Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Fragment-Based Drug Design, 2D-QSAR and DFT Calculation: Scaffolds of 1, 2, 4, triazolo [1, 5-a] pyrimidin-7-amines as Potential Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase

Author(s): Opeyemi Iwaloye*, Olusola Olalekan Elekofehinti, Femi Olawale, Prosper Obed Chukwuemeka, Babatomiwa Kikiowo and Ibukun Mary Folorunso

Volume 20, Issue 3, 2023

Published on: 30 June, 2022

Page: [317 - 334] Pages: 18

DOI: 10.2174/1570180819666220422120707

Price: $65

Abstract

Background: Plasmodium falciparum dihydroorotate dehydrogenase (PfDODH) is one of the enzymes currently explored in the treatment of malaria. Although there is currently no clinically approved drug targeting PfDODH, many of the compounds in clinical trials have [1, 2, 4,] triazolo [1, 5-a] pyrimidin- 7-amine backbone structure.

Objective: This study sought to design new compounds from the fragments of known experimental inhibitors of PfDODH.

Methods: Nine experimental compounds retrieved from Drug Bank online were downloaded and broken into fragments using the Schrodinger power shell; the fragments were recombined to generate new ligand structures using the BREED algorithm. The new compounds were docked with PfDODH crystal structure, after which the compounds were filtered with extensive drug-likeness and toxicity parameters. A 2D-QSAR model was built using the multiple linear regression method and externally validated. The electronic properties of the compounds were calculated using the density functional theory method.

Results: Structural investigation of the six designed compounds, which had superior binding energies than the standard inhibitors, showed that five of them had [1, 2, 4,] triazolo [1, 5-a] pyrimidin-7-amine moieties and interacted with essential residues at the PfDODH binding site. In addition to their drug-like and pharmacokinetic properties, they also showed minimal toxicities. The externally validated 2D-QSAR model with R2 and Q2 values of 0.6852 and 0.6691 confirmed the inhibitory prowess of these compounds against PfDODH. The DFT calculations showed regions of the molecules prone to electrophilic and nucleophilic attacks.

Conclusion: The current study thus provides insight into the development of a new set of potent PfDODH inhibitors.

Keywords: Plasmodium falciparum dihydroorotate dehydrogenase, fragment-based drug design, 2D-QSAR, DFT calculation, Lead optimization, induced fit docking.

Graphical Abstract
[1]
Breman, J.G.; Egan, A.; Keusch, G.T. The intolerable burden of malaria: A new look at the numbers. Am. J. Trop. Med. Hyg., 2001, 64(1-2)(Suppl.), iv-vii.
[http://dx.doi.org/10.4269/ajtmh.2001.64.iv] [PMID: 11425185]
[2]
Belete, T.M. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des. Devel. Ther., 2020, 14, 3875-3889.
[http://dx.doi.org/10.2147/DDDT.S265602] [PMID: 33061294]
[3]
World Health Organization World Malaria Report, 20152016,
[4]
Calderón, F.; Wilson, D.M.; Gamo, F-J. Antimalarial drug discovery: Recent progress and future directions. Prog. Med. Chem., 2013, 52, 97-151.
[http://dx.doi.org/10.1016/B978-0-444-62652-3.00003-X] [PMID: 23384667]
[5]
Kokwaro, G. Ongoing challenges in the management of malaria. Malar. J., 2009, 8(S1)(Suppl. 1), S2.
[http://dx.doi.org/10.1186/1475-2875-8-S1-S2] [PMID: 19818169]
[6]
Howitt, P.; Darzi, A.; Yang, G-Z.; Ashrafian, H.; Atun, R.; Barlow, J.; Blakemore, A.; Bull, A.M.J.; Car, J.; Conteh, L.; Cooke, G.S.; Ford, N.; Gregson, S.A.; Kerr, K.; King, D.; Kulendran, M.; Malkin, R.A.; Majeed, A.; Matlin, S.; Merrifield, R.; Penfold, H.A.; Reid, S.D.; Smith, P.C.; Stevens, M.M.; Templeton, M.R.; Vincent, C.; Wilson, E. Technologies for global health. Lancet, 2012, 380(9840), 507-535.
[http://dx.doi.org/10.1016/S0140-6736(12)61127-1] [PMID: 22857974]
[7]
Veiga, M.I.; Ferreira, P.E.; Jörnhagen, L.; Malmberg, M.; Kone, A.; Schmidt, B.A.; Petzold, M.; Björkman, A.; Nosten, F.; Gil, J.P. Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance. PLoS One, 2011, 6(5), e20212.
[http://dx.doi.org/10.1371/journal.pone.0020212] [PMID: 21633513]
[8]
Saralamba, S.; Pan-Ngum, W.; Maude, R.J.; Lee, S.J.; Tarning, J.; Lindegårdh, N.; Chotivanich, K.; Nosten, F.; Day, N.P.J.; Socheat, D.; White, N.J.; Dondorp, A.M.; White, L.J. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2011, 108(1), 397-402.
[http://dx.doi.org/10.1073/pnas.1006113108] [PMID: 21173254]
[9]
Mok, S.; Imwong, M.; Mackinnon, M.J.; Sim, J.; Ramadoss, R.; Yi, P.; Mayxay, M.; Chotivanich, K.; Liong, K-Y.; Russell, B.; Socheat, D.; Newton, P.N.; Day, N.P.; White, N.J.; Preiser, P.R.; Nosten, F.; Dondorp, A.M.; Bozdech, Z. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics, 2011, 12(1), 391.
[http://dx.doi.org/10.1186/1471-2164-12-391] [PMID: 21810278]
[10]
Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: Efficacy models for compound screening. Nat. Rev. Drug Discov., 2004, 3(6), 509-520.
[http://dx.doi.org/10.1038/nrd1416] [PMID: 15173840]
[11]
Oyelade, J.; Isewon, I.; Aromolaran, O.; Uwoghiren, E.; Dokunmu, T.; Rotimi, S.; Aworunse, O.; Obembe, O.; Adebiyi, E. Computational identification of metabolic pathways of Plasmodium falciparum using the k-shortest path algorithm. Int. J. Genomics, 2019, 2019, 1750291.
[http://dx.doi.org/10.1155/2019/1750291] [PMID: 31662957]
[12]
Vaidya, A.B.; Mather, M.W. Mitochondrial evolution and functions in malaria parasites. Annu. Rev. Microbiol., 2009, 63(1), 249-267.
[http://dx.doi.org/10.1146/annurev.micro.091208.073424] [PMID: 19575561]
[13]
Phillips, M.A.; Rathod, P.K.; Rueckle, T.; Matthews, D.; Burrows, J.N.; Charman, S.A. Medicinal chemistry case history: Discovery of the dihydroorate dehydrogenase inhibitor DSM265 as an antimalarial drug candidate. Case Histories in Recent Drug Discovery; Elsevier Inc., 2017, pp. 544-557.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12470-9]
[14]
Fischer, G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry.Academic Press. 2019, 128, 1-101.
[15]
Honda, T.; Ojima, I. Curious effects of fluorine on medicinally active compounds. Progress in Fluorine Science; Seppelt, K.B.T.- T.C.W., Ed., 2021, 6, pp. 241-276.
[16]
Mandt, R.E.K.; Lafuente-Monasterio, M.J.; Sakata-Kato, T.; Luth, M.R.; Segura, D.; Pablos-Tanarro, A.; Viera, S.; Magan, N.; Ottilie, S.; Winzeler, E.A.; Lukens, A.K.; Gamo, F.J.; Wirth, D.F. In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Sci. Transl. Med., 2019, 11(521), eaav1636.
[http://dx.doi.org/10.1126/scitranslmed.aav1636] [PMID: 31801884]
[17]
Phillips, M.A.; Gujjar, R.; Malmquist, N.A.; White, J.; El Mazouni, F.; Baldwin, J.; Rathod, P.K. Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J. Med. Chem., 2008, 51(12), 3649-3653.
[http://dx.doi.org/10.1021/jm8001026] [PMID: 18522386]
[18]
Murphy, S.C.; Duke, E.R.; Shipman, K.J.; Jensen, R.L.; Fong, Y.; Ferguson, S.; Janes, H.E.; Gillespie, K.; Seilie, A.M.; Hanron, A.E.; Rinn, L.; Fishbaugher, M.; VonGoedert, T.; Fritzen, E.; Kappe, S.H.; Chang, M.; Sousa, J.C.; Marcsisin, S.R.; Chalon, S.; Duparc, S.; Kerr, N.; Möhrle, J.J.; Andenmatten, N.; Rueckle, T.; Kublin, J.G. A randomized trial evaluating the prophylactic activity of dsm265 against preerythrocytic plasmodium falciparum infection during controlled human malarial infection by mosquito bites and direct venous inoculation. J. Infect. Dis., 2018, 217(5), 693-702.
[http://dx.doi.org/10.1093/infdis/jix613] [PMID: 29216395]
[19]
Bissaro, M.; Sturlese, M.; Moro, S. The rise of molecular simulations in fragment-based drug design (FBDD): An overview. Drug Discov. Today, 2020, 25(9), 1693-1701.
[http://dx.doi.org/10.1016/j.drudis.2020.06.023] [PMID: 32592867]
[20]
Zoete, V.; Grosdidier, A.; Michielin, O. Docking, virtual high throughput screening and in silico fragment-based drug design. J. Cell. Mol. Med., 2009, 13(2), 238-248.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00665.x] [PMID: 19183238]
[21]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[22]
Pierce, A.C.; Rao, G.; Bemis, G.W. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J. Med. Chem., 2004, 47(11), 2768-2775.
[http://dx.doi.org/10.1021/jm030543u] [PMID: 15139755]
[23]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[24]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[25]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[26]
Roy, K.; Das, R.N.; Ambure, P.; Aher, R.B. Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom. Intell. Lab. Syst., 2016, 152, 18-33.
[http://dx.doi.org/10.1016/j.chemolab.2016.01.008]
[27]
Dahlin, J.L.; Nissink, J.W.M.; Strasser, J.M.; Francis, S.; Higgins, L.; Zhou, H.; Zhang, Z.; Walters, M.A. PAINS in the assay: Chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem., 2015, 58(5), 2091-2113.
[http://dx.doi.org/10.1021/jm5019093] [PMID: 25634295]
[28]
Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[29]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[30]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Lead-and drug-like compounds: The rule-of-five revolution. Adv, 2004, 1(4), 337-341.
[31]
Olawale, F.; Olofinsan, K.; Iwaloye, O.; Chukwuemeka, P.O.; Elekofehinti, O.O. Screening of compounds from Nigerian antidiabetic plants as protein tyrosine phosphatase 1B inhibitor. Comput. Toxicol., 2022, 21, 100200.
[http://dx.doi.org/10.1016/j.comtox.2021.100200]
[32]
Kikiowo, B.; Ogunleye, J.A.; Iwaloye, O.; Ijatuyi, T.T. Therapeutic potential of Chromolaena odorata phyto-constituents against human pancreatic α-amylase. J. Biomol. Struct. Dyn., 2020, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1833758] [PMID: 33054572]
[33]
Iwaloye, O.; Elekofehinti, O.O.; Kikiowo, B.; Fadipe, T.M.; Akinjiyan, M.O.; Ariyo, E.O.; Aiyeku, O.O.; Adewumi, N.A. Discovery of traditional Chinese medicine derived compounds as wild type and mutant Plasmodium falciparum dihydrofolate reductase inhibitors: Induced fit docking and ADME studies. Curr. Drug Discov. Technol., 2021, 18(8), 554-569.
[http://dx.doi.org/10.2174/1570163817999200729122753] [PMID: 32729419]
[34]
Olawale, F.; Iwaloye, O.; Elekofehinti, O.O. Virtual screening of natural compounds as selective inhibitors of polo-like kinase-1 at C-terminal polo box and N-terminal catalytic domain. J. Biomol. Struct. Dyn., 2021, 1-19.
[http://dx.doi.org/10.1080/07391102.2021.1991476] [PMID: 34669551]
[35]
Onunkun, A.T.; Elekofehinti, O.I. O.O., Identification of novel Nrf2 activator via protein-ligand interactions as remedy for oxidative stress in diabetes mellitus. Lett. Drug Des. Discov., 2021, 18, 1.
[36]
Singh, I.V.; Mishra, S. Molecular docking studies of benzamide derivatives for PfDHODH inhibitor as potent antimalarial agent. Am. J. Biochem. Mol. Biol., 2019, 9, 1-6.
[37]
Haredi Abdelmonsef, A.; Eldeeb Mohamed, M.; El-Naggar, M.; Temairk, H.; Mohamed Mosallam, A. Novel quinazolin-2,4-dione hybrid molecules as possible inhibitors against malaria: Synthesis and in silico molecular docking studies. Front. Mol. Biosci., 2020, 7, 105.
[http://dx.doi.org/10.3389/fmolb.2020.00105] [PMID: 32582763]
[38]
Hoelz, L.V.; Calil, F.A.; Nonato, M.C.; Pinheiro, L.C.; Boechat, N. Plasmodium falciparum dihydroorotate dehydrogenase: A drug target against malaria. Future Med. Chem., 2018, 10(15), 1853-1874.
[http://dx.doi.org/10.4155/fmc-2017-0250] [PMID: 30019917]
[39]
Deng, X.; Kokkonda, S.; El Mazouni, F.; White, J.; Burrows, J.N.; Kaminsky, W.; Charman, S.A.; Matthews, D.; Rathod, P.K.; Phillips, M.A. Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J. Med. Chem., 2014, 57(12), 5381-5394.
[http://dx.doi.org/10.1021/jm500481t] [PMID: 24801997]
[40]
Oyinloye, B.E.; Iwaloye, O.; Ajiboye, B.O. Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson’s disease and Alzheimer’s disease. Sci. African, 2021, e00826.
[41]
Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.G.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 2004, 14(1), 1-18.
[http://dx.doi.org/10.1097/00008571-200401000-00001] [PMID: 15128046]
[42]
Olawale, F.; Olofinsan, K.; Iwaloye, O.; Emmanuel, T. Phytochemicals from Nigerian medicinal plants modulate therapeutically relevant diabetes targets: Insight from computational direction. Adv. Tradit. Med, 2022, 22, 723-737.
[http://dx.doi.org/10.1007/s13596-021-00598-z]
[43]
Kavitha, E.; Sundaraganesan, N.; Sebastian, S. Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method. Indian J. Pure Appl. Phy., 2010, 48, 20-30.
[44]
Subashchandrabose, S.; Saleem, H.; Erdogdu, Y.; Rajarajan, G.; Thanikachalam, V. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 82(1), 260-269.
[http://dx.doi.org/10.1016/j.saa.2011.07.046] [PMID: 21862393]
[45]
Jayaprakash, A.; Arjunan, V.; Mohan, S. Vibrational spectroscopic, electronic and quantum chemical investigations on 2,3-hexadiene. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 620-630.
[http://dx.doi.org/10.1016/j.saa.2011.06.064] [PMID: 21763179]
[46]
Azad, I.; Jafri, A.; Khan, T.; Akhter, Y.; Arshad, M.; Hassan, F.; Ahmad, N.; Khan, A.R.; Nasibullah, M. Evaluation of pyrrole-2, 3-dicarboxylate derivatives: Synthesis, DFT analysis, molecular docking, virtual screening and in vitro anti-hepatic cancer study. J. Mol. Struct., 2019, 1176, 314-334.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.049]
[47]
Pearson, R.G. Absolute electronegativity and hardness: Applications to organic chemistry. J. Org. Chem., 1989, 54(6), 1423-1430.
[http://dx.doi.org/10.1021/jo00267a034]
[48]
Asati, V.; Thakur, S.S.; Upmanyu, N.; Bharti, S.K. Virtual screening, molecular docking, and dft studies of some thiazolidine-2, 4-diones as potential PIM-1 kinase inhibitors. ChemistrySelect, 2018, 3(1), 127-135.
[http://dx.doi.org/10.1002/slct.201702392]
[49]
Ganesan, M.S.; Raja, K.K.; Murugesan, S.; Kumar, B.K.; Rajagopal, G.; Thirunavukkarasu, S. Synthesis, biological evaluation, molecular docking, molecular dynamics and DFT studies of quinoline-fluoroproline amide hybrids. J. Mol. Struct., 2020, 1217, 128360.
[http://dx.doi.org/10.1016/j.molstruc.2020.128360]
[50]
Kausar, T.; Nayeem, S.M. Identification of small molecule inhibitors of ALK2: A virtual screening, density functional theory, and molecular dynamics simulations study. J. Mol. Model., 2018, 24(9), 262.
[http://dx.doi.org/10.1007/s00894-018-3789-2] [PMID: 30159679]
[51]
Matuszek, A.M.; Reynisson, J. Defining known drug space using DFT. Mol. Inform., 2016, 35(2), 46-53.
[http://dx.doi.org/10.1002/minf.201500105] [PMID: 27491789]
[52]
Hagar, M.; Ahmed, H.A.; Aljohani, G.; Alhaddad, O.A. Investigation of some antiviral N-heterocycles as COVID 19 drug: Molecular docking and DFT calculations. Int. J. Mol. Sci., 2020, 21(11), 3922.
[http://dx.doi.org/10.3390/ijms21113922] [PMID: 32486229]
[53]
Ramya, N.; Jagadeeswari, P. BIST, B. Proper coloring of regular graphs. Int. J. Pure Appl. Math., 2017, 116, 531-534.
[54]
Chinnasamy, S.; Selvaraj, G.; Kaushik, A.C.; Kaliamurthi, S.; Nangraj, A.S.; Selvaraj, C.; Singh, S.K.; Thirugnanasambandam, R.; Gu, K.; Wei, D. Identification of potent inhibitors against Aurora kinase A using molecular docking and molecular dynamics simulation studies. Preprints, 2019.
[http://dx.doi.org/10.20944/preprints201908.0238.v1]
[55]
Kumar, V.; Roy, K. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases. SAR QSAR Environ. Res., 2020, 31(7), 511-526.
[http://dx.doi.org/10.1080/1062936X.2020.1776388] [PMID: 32543892]

© 2024 Bentham Science Publishers | Privacy Policy