.doi.org/10.1136/gutjnl-2020-321747] [PMID: 33051190]
[46]
Das, B.; Nair, G.B. Homeostasis and dysbiosis of the gut microbiome in health and disease. J. Biosci., 2019, 44(5), 117.
[http://dx.doi.org/10.1007/s12038-019-9926-y] [PMID: 31719226]
[47]
Joossens, M.; Huys, G.; Cnockaert, M.; De Preter, V.; Verbeke, K.; Rutgeerts, P.; Vandamme, P.; Vermeire, S. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut, 2011, 60(5), 631-637.
[http://dx.doi.org/10.1136/gut.2010.223263] [PMID: 21209126]
[48]
Andoh, A.; Imaeda, H.; Aomatsu, T.; Inatomi, O.; Bamba, S.; Sasaki, M.; Saito, Y.; Tsujikawa, T.; Fujiyama, Y. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J. Gastroenterol., 2011, 46(4), 479-486.
[http://dx.doi.org/10.1007/s00535-010-0368-4] [PMID: 21253779]
[49]
Ott, S.J.; Musfeldt, M.; Wenderoth, D.F.; Hampe, J.; Brant, O.; Fölsch, U.R.; Timmis, K.N.; Schreiber, S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut, 2004, 53(5), 685-693.
[http://dx.doi.org/10.1136/gut.2003.025403] [PMID: 15082587]
[50]
Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(4), 223-237.
[http://dx.doi.org/10.1038/s41575-019-0258-z] [PMID: 32076145]
[51]
Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; Cosnes, J.; Seksik, P.; Langella, P.; Skurnik, D.; Richard, M.L.; Beaugerie, L. Fungal microbiota dysbiosis in IBD. Gut, 2017, 66(6), 1039-1048.
[http://dx.doi.org/10.1136/gutjnl-2015-310746] [PMID: 26843508]
[52]
Groeger, D.; O’Mahony, L.; Murphy, E.F.; Bourke, J.F.; Dinan, T.G.; Kiely, B.; Shanahan, F.; Quigley, E.M.M. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes, 2013, 4(4), 325-339.
[http://dx.doi.org/10.4161/gmic.25487] [PMID: 23842110]
[53]
Velayos, F.S.; Terdiman, J.P.; Walsh, J.M. Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: A systematic review and metaanalysis of observational studies. Am. J. Gastroenterol., 2005, 100(6), 1345-1353.
[http://dx.doi.org/10.1111/j.1572-0241.2005.41442.x] [PMID: 15929768]
[54]
Allgayer, H. Review article: Mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease. Aliment. Pharmacol. Ther., 2003, 18(Suppl. 2), 10-14.
[http://dx.doi.org/10.1046/j.1365-2036.18.s2.1.x] [PMID: 12950415]
[55]
Desreumaux, P.; Romano, O. 5-aminosalicylates and colorectal cancer: Preventive role in chronic inflammatory bowel disease? Gastroenterol. Clin. Biol., 2004, 28(5), 509.
[http://dx.doi.org/10.1016/S0399-8320(04)94978-0] [PMID: 15243337]
[56]
Rousseaux, C.; Lefebvre, B.; Dubuquoy, L.; Lefebvre, P.; Romano, O.; Auwerx, J.; Metzger, D.; Wahli, W.; Desvergne, B.; Naccari, G.C.; Chavatte, P.; Farce, A.; Bulois, P.; Cortot, A.; Colombel, J.F.; Desreumaux, P. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J. Exp. Med., 2005, 201(8), 1205-1215.
[http://dx.doi.org/10.1084/jem.20041948] [PMID: 15824083]
[57]
Neurath, M.F. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(5), 269-278.
[http://dx.doi.org/10.1038/nrgastro.2016.208] [PMID: 28144028]
[58]
Oakley, R.H.; Cidlowski, J.A. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol., 2013, 132(5), 1033-1044.
[http://dx.doi.org/10.1016/j.jaci.2013.09.007] [PMID: 24084075]
[59]
Wessels, J.A.; Huizinga, T.W.; Guchelaar, H.J. Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology (Oxford), 2008, 47(3), 249-255.
[http://dx.doi.org/10.1093/rheumatology/kem279] [PMID: 18045808]
[60]
Steiner, S.; Daniel, C.; Fischer, A.; Atreya, I.; Hirschmann, S.; Waldner, M.; Neumann, H.; Neurath, M.; Atreya, R.; Weigmann, B. Cyclosporine A regulates pro-inflammatory cytokine production in ulcerative colitis. Arch. Immunol. Ther. Exp. (Warsz.), 2015, 63(1), 53-63.
[http://dx.doi.org/10.1007/s00005-014-0309-7] [PMID: 25155925]
[61]
Colombel, J.F.; Sandborn, W.J.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rachmilewitz, D.; Lichtiger, S.; D’Haens, G.; Diamond, R.H.; Broussard, D.L.; Tang, K.L.; van der Woude, C.J.; Rutgeerts, P. SONIC Study Group. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med., 2010, 362(15), 1383-1395.
[http://dx.doi.org/10.1056/NEJMoa0904492] [PMID: 20393175]
[62]
Panaccione, R.; Ghosh, S.; Middleton, S.; Márquez, J.R.; Scott, B.B.; Flint, L.; van Hoogstraten, H.J.; Chen, A.C.; Zheng, H.; Danese, S.; Rutgeerts, P. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology, 2014, 146(2), 392-400.e3.
[http://dx.doi.org/10.1053/j.gastro.2013.10.052] [PMID: 24512909]
[63]
Duan, L.; Cheng, S.; Li, L.; Liu, Y.; Wang, D.; Liu, G. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Front. Pharmacol., 2021, 12, 684486.
[http://dx.doi.org/10.3389/fphar.2021.684486] [PMID: 34335253]
[64]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[65]
Romier, B.; Schneider, Y.J.; Larondelle, Y.; During, A. Dietary polyphenols can modulate the intestinal inflammatory response. Nutr. Rev., 2009, 67(7), 363-378.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00210.x] [PMID: 19566597]
[66]
Pfeilschifter, J.; Mühl, H.; Pignat, W.; Märki, F.; van den Bosch, H. Cytokine regulation of group II phospholipase A2 expression in glomerular mesangial cells. Eur. J. Clin. Pharmacol., 1993, 44(Suppl. 1), S7-S9.
[http://dx.doi.org/10.1007/BF01428384] [PMID: 8387428]
[67]
Dou, W.; Zhang, J.; Sun, A.; Zhang, E.; Ding, L.; Mukherjee, S.; Wei, X.; Chou, G.; Wang, Z.T.; Mani, S. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2013, 110(4), 599-608.
[http://dx.doi.org/10.1017/S0007114512005594] [PMID: 23506745]
[68]
Willenberg, I.; Meschede, A.K.; Gueler, F.; Jang, M.S.; Shushakova, N.; Schebb, N.H. Food polyphenols fail to cause a biologically relevant reduction of COX-2 activity. PLoS One, 2015, 10(10), e0139147.
[http://dx.doi.org/10.1371/journal.pone.0139147] [PMID: 26440517]
[69]
Denaro, M.; Smeriglio, A.; Trombetta, D. Antioxidant and anti-inflammatory activity of citrus flavanones mix and its stability after in vitro simulated digestion. Antioxidants, 2021, 10(2), 140.
[http://dx.doi.org/10.3390/antiox10020140] [PMID: 33498195]
[70]
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother. Res., 2015, 29(3), 323-331.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[71]
Musumeci, L.; Maugeri, A.; Cirmi, S.; Lombardo, G.E.; Russo, C.; Gangemi, S.; Calapai, G.; Navarra, M. Citrus fruits and their flavonoids in inflammatory bowel disease: an overview. Nat. Prod. Res., 2020, 34(1), 122-136.
[http://dx.doi.org/10.1080/14786419.2019.1601196] [PMID: 30990326]
[72]
Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. in vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur. J. Immunol., 2005, 35(2), 584-592.
[http://dx.doi.org/10.1002/eji.200425778] [PMID: 15668926]
[73]
Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer. Agents Med. Chem., 2012, 12(10), 1264-1280.
[http://dx.doi.org/10.2174/187152012803833107] [PMID: 22583407]
[74]
Zhang, R.; Xu, J.; Zhao, J.; Chen, Y. Genistein improves inflammatory response and colonic function through NF-κB signal in DSS-induced colonic injury. Oncotarget, 2017, 8(37), 61385-61392.
[http://dx.doi.org/10.18632/oncotarget.18219] [PMID: 28977871]
[75]
Basson, A.R.; Ahmed, S.; Almutairi, R.; Seo, B.; Cominelli, F. Regulation of intestinal inflammation by soybean and soy-derived compounds. Foods, 2021, 10(4), 774.
[http://dx.doi.org/10.3390/foods10040774] [PMID: 33916612]
[76]
Nishitani, Y.; Yamamoto, K.; Yoshida, M.; Azuma, T.; Kanazawa, K.; Hashimoto, T.; Mizuno, M. Intestinal anti-inflammatory activity of luteolin: Role of the aglycone in NF-κB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors, 2013, 39(5), 522-533.
[http://dx.doi.org/10.1002/biof.1091] [PMID: 23460110]
[77]
Cianciulli, A.; Calvello, R.; Cavallo, P.; Dragone, T.; Carofiglio, V.; Panaro, M.A. Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX-2 expression. Toxicol. in vitro, 2012, 26(7), 1122-1128.
[http://dx.doi.org/10.1016/j.tiv.2012.06.015] [PMID: 22771391]
[78]
Yan, Y.X.; Shao, M.J.; Qi, Q.; Xu, Y.S.; Yang, X.Q.; Zhu, F.H.; He, S.J.; He, P.L.; Feng, C.L.; Wu, Y.W.; Li, H.; Tang, W.; Zuo, J.P. Artemisinin analogue SM934 ameliorates DSS-induced mouse ulcerative colitis via suppressing neutrophils and macrophages. Acta Pharmacol. Sin., 2018, 39(10), 1633-1644.
[http://dx.doi.org/10.1038/aps.2017.185] [PMID: 29849131]
[79]
Dou, W.; Zhang, J.; Ren, G.; Ding, L.; Sun, A.; Deng, C.; Wu, X.; Wei, X.; Mani, S.; Wang, Z. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int. Immunopharmacol., 2014, 23(1), 170-178.
[http://dx.doi.org/10.1016/j.intimp.2014.08.025] [PMID: 25194678]
[80]
Che, L.; Li, Y.; Song, R.; Qin, C.; Hao, W.; Wang, B.; Yang, L.; Peng, P.; Xu, F. Anti-inflammatory and anti-apoptosis activity of taraxasterol in ulcerative colitis in vitro and in vivo. Exp. Ther. Med., 2019, 18(3), 1745-1751.
[http://dx.doi.org/10.3892/etm.2019.7736] [PMID: 31410133]
[81]
Serra, D.; Paixão, J.; Nunes, C.; Dinis, T.C.; Almeida, L.M. Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: comparison with 5-aminosalicylic acid. PLoS One, 2013, 8(9), e73001.
[http://dx.doi.org/10.1371/journal.pone.0073001] [PMID: 24039842]
[82]
Venancio, V.P.; Cipriano, P.A.; Kim, H.; Antunes, L.M.; Talcott, S.T.; Mertens-Talcott, S.U. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food Funct., 2017, 8(1), 307-314.
[http://dx.doi.org/10.1039/C6FO01498D] [PMID: 28009871]
[83]
Denaro, M.; Smeriglio, A.; De Francesco, C.; Xiao, J.; Cornara, L.; Trombetta, D. in vitro intestinal transport and anti-inflammatory properties of ideain across Caco-2 transwell model. Fitoterapia, 2020, 146, 104723.
[http://dx.doi.org/10.1016/j.fitote.2020.104723] [PMID: 32949649]
[84]
Smeriglio, A.; De Francesco, C.; Denaro, M.; Trombetta, D. Prickly pear betalain-rich extracts as new promising strategy for intestinal inflammation: Plant complex vs. main isolated bioactive compounds. Front. Pharmacol., 2021, 12, 722398.
[http://dx.doi.org/10.3389/fphar.2021.722398] [PMID: 34594220]
[85]
Al-Sadi, R.M.; Ma, T.Y. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol., 2007, 178(7), 4641-4649.
[http://dx.doi.org/10.4049/jimmunol.178.7.4641] [PMID: 17372023]
[86]
Al-Sadi, R.; Guo, S.; Dokladny, K.; Smith, M.A.; Ye, D.; Kaza, A.; Watterson, D.M.; Ma, T.Y. Mechanism of interleukin-1β induced-increase in mouse intestinal permeability in vivo. J. Interferon Cytokine Res., 2012, 32(10), 474-484.
[http://dx.doi.org/10.1089/jir.2012.0031] [PMID: 22817402]
[87]
Tesoriere, L.; Attanzio, A.; Allegra, M.; Gentile, C.; Livrea, M.A. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells. Br. J. Nutr., 2014, 111(3), 415-423.
[http://dx.doi.org/10.1017/S0007114513002663] [PMID: 23931157]
[88]
Kim, M.S.; Kim, J.Y. Intestinal anti-inflammatory effects of cinnamon extracts in a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. Appl. Biol. Chem, 2017, 553-561.
[89]
Kordulewska, N.K.; Topa, J.; Tańska, M.; Cieślińska, A.; Fiedorowicz, E.; Savelkoul, H.F.J.; Jarmołowska, B. Modulatory effects of osthole on lipopolysaccharides-induced inflammation in Caco-2 cell monolayer and co-cultures with THP-1 and THP-1-derived macrophages. Nutrients, 2020, 13(1), 123.
[http://dx.doi.org/10.3390/nu13010123] [PMID: 33396265]
[90]
Weber, L.; Kuck, K.; Jürgenliemk, G.; Heilmann, J.; Lipowicz, B.; Vissiennon, C. Anti-inflammatory and barrier-stabilising effects of myrrh, coffee charcoal and chamomile flower extract in a co-culture cell model of the intestinal mucosa. Biomolecules, 2020, 10(7), 1033.
[http://dx.doi.org/10.3390/biom10071033] [PMID: 32664498]
[91]
Liu, F.; Smith, A.D.; Solano-Aguilar, G.; Wang, T.T.Y.; Pham, Q.; Beshah, E.; Tang, Q.; Urban, J.F., Jr; Xue, C.; Li, R.W. Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models. Microbiome, 2020, 8(1), 83.
[http://dx.doi.org/10.1186/s40168-020-00843-8] [PMID: 32498703]
[92]
Vargas-Robles, H.; Castro-Ochoa, K.F.; Citalán-Madrid, A.F.; Schnoor, M. Beneficial effects of nutritional supplements on intestinal epithelial barrier functions in experimental colitis models in vivo. World J. Gastroenterol., 2019, 25(30), 4181-4198.
[http://dx.doi.org/10.3748/wjg.v25.i30.4181] [PMID: 31435172]
[93]
Santino, A.; Scarano, A.; De Santis, S.; De Benedictis, M.; Giovinazzo, G.; Chieppa, M. Gut microbiota modulation and anti-inflammatory properties of dietary polyphenols in IBD: New and consolidated perspectives. Curr. Pharm. Des., 2017, 23(16), 2344-2351.
[http://dx.doi.org/10.2174/1381612823666170207145420] [PMID: 28176667]
[94]
Kaulmann, A.; Bohn, T. Bioactivity of polyphenols: Preventive and adjuvant strategies toward reducing inflammatory bowel diseases-promises, perspectives, and pitfalls. Oxid. Med. Cell. Longev., 2016, 2016, 9346470.
[http://dx.doi.org/10.1155/2016/9346470] [PMID: 27478535]
[95]
Habtemariam, S.; Belai, A. Natural therapies of the inflammatory bowel disease: the case of rutin and its aglycone, quercetin. Mini Rev. Med. Chem., 2018, 18(3), 234-243.
[http://dx.doi.org/10.2174/1389557517666170120152417] [PMID: 28117024]
[96]
Jeon, Y.D.; Kang, S.H.; Bang, K.S.; Chang, Y.N.; Lee, J.H.; Jin, J.S. Glycyrrhetic acid ameliorates dextran sulfate sodium-induced ulcerative colitis in vivo. Molecules, 2016, 21(4), 523.
[http://dx.doi.org/10.3390/molecules21040523] [PMID: 27110761]
[97]
Zhang, M.; Xu, C.; Liu, D.; Han, M.K.; Wang, L.; Merlin, D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J. Crohn’s Colitis, 2018, 12(2), 217-229.
[http://dx.doi.org/10.1093/ecco-jcc/jjx115] [PMID: 28961808]
[98]
Silva, F.A.; Rodrigues, B.L.; Ayrizono, M.L.; Leal, R.F. The immunological basis of inflammatory bowel disease. Gastroenterol. Res. Pract., 2016, 2016, 2097274.
[http://dx.doi.org/10.1155/2016/2097274] [PMID: 28070181]
[99]
Ferreira, I.; Smyth, D.; Gaze, S.; Aziz, A.; Giacomin, P.; Ruyssers, N.; Artis, D.; Laha, T.; Navarro, S.; Loukas, A.; McSorley, H.J. Hookworm excretory/secretory products induce interleukin-4 (IL-4)+ IL-10+ CD4+ T cell responses and suppress pathology in a mouse model of colitis. Infect. Immun., 2013, 81(6), 2104-2111.
[http://dx.doi.org/10.1128/IAI.00563-12] [PMID: 23545299]
[100]
Liu, X.; Fan, Y.; Du, L.; Mei, Z.; Fu, Y. In silico and in vivo studies on the mechanisms of Chinese medicine formula (gegen qinlian decoction) in the treatment of ulcerative colitis. Front. Pharmacol., 2021, 12, 665102.
[http://dx.doi.org/10.3389/fphar.2021.665102] [PMID: 34177580]
[101]
Moradi, S.; Zobeiri, M.; Feizi, A.; Clark, C.C.T.; Entezari, M.H. The effects of spirulina (Arthrospira platensis) supplementation on anthropometric indices, blood pressure, sleep quality, mental health, fatigue status and quality of life in patients with ulcerative colitis: A randomised, double-blinded, placebo-controlled trial. Int. J. Clin. Pract., 2021, 75(10), e14472.
[http://dx.doi.org/10.1111/ijcp.14472] [PMID: 34107141]
[102]
Morshedzadeh, N.; Rahimlou, M.; Shahrokh, S.; Karimi, S.; Mirmiran, P.; Zali, M.R. The effects of flaxseed supplementation on metabolic syndrome parameters, insulin resistance and inflammation in ulcerative colitis patients: An open-labeled randomized controlled trial. Phytother. Res., 2021, 35(7), 3781-3791.
[http://dx.doi.org/10.1002/ptr.7081] [PMID: 33856729]
[103]
Morshedzadeh, N.; Shahrokh, S.; Aghdaei, H.A.; Amin Pourhoseingholi, M.; Chaleshi, V.; Hekmatdoost, A.; Karimi, S.; Zali, M.R.; Mirmiran, P. Effects of flaxseed and flaxseed oil supplement on serum levels of inflammatory markers, metabolic parameters and severity of disease in patients with ulcerative colitis. Complement. Ther. Med., 2019, 46, 36-43.
[http://dx.doi.org/10.1016/j.ctim.2019.07.012] [PMID: 31519285]
[104]
El Amrousy, D.; El Ashry, H.; Hodeib, H.; Hassan, S. Vitamin D in children with inflammatory bowel disease: A randomized controlled clinical trial. J. Clin. Gastroenterol., 2021, 55(9), 815-820.
[PMID: 33060436]
[105]
Tahvilian, N.; Masoodi, M.; Faghihi Kashani, A.; Vafa, M.; Aryaeian, N.; Heydarian, A.; Hosseini, A.; Moradi, N.; Farsi, F. Effects of saffron supplementation on oxidative/antioxidant status and severity of disease in ulcerative colitis patients: A randomized, double-blind, placebo-controlled study. Phytother. Res., 2021, 35(2), 946-953.
[http://dx.doi.org/10.1002/ptr.6848] [PMID: 33015869]
[106]
Kojecky, V.; Matous, J.; Kianicka, B.; Dite, P.; Zadorova, Z.; Kubovy, J.; Hlostova, M.; Uher, M. Vitamin D levels in IBD: A randomised trial of weight-based versus fixed dose vitamin D supplementation. Scand. J. Gastroenterol., 2020, 55(6), 671-676.
[http://dx.doi.org/10.1080/00365521.2020.1774921] [PMID: 32538182]
[107]
Andresen, V.; Gschossmann, J.; Layer, P. Heat-inactivated bifidobacterium bifidum MIMBb75 (SYN-HI-001) in the treatment of irritable bowel syndrome: A multicentre, randomised, double-blind, placebo-controlled clinical trial. Lancet Gastroenterol. Hepatol., 2020, 5(7), 658-666.
[http://dx.doi.org/10.1016/S2468-1253(20)30056-X] [PMID: 32277872]
[108]
Karimi, S.; Tabataba-Vakili, S.; Ebrahimi-Daryani, N.; Yari, Z.; Karimi, A.; Hedayati, M.; Hekmatdoost, A. Inflammatory biomarkers response to two dosages of vitamin D supplementation in patients with ulcerative colitis: A randomized, double-blind, placebo-controlled pilot study. Clin. Nutr. ESPEN, 2020, 36, 76-81.
[http://dx.doi.org/10.1016/j.clnesp.2020.02.003] [PMID: 32220372]
[109]
Emami, M.R.; Sharifi, A.; Yaseri, M.; Derakhshanian, H.; Hosseinzadeh-Attar, M.J. Vitamin D suppresses proangiogenic factors in patients with ulcerative colitis: A randomized double blind placebo controlled clinical trial. Complement. Ther. Clin. Pract., 2020, 39, 101086.
[http://dx.doi.org/10.1016/j.ctcp.2020.101086] [PMID: 31957666]
[110]
von Martels, J.Z.H.; Bourgonje, A.R.; Klaassen, M.A.Y.; Alkhalifah, H.A.A.; Sadaghian Sadabad, M.; Vich Vila, A.; Gacesa, R.; Gabriëls, R.Y.; Steinert, R.E.; Jansen, B.H.; Bulthuis, M.L.C.; van Dullemen, H.M.; Visschedijk, M.C.; Festen, E.A.M.; Weersma, R.K.; de Vos, P.; van Goor, H.; Faber, K.N.; Harmsen, H.J.M.; Dijkstra, G. Riboflavin supplementation in patients with crohn’s disease [the RISE-UP study]. J. Crohn’s Colitis, 2020, 14(5), 595-607.
[http://dx.doi.org/10.1093/ecco-jcc/jjz208] [PMID: 31873717]
[111]
Lee, R.; Maltz, R.M.; Crandall, W.V.; Plogsted, S.W.; Shaikhkhalil, A.K.; Bowden, S.A.; Mezoff, E.A. Single high-dose vitamin D3 supplementation in pediatric patients with inflammatory bowel disease and hypovitaminosis D. J. Pediatr. Gastroenterol. Nutr., 2020, 70(4), e77-e80.
[http://dx.doi.org/10.1097/MPG.0000000000002590] [PMID: 31860537]
[112]
Jalili, M.; Vahedi, H.; Poustchi, H.; Hekmatdoost, A. Soy isoflavones and cholecalciferol reduce inflammation, and gut permeability, without any effect on antioxidant capacity in irritable bowel syndrome: A randomized clinical trial. Clin. Nutr. ESPEN, 2019, 34, 50-54.
[http://dx.doi.org/10.1016/j.clnesp.2019.09.003] [PMID: 31677711]
[113]
Morshedzadeh, N.; Shahrokh, S.; Chaleshi, V.; Karimi, S.; Mirmiran, P.; Zali, M.R. The effects of flaxseed supplementation on gene expression and inflammation in ulcerative colitis patients: An open-labelled randomised controlled trial. Int. J. Clin. Pract., 2021, 75(5), e14035.
[http://dx.doi.org/10.1111/ijcp.14035] [PMID: 33482045]
[114]
Kojecký, V.; Matouš, J.; Zádorová, Z.; Gřiva, M.; Kianička, B.; Uher, M. Vitamin D supplementation dose needs to be higher in patients with inflammatory bowel disease: Interventional study. Vnitr. Lek., 2019, 65(7-8), 470-474.
[http://dx.doi.org/10.36290/vnl.2019.083] [PMID: 31487989]
[115]
Fan, H.; Du, J.; Liu, X.; Zheng, W.W.; Zhuang, Z.H.; Wang, C.D.; Gao, R. Effects of pentasa-combined probiotics on the microflora structure and prognosis of patients with inflammatory bowel disease. Turk. J. Gastroenterol., 2019, 30(8), 680-685.
[http://dx.doi.org/10.5152/tjg.2019.18426] [PMID: 31418411]
[116]
Ahamed Z, R.; Dutta, U.; Sharma, V.; Prasad, K.K.; Popli, P.; Kalsi, D.; Vaishnavi, C.; Arora, S.; Kochhar, R. Oral nano vitamin D supplementation reduces disease activity in ulcerative colitis: A double-blind randomized parallel group placebo-controlled trial. J. Clin. Gastroenterol., 2019, 53(10), e409-e415.
[http://dx.doi.org/10.1097/MCG.0000000000001233] [PMID: 31356558]
[117]
Sánchez-Morales, A.; Pérez-Ayala, M.F.; Cruz-Martínez, M.; Arenas-Osuna, J.; Ramírez-Mendoza, P.; Ceniceros, R.A.; Mora-Cañas, E.M.; Cruz-Domínguez, P.; Saavedra-Salinas, M.Á. Efectividad de probióticos sobre síntomas, histología y tolerancia alimentaria en colitis ulcerativa. Rev. Med. Inst. Mex. Seguro Soc., 2019, 57(1), 9-14.
[PMID: 31071249]
[118]
Bjarnason, I.; Sission, G.; Hayee, B. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammopharmacology, 2019, 27(3), 465-473.
[http://dx.doi.org/10.1007/s10787-019-00595-4] [PMID: 31054010]
[119]
Nikkhah-Bodaghi, M.; Maleki, I.; Agah, S.; Hekmatdoost, A. Zingiber officinale and oxidative stress in patients with ulcerative colitis: A randomized, placebo-controlled, clinical trial. Complement. Ther. Med., 2019, 43, 1-6.
[http://dx.doi.org/10.1016/j.ctim.2018.12.021] [PMID: 30935515]
[120]
Karimi, S.; Tabataba-Vakili, S.; Yari, Z.; Alborzi, F.; Hedayati, M.; Ebrahimi-Daryani, N.; Hekmatdoost, A. The effects of two vitamin D regimens on ulcerative colitis activity index, quality of life and oxidant/anti-oxidant status. Nutr. J., 2019, 18(1), 16.
[http://dx.doi.org/10.1186/s12937-019-0441-7] [PMID: 30871542]
[121]
Kamarlı Altun, H.; Akal Yıldız, E.; Akın, M. Effects of synbiotic therapy in mild-to-moderately active ulcerative colitis: A randomized placebo-controlled study. Turk. J. Gastroenterol., 2019, 30(4), 313-320.
[http://dx.doi.org/10.5152/tjg.2019.18356] [PMID: 30666969]
[122]
Yılmaz, İ.; Dolar, M.E.; Özpınar, H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk. J. Gastroenterol., 2019, 30(3), 242-253.
[http://dx.doi.org/10.5152/tjg.2018.18227] [PMID: 30662004]
[123]
Huang, M.; Chen, Z.; Lang, C.; Chen, J.; Yang, B.; Xue, L.; Zhang, Y. Efficacy of mesalazine in combination with bifid triple viable capsules on ulcerative colitis and the resultant effect on the inflammatory factors. Pak. J. Pharm. Sci., 2018, 31(6(Special)), 2891-2895.
[PMID: 30630805]
[124]
Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Topi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: A randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 373-381.
[http://dx.doi.org/10.2174/1871530319666181221150352] [PMID: 30574857]
[125]
Masnadi Shirazi, K.; Nikniaz, Z.; Masnadi Shirazi, A.; Rohani, M. Vitamin A supplementation decreases disease activity index in patients with ulcerative colitis: A randomized controlled clinical trial. Complement. Ther. Med., 2018, 41, 215-219.
[http://dx.doi.org/10.1016/j.ctim.2018.09.026] [PMID: 30477842]
[126]
Papada, E.; Forbes, A.; Amerikanou, C.; Torović, L.; Kalogeropoulos, N.; Tzavara, C.; Triantafillidis, J.K.; Kaliora, A.C. Antioxidative efficacy of a Pistacia lentiscus supplement and its effect on the plasma amino acid profile in inflammatory bowel disease: A randomised, double-blind, placebo-controlled trial. Nutrients, 2018, 10(11), 1779.
[http://dx.doi.org/10.3390/nu10111779] [PMID: 30453494]
[127]
Papada, E.; Gioxari, A.; Amerikanou, C.; Forbes, A.; Tzavara, C.; Smyrnioudis, I.; Kaliora, A.C. Regulation of faecal biomarkers in inflammatory bowel disease patients treated with oral mastiha (Pistacia lentiscus) supplement: A double-blind and placebo-controlled randomised trial. Phytother. Res., 2019, 33(2), 360-369.
[http://dx.doi.org/10.1002/ptr.6229] [PMID: 30450689]
[128]
Sharifi, A.; Vahedi, H.; Nedjat, S.; Mohamadkhani, A.; Hosseinzadeh Attar, M.J.; Vitamin, D. Vitamin D decreases beck depression inventory score in patients with mild to moderate ulcerative colitis: A double-blind randomized placebo-controlled trial. J. Diet. Suppl., 2019, 16(5), 541-549.
[http://dx.doi.org/10.1080/19390211.2018.1472168] [PMID: 29958055]
[129]
Tan, B.; Li, P.; Lv, H.; Yang, H.; Li, Y.; Li, J.; Wang, O.; Qian, J.M. Treatment of vitamin D deficiency in Chinese inflammatory bowel disease patients: A prospective, randomized, open-label, pilot study. J. Dig. Dis., 2018, 19(4), 215-224.
[http://dx.doi.org/10.1111/1751-2980.12590] [PMID: 29542862]
[130]
Scholten, A.M.; Vermeulen, E.; Dhonukshe-Rutten, R.A.M.; Verhagen, T.; Visscher, A.; Olivier, A.; Timmer, L.; Witteman, B.J.M. Surplus vitamin B12 use does not reduce fatigue in patients with Irritable Bowel Syndrome or inflammatory bowel disease: A randomized double-blind placebo-controlled trial. Clin. Nutr. ESPEN, 2018, 23, 48-53.
[http://dx.doi.org/10.1016/j.clnesp.2017.10.004] [PMID: 29460813]
[131]
Hod, K.; Sperber, A.D.; Ron, Y.; Boaz, M.; Dickman, R.; Berliner, S.; Halpern, Z.; Maharshak, N.; Dekel, R. A double-blind, placebo-controlled study to assess the effect of a probiotic mixture on symptoms and inflammatory markers in women with diarrhea-predominant IBS. Neurogastroenterol. Motil., 2017, 29(7)
[http://dx.doi.org/10.1111/nmo.13037] [PMID: 28271623]
[132]
Palumbo, V.D.; Romeo, M.; Marino Gammazza, A.; Carini, F.; Damiani, P.; Damiano, G.; Buscemi, S.; Lo Monte, A.I.; Gerges-Geagea, A.; Jurjus, A.; Tomasello, G. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2016, 160(3), 372-377.
[http://dx.doi.org/10.5507/bp.2016.044] [PMID: 27623957]
[133]
Sharifi, A.; Hosseinzadeh-Attar, M.J.; Vahedi, H.; Nedjat, S. A randomized controlled trial on the effect of vitamin D3 on inflammation and cathelicidin gene expression in ulcerative colitis patients. Saudi J. Gastroenterol., 2016, 22(4), 316-323.
[http://dx.doi.org/10.4103/1319-3767.187606] [PMID: 27488327]
[134]
Hvas, C.L.; Dige, A.; Bendix, M.; Wernlund, P.G.; Christensen, L.A.; Dahlerup, J.F.; Agnholt, J. Casein glycomacropeptide for active distal ulcerative colitis: A randomized pilot study. Eur. J. Clin. Invest., 2016, 46(6), 555-563.
[http://dx.doi.org/10.1111/eci.12634] [PMID: 27090817]
[135]
Yasueda, A.; Mizushima, T.; Nezu, R.; Sumi, R.; Tanaka, M.; Nishimura, J.; Kai, Y.; Hirota, M.; Osawa, H.; Nakajima, K.; Mori, M.; Ito, T. The effect of Clostridium butyricum MIYAIRI on the prevention of pouchitis and alteration of the microbiota profile in patients with ulcerative colitis. Surg. Today, 2016, 46(8), 939-949.
[http://dx.doi.org/10.1007/s00595-015-1261-9] [PMID: 26510664]
[136]
Tamaki, H.; Nakase, H.; Inoue, S.; Kawanami, C.; Itani, T.; Ohana, M.; Kusaka, T.; Uose, S.; Hisatsune, H.; Tojo, M.; Noda, T.; Arasawa, S.; Izuta, M.; Kubo, A.; Ogawa, C.; Matsunaka, T.; Shibatouge, M. Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: A randomized, double-blinded, placebo-controlled multicenter trial. Dig. Endosc., 2016, 28(1), 67-74.
[http://dx.doi.org/10.1111/den.12553] [PMID: 26418574]
[137]
Yoshimatsu, Y.; Yamada, A.; Furukawa, R.; Sono, K.; Osamura, A.; Nakamura, K.; Aoki, H.; Tsuda, Y.; Hosoe, N.; Takada, N.; Suzuki, Y. Effectiveness of probiotic therapy for the prevention of relapse in patients with inactive ulcerative colitis. World J. Gastroenterol., 2015, 21(19), 5985-5994.
[http://dx.doi.org/10.3748/wjg.v21.i19.5985] [PMID: 26019464]
[138]
Shadnoush, M.; Hosseini, R.S.; Khalilnezhad, A.; Navai, L.; Goudarzi, H.; Vaezjalali, M. Effects of probiotics on gut microbiota in patients with inflammatory bowel disease: A double-blind, placebo-controlled clinical trial. Korean J. Gastroenterol., 2015, 65(4), 215-221.
[http://dx.doi.org/10.4166/kjg.2015.65.4.215] [PMID: 25896155]
[139]
Fedorak, R.N.; Feagan, B.G.; Hotte, N.; Leddin, D.; Dieleman, L.A.; Petrunia, D.M.; Enns, R.; Bitton, A.; Chiba, N.; Paré, P.; Rostom, A.; Marshall, J.; Depew, W.; Bernstein, C.N.; Panaccione, R.; Aumais, G.; Steinhart, A.H.; Cockeram, A.; Bailey, R.J.; Gionchetti, P.; Wong, C.; Madsen, K. The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin. Gastroenterol. Hepatol., 2015, 13(5), 928-35.e2.
[http://dx.doi.org/10.1016/j.cgh.2014.10.031] [PMID: 25460016]
[140]
Petersen, A.M.; Mirsepasi, H.; Halkjær, S.I.; Mortensen, E.M.; Nordgaard-Lassen, I.; Krogfelt, K.A. Ciprofloxacin and probiotic Escherichia coli Nissle add-on treatment in active ulcerative colitis: A double-blind randomized placebo controlled clinical trial. J. Crohn’s Colitis, 2014, 8(11), 1498-1505.
[http://dx.doi.org/10.1016/j.crohns.2014.06.001] [PMID: 24972748]
[141]
Pappa, H.M.; Mitchell, P.D.; Jiang, H.; Kassiff, S.; Filip-Dhima, R.; DiFabio, D.; Quinn, N.; Lawton, R.C.; Bronzwaer, M.E.; Koenen, M.; Gordon, C.M. Maintenance of optimal vitamin D status in children and adolescents with inflammatory bowel disease: A randomized clinical trial comparing two regimens. J. Clin. Endocrinol. Metab., 2014, 99(9), 3408-3417.
[http://dx.doi.org/10.1210/jc.2013-4218] [PMID: 24926949]
[142]
Wingate, K.E.; Jacobson, K.; Issenman, R.; Carroll, M.; Barker, C.; Israel, D.; Brill, H.; Weiler, H.; Barr, S.I.; Li, W.; Lyon, M.R.; Green, T.J. 25-Hydroxyvitamin D concentrations in children with Crohn’s disease supplemented with either 2000 or 400 IU daily for 6 months: A randomized controlled study. J. Pediatr., 2014, 164(4), 860-865.
[http://dx.doi.org/10.1016/j.jpeds.2013.11.071] [PMID: 24423431]
[143]
Krag, A.; Munkholm, P.; Israelsen, H.; von Ryberg, B.; Andersen, K.K.; Bendtsen, F. Profermin is efficacious in patients with active ulcerative colitis--a randomized controlled trial. Inflamm. Bowel Dis., 2013, 19(12), 2584-2592.
[http://dx.doi.org/10.1097/01.MIB.0000437046.26036.db] [PMID: 24108114]
[144]
Ahmed, J.; Reddy, B.S.; Mølbak, L.; Leser, T.D.; MacFie, J. Impact of probiotics on colonic microflora in patients with colitis: A prospective double blind randomised crossover study. Int. J. Surg., 2013, 11(10), 1131-1136.
[http://dx.doi.org/10.1016/j.ijsu.2013.08.019] [PMID: 24060951]
[145]
Persborn, M.; Gerritsen, J.; Wallon, C.; Carlsson, A.; Akkermans, L.M.; Söderholm, J.D. The effects of probiotics on barrier function and mucosal pouch microbiota during maintenance treatment for severe pouchitis in patients with ulcerative colitis. Aliment. Pharmacol. Ther., 2013, 38(7), 772-783.
[http://dx.doi.org/10.1111/apt.12451] [PMID: 23957603]
[146]
Li, K.; Zhang, C.F.; Xia, Y.H.; Li, Z.J.; Han, Y. Efficacy of probiotics on ulcerative colitis and its mechanism. Zhonghua Wei Chang Wai Ke Za Zhi, 2013, 16(4), 336-339.
[PMID: 23608794]
[147]
Bourreille, A.; Cadiot, G.; Le Dreau, G.; Laharie, D.; Beaugerie, L.; Dupas, J.L.; Marteau, P.; Rampal, P.; Moyse, D.; Saleh, A.; Le Guern, M.E.; Galmiche, J.P. FLORABEST Study Group. Saccharomyces boulardii does not prevent relapse of Crohn’s disease. Clin. Gastroenterol. Hepatol., 2013, 11(8), 982-987.
[http://dx.doi.org/10.1016/j.cgh.2013.02.021] [PMID: 23466709]
[148]
Evstatiev, R.; Alexeeva, O.; Bokemeyer, B.; Chopey, I.; Felder, M.; Gudehus, M.; Iqbal, T.; Khalif, I.; Marteau, P.; Stein, J.; Gasche, C. FERGI Study Group. Ferric carboxymaltose prevents recurrence of anemia in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol., 2013, 11(3), 269-277.
[http://dx.doi.org/10.1016/j.cgh.2012.10.013] [PMID: 23078888]
[149]
Soo, I.; Siffledeen, J.; Siminoski, K.; McQueen, B.; Fedorak, R.N. Risedronate improves bone mineral density in Crohn’s disease: A two year randomized controlled clinical trial. J. Crohn’s Colitis, 2012, 6(7), 777-786.
[http://dx.doi.org/10.1016/j.crohns.2012.01.004] [PMID: 22398088]
[150]
Oliva, S.; Di Nardo, G.; Ferrari, F.; Mallardo, S.; Rossi, P.; Patrizi, G.; Cucchiara, S.; Stronati, L. Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharmacol. Ther., 2012, 35(3), 327-334.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04939.x] [PMID: 22150569]
[151]
van Linschoten, R.C.A.; Visser, E.; Niehot, C.D.; van der Woude, C.J.; Hazelzet, J.A.; van Noord, D.; West, R.L. Systematic review: Societal cost of illness of inflammatory bowel disease is increasing due to biologics and varies between continents. Aliment. Pharmacol. Ther., 2021, 54(3), 234-248.
[http://dx.doi.org/10.1111/apt.16445] [PMID: 34114667]
[152]
Feagan, B.G.; Reilly, M.C.; Gerlier, L.; Brabant, Y.; Brown, M.; Schreiber, S. Clinical trial: The effects of certolizumab pegol therapy on work productivity in patients with moderate-to-severe Crohn’s disease in the PRECiSE 2 study. Aliment. Pharmacol. Ther., 2010, 31(12), 1276-1285.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04303.x] [PMID: 20298497]
[153]
Lichtiger, S.; Binion, D.G.; Wolf, D.C.; Present, D.H.; Bensimon, A.G.; Wu, E.; Yu, A.P.; Cardoso, A.T.; Chao, J.; Mulani, P.M.; Lomax, K.G.; Kent, J.D. The CHOICE trial: Adalimumab demonstrates safety, fistula healing, improved quality of life and increased work productivity in patients with Crohn’s disease who failed prior infliximab therapy. Aliment. Pharmacol. Ther., 2010, 32(10), 1228-1239.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04466.x] [PMID: 20955442]
[154]
Feagan, B.G.; Sandborn, W.J.; Lazar, A.; Thakkar, R.B.; Huang, B.; Reilly, N.; Chen, N.; Yang, M.; Skup, M.; Mulani, P.; Chao, J. Adalimumab therapy is associated with reduced risk of hospitalization in patients with ulcerative colitis. Gastroenterology, 2014, 146(1), 110-118.e3.
[http://dx.doi.org/10.1053/j.gastro.2013.09.032] [PMID: 24067881]
[155]
Costa, J.; Magro, F.; Caldeira, D.; Alarcão, J.; Sousa, R.; Vaz-Carneiro, A. Infliximab reduces hospitalizations and surgery interventions in patients with inflammatory bowel disease: A systematic review and meta-analysis. Inflamm. Bowel Dis., 2013, 19(10), 2098-2110.
[http://dx.doi.org/10.1097/MIB.0b013e31829936c2] [PMID: 23860567]
[156]
van der Valk, M.E. Costs of inflammatory bowel disease in the Netherlands: The COIN study. Utrecht University, 2015.
[157]
Kim, J-W.; Lee, C.K.; Lee, J.K.; Jeong, S.J.; Oh, S.J.; Moon, J.R.; Kim, H.S.; Kim, H.J. Long-term evolution of direct healthcare costs for inflammatory bowel diseases: A population-based study (2006-2015). Scand. J. Gastroenterol., 2019, 54(4), 419-426.
[http://dx.doi.org/10.1080/00365521.2019.1591498] [PMID: 30905222]
[158]
Pillai, N.; Dusheiko, M.; Maillard, M.H.; Rogler, G.; Brüngger, B.; Bähler, C.; Pittet, V.E.H. Swiss IBD Cohort Study Group. The evolution of health care utilisation and costs for inflammatory bowel disease over ten years. J. Crohn’s Colitis, 2019, 13(6), 744-754.
[http://dx.doi.org/10.1093/ecco-jcc/jjz003] [PMID: 30916775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy