Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Abiraterone Acetate, in Combination with Apigenin, Attenuates the Survival of Human Castration-Sensitive Prostate Cancer Cells

Author(s): Fatih Genc, Ugur Simal Atabey, Riza Serttas and Suat Erdogan*

Volume 22, Issue 18, 2022

Published on: 02 August, 2022

Page: [3148 - 3156] Pages: 9

DOI: 10.2174/1871520622666220426095257

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Abiraterone acetate (AA) is a selective inhibitor of CYP17 α-hydroxylase, which is crucial for androgen biosynthesis. Apigenin (Api) is a natural plant-derived flavonoid with potent antiproliferative and antimigration effects.

Objectives: We aimed to investigate the possible role of Api in combination with the androgen receptor inhibitor AA in the treatment of androgen-sensitive human prostate cancer LNCaP cells.

Methods: The cells were either exposed to 10 μM AA, 25 μM Api, or in combination for 48 hours, then the viability rate was determined by the MTT test, whilst apoptosis and cell cycle phases were assessed by image-based cytometry. The expression of selected mRNA and proteins were evaluated by RT-qPCR and Western blot, respectively.

Results: The combination of AA and Api significantly inhibited LNCaP as well as androgen-insensitive PC3 cell survival in a manner more marked than observed with either single treatment. Co-administration of Api with AA triggered apoptosis. This effect was demonstrated by Hoechst staining, and up-regulation of Bax, cytochrome c, caspase -3, and - 8 and down-regulation of Bcl-2 expression confirmed the effect. AA and Api each individually arrested the cell cycle in the G1 phase, with dual applications, leading to no further increase in the effect produced. The expression of NF-κB p105/p50 and the phosphorylation of AKT markedly decreased after apigenin treatment, with combination treatment leading to a favourable effect in terms of further augmenting the reduction.

Conclusion: The co-administration of Api with AA strongly enhanced the efficacy of AA therapy in the treatment of prostate cancer cells. These data suggested that the combination of AA and Api would be a potential chemotherapeutic strategy against prostate cancer.

Keywords: Abiraterone acetate, apigenin, apoptosis, castration sensitive prostate cancer, LNCaP, Western blot.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Tummala, R.; Lou, W.; Gao, A.C.; Nadiminty, N. Quercetin targets hnRNPA1 to overcome Enzalutamide resistance in prostate cancer cells. Mol. Cancer Ther., 2017, 16(12), 2770-2779.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0030] [PMID: 28729398]
[3]
Gecgel, K.K.; Muduroglu, M.; Erdogan, S. Inhibition of telomerase potentiates enzalutamide efficiency of androgen-sensitive human pros-tate cancer cells. J. BUON, 2017, 22(6), 1570-1576.
[PMID: 29332354]
[4]
Thakur, A.; Roy, A.; Ghosh, A.; Chhabra, M.; Banerjee, S. Abiraterone acetate in the treatment of prostate cancer. Biomed. Pharmacother., 2018, 101, 211-218.
[http://dx.doi.org/10.1016/j.biopha.2018.02.067] [PMID: 29494958]
[5]
Sharifi, N.; Dahut, W.L.; Steinberg, S.M.; Figg, W.D.; Tarassoff, C.; Arlen, P.; Gulley, J.L. A retrospective study of the time to clinical endpoints for advanced prostate cancer. BJU Int., 2005, 96(7), 985-989.
[http://dx.doi.org/10.1111/j.1464-410X.2005.05798.x] [PMID: 16225513]
[6]
Hartmann, R.W.; Ehmer, P.B.; Haidar, S.; Hector, M.; Jose, J.; Klein, C.D.; Seidel, S.B.; Sergejew, T.F.; Wachall, B.G.; Wächter, G.A.; Zhuang, Y. Inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Arch. Pharm. (Weinheim), 2002, 335(4), 119-128.
[http://dx.doi.org/10.1002/1521-4184(200204)335:4<119:AID-ARDP119>3.0.CO;2-#] [PMID: 12112031]
[7]
Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; Armstrong, A.J.; Flaig, T.W.; Fléchon, A.; Mainwaring, P.; Fleming, M.; Hainsworth, J.D.; Hirmand, M.; Selby, B.; Seely, L.; de Bono, J.S. Increased sur-vival with Enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med., 2012, 367(13), 1187-1197.
[http://dx.doi.org/10.1056/NEJMoa1207506] [PMID: 22894553]
[8]
Pereira-Salgado, A.; Kwan, E.M.; Tran, B.; Gibbs, P.; De Bono, J.; IJzerman, M. Systematic review of efficacy and health economic impli-cations of real-world treatment sequencing in prostate cancer: Where do the newer agents Enzalutamide and Abiraterone Fit in? Eur. Urol. Focus, 2021, 7(4), 752-763.
[PMID: 32273196]
[9]
Miller, K.; Carles, J.; Gschwend, J.E.; Van Poppel, H.; Diels, J.; Brookman-May, S.D. The Phase 3 COU-AA-302 study of Abiraterone Acetate plus Prednisone in men with chemotherapy-naïve metastatic castration-resistant prostate cancer: Stratified analysis based on pain, prostate-specific antigen, and Gleason score. Eur. Urol., 2018, 74(1), 17-23.
[http://dx.doi.org/10.1016/j.eururo.2017.08.035] [PMID: 28939004]
[10]
Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; Widmark, A.; Johannessen, D.C.; Hoskin, P.; Bottomley, D.; James, N.D.; Solberg, A.; Syndikus, I.; Kliment, J.; Wedel, S.; Boehmer, S.; Dall’Oglio, M.; Franzén, L.; Coleman, R.; Vogelzang, N.J.; O’Bryan-Tear, C.G.; Staudacher, K.; Garcia-Vargas, J.; Shan, M.; Bruland, O.S.; Sartor, O.; Investigators, A. ALSYMPCA Investigators. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med., 2013, 369(3), 213-223.
[http://dx.doi.org/10.1056/NEJMoa1213755] [PMID: 23863050]
[11]
de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; Roess-ner, M.; Gupta, S.; Sartor, A.O.; Investigators, T. TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castra-tion-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 2010, 376(9747), 1147-1154.
[http://dx.doi.org/10.1016/S0140-6736(10)61389-X] [PMID: 20888992]
[12]
Weiner, A.B.; Nettey, O.S.; Morgans, A.K. Management of metastatic Hormone-Sensitive Prostate Cancer (mHSPC): An evolving treatment paradigm. Curr. Treat. Options Oncol., 2019, 20(9), 69.
[http://dx.doi.org/10.1007/s11864-019-0668-8] [PMID: 31286275]
[13]
Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; Pelucchi, C.; Galeo-ne, C.; Bellocco, R.; Negri, E.; Corrao, G.; Boffetta, P.; La Vecchia, C. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br. J. Cancer, 2015, 112(3), 580-593.
[http://dx.doi.org/10.1038/bjc.2014.579] [PMID: 25422909]
[14]
Kolb, R.; Zhang, W. Obesity and breast cancer: A case of inflamed adipose tissue. Cancers (Basel), 2020, 12(6), E1686.
[http://dx.doi.org/10.3390/cancers12061686] [PMID: 32630445]
[15]
Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary factors and prostate can-cer development, progression, and reduction. Nutrients, 2021, 13(2), 496.
[http://dx.doi.org/10.3390/nu13020496] [PMID: 33546190]
[16]
Ambrosini, G.L.; Fritschi, L.; de Klerk, N.H.; Mackerras, D.; Leavy, J. Dietary patterns identified using factor analysis and prostate cancer risk: A case control study in Western Australia. Ann. Epidemiol., 2008, 18(5), 364-370.
[http://dx.doi.org/10.1016/j.annepidem.2007.11.010] [PMID: 18261927]
[17]
Ambrosini, G.L.; de Klerk, N.H.; Fritschi, L.; Mackerras, D.; Musk, B. Fruit, vegetable, vitamin A intakes, and prostate cancer risk. Prostate Cancer Prostatic Dis., 2008, 11(1), 61-66.
[http://dx.doi.org/10.1038/sj.pcan.4500979] [PMID: 17519926]
[18]
McCann, S.E.; Ambrosone, C.B.; Moysich, K.B.; Brasure, J.; Marshall, J.R.; Freudenheim, J.L.; Wilkinson, G.S.; Graham, S. Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York. Nutr. Cancer, 2005, 53(1), 33-41.
[http://dx.doi.org/10.1207/s15327914nc5301_4] [PMID: 16351504]
[19]
Yao, Y.; Rao, C.; Zheng, G.; Wang, S. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR 384/pleiotrophin axis. Oncol. Rep., 2019, 42(1), 131-141.
[http://dx.doi.org/10.3892/or.2021.8082] [PMID: 31059061]
[20]
Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Serttas, R.; Turkekul, K.; Dibirdik, I.; Bilir, A. The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sci., 2016, 162, 77-86.
[http://dx.doi.org/10.1016/j.lfs.2016.08.019] [PMID: 27569589]
[21]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, Z.B.; Doganlar, O.; Bilir, A. Midkine silencing enhances the anti-prostate cancer stem cell activity of the flavone apigenin: cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest. New Drugs, 2020, 38(2), 246-263.
[http://dx.doi.org/10.1007/s10637-019-00774-8] [PMID: 30993586]
[22]
Wang, Q.; Chen, Y.; Lu, H.; Wang, H.; Feng, H.; Xu, J.; Zhang, B. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR-16-5p/WEE1 axis. IUBMB Life, 2020, 72(5), 1012-1022.
[http://dx.doi.org/10.1002/iub.2242] [PMID: 32027086]
[23]
Serttas, R.; Koroglu, C.; Erdogan, S. Eupatilin inhibits the proliferation and migration of prostate cancer cells through modulation of PTEN and NF-kappaB signaling. Anticancer. Agents Med. Chem., 2021, 21(3), 372-382.
[PMID: 32781972]
[24]
Hu, W.J.; Liu, J.; Zhong, L.K.; Wang, J. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling. Biomed. Pharmacother., 2018, 102, 681-688.
[http://dx.doi.org/10.1016/j.biopha.2018.03.111] [PMID: 29604587]
[25]
Zhang, E.; Zhang, Y.; Fan, Z.; Cheng, L.; Han, S.; Che, H. Apigenin inhibits Histamine-induced cervical cancer tumor growth by regulating estrogen receptor expression. Molecules, 2020, 25(8), E1960.
[http://dx.doi.org/10.3390/molecules25081960] [PMID: 32340124]
[26]
Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr., 2017, 8(3), 423-435.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[27]
Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.N.; Martins, N. The therapeutic potential of Apigenin. Int. J. Mol. Sci., 2019, 20(6), E1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[28]
Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci., 2017, 7, 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[29]
Fang, J.; Xia, C.; Cao, Z.; Zheng, J.Z.; Reed, E.; Jiang, B.H. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J., 2005, 19(3), 342-353.
[http://dx.doi.org/10.1096/fj.04-2175com] [PMID: 15746177]
[30]
Shukla, S.; Bhaskaran, N.; Babcook, M.A.; Fu, P.; Maclennan, G.T.; Gupta, S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis, 2014, 35(2), 452-460.
[http://dx.doi.org/10.1093/carcin/bgt316] [PMID: 24067903]
[31]
Erdogan, S.; Turkekul, K.; Serttas, R.; Erdogan, Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed. Pharmacother., 2017, 88, 210-217.
[http://dx.doi.org/10.1016/j.biopha.2017.01.056] [PMID: 28107698]
[32]
Shukla, S.; Gupta, S. Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol. Carcinog., 2004, 39(2), 114-126.
[http://dx.doi.org/10.1002/mc.10168] [PMID: 14750216]
[33]
Morrissey, C.; O’Neill, A.; Spengler, B.; Christoffel, V.; Fitzpatrick, J.M.; Watson, R.W. Apigenin drives the production of reactive oxygen species and initiates a mitochondrial mediated cell death pathway in prostate epithelial cells. Prostate, 2005, 63(2), 131-142.
[http://dx.doi.org/10.1002/pros.20167] [PMID: 15486995]
[34]
Wang, X.; Wang, G.; Li, X.; Liu, J.; Hong, T.; Zhu, Q.; Huang, P.; Ge, R.S. Suppression of rat and human androgen biosynthetic enzymes by apigenin: Possible use for the treatment of prostate cancer. Fitoterapia, 2016, 111, 66-72.
[http://dx.doi.org/10.1016/j.fitote.2016.04.014] [PMID: 27102611]
[35]
Facchini, G.; Cavaliere, C.; D’Aniello, C.; Iovane, G.; Rossetti, S. Abiraterone acetate treatment in patients with castration-resistant prostate cancer with visceral metastases: a real-world experience. Anticancer Drugs, 2019, 30(2), 179-185.
[http://dx.doi.org/10.1097/CAD.0000000000000703] [PMID: 30320608]
[36]
Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; De Porre, P.; Kheoh, T.; Park, Y.C.; Todd, M.B.; Chi, K.N. Abiraterone plus Prednisone in metastatic, Castration-sensitive prostate cancer. N. Engl. J. Med., 2017, 377(4), 352-360.
[http://dx.doi.org/10.1056/NEJMoa1704174] [PMID: 28578607]
[37]
Fragni, M.; Galli, D.; Nardini, M.; Rossini, E.; Vezzoli, S.; Zametta, M.; Longhena, F.; Bellucci, A.; Roca, E.; Memo, M.; Berruti, A.; Sigala, S. Abiraterone acetate exerts a cytotoxic effect in human prostate cancer cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(6), 729-742.
[http://dx.doi.org/10.1007/s00210-019-01622-5] [PMID: 30770950]
[38]
Seo, Y.J.; Kim, B.S.; Chun, S.Y.; Park, Y.K.; Kang, K.S.; Kwon, T.G. Apoptotic effects of genistein, biochanin-A and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1. J. Korean Med. Sci., 2011, 26(11), 1489-1494.
[http://dx.doi.org/10.3346/jkms.2011.26.11.1489] [PMID: 22065906]
[39]
Shukla, S.; Gupta, S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle, 2007, 6(9), 1102-1114.
[http://dx.doi.org/10.4161/cc.6.9.4146] [PMID: 17457054]
[40]
Ayyildiz, A.; Koc, H.; Turkekul, K.; Erdogan, S. Co-administration of apigenin with doxorubicin enhances anti-migration and antiprolifer-ative effects via PI3K/PTEN/AKT pathway in prostate cancer cells. Exp. Oncol., 2021, 43(2), 125-134.
[PMID: 34190523]
[41]
Gupta, S.; Afaq, F.; Mukhtar, H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene, 2002, 21(23), 3727-3738.
[http://dx.doi.org/10.1038/sj.onc.1205474] [PMID: 12032841]
[42]
Mirzoeva, S.; Franzen, C.A.; Pelling, J.C. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism. Mol. Carcinog., 2014, 53(8), 598-609.
[http://dx.doi.org/10.1002/mc.22005] [PMID: 23359392]
[43]
Carnero, A.; Blanco-Aparicio, C.; Renner, O.; Link, W.; Leal, J.F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implica-tions. Curr. Cancer Drug Targets, 2008, 8(3), 187-198.
[http://dx.doi.org/10.2174/156800908784293659] [PMID: 18473732]
[44]
Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009] [PMID: 31323288]
[45]
Kaur, P.; Shukla, S.; Gupta, S. Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: An in vitro and in vivo study. Carcinogenesis, 2008, 29(11), 2210-2217.
[http://dx.doi.org/10.1093/carcin/bgn201] [PMID: 18725386]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy