Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Aminoquinoline-triazine Conjugates: Design, Synthesis, Antibacterial Activity, and SAR Analysis

Author(s): Sajidul Hoque Ansari, Supriya Sahu, Anshul Shakya, Surajit Kumar Ghosh, Udaya Pratap Singh and Hans Raj Bhat*

Volume 20, Issue 3, 2023

Published on: 05 July, 2022

Page: [304 - 316] Pages: 13

DOI: 10.2174/1570180819666220420084401

Price: $65

conference banner
Abstract

Aim: Frequent use of antibiotics is responsible for the development of antibiotic resistance; thus, there is an urgent need for the development of new antibacterial agents that act by novel mechanism pathways.

Objective: The aim of the study was to develop hybrid novel 4-aminoquinoline 1,3 5-triazine derivatives and determine their antibacterial activity.

Methods: Novel hybrid 4-aminoquinoline 1,3,5-triazine derivatives were synthesized by nucleophilic substitution and characterized by different spectroscopic methods. Furthermore, in silico study was carried out with 16S-rRNA A-site (PDB id: 1J7T using Discovery Studio 2018 software) to exemplify key structural interactions. In vitro antibacterial activity of target compounds was evaluated against three Gram-positive and three Gram-negative bacterial strains.

Results: In silico results have shown compound 8c to have both hydrophobic interactions (conventional hydrogen bond interactions with A A:16, A A:17 and carbon hydrogen bond with U A:14, G A:15) and hydrophilic interactions (G A:18G A:13, G A:15 and U A:19) along with excellent CDocker energy (- 28.2942). In vitro antibacterial results revealed that compound 8c showed better zone of inhibition against S. aureus (gram-positive) and E. coli (gram-negative) as compared to standard drug Cefixime.

Conclusion: Our study demonstrated that in silico study supported the experimental study, and the developed 1,3,5-triazine-4-aminoquinoline derivatives may be used as potential leads for future antibacterial drug development.

Keywords: Synthesis, docking, aminoquinoline, triazine, antibacterial activity, SAR analysis.

Graphical Abstract
[1]
WHO Antibiotic resistance; , 2018. Available from http://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
[2]
Mobarki, N.; Almerabi, B.; Hattan, A. Antibiotic resistance crisis. Int. J. Med. Dev. Ctries, 2019, 3(6), 561-564.
[http://dx.doi.org/10.24911/IJMDC.51-1549060699]
[3]
Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob. Resist. Infect. Control, 2017, 6(1), 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[4]
Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res., 2018, 36(1), 22-32.
[http://dx.doi.org/10.1002/jor.23656] [PMID: 28722231]
[5]
Teymourinia, H.; Salavati-Niasari, M.; Amiri, O.; Yazdian, F. Application of green synthesized TiO2/Sb2S3/GQDs nanocomposite as high efficient antibacterial agent against E. coli and Staphylococcus aureus. Mater. Sci. Eng. C, 2019, 99, 296-303.
[http://dx.doi.org/10.1016/j.msec.2019.01.094] [PMID: 30889703]
[6]
Hassanpour, M.; Salavati-Niasari, M.; Tafreshi, S.A.H.; Safardoust-Hojaghan, H.; Hassanpour, F. Synthesis, characterization and antibacterial activities of Ni/ZnO nanocomposites using bis(salicylaldehyde) complex precursor. J. Alloys Compd., 2019, 788, 383-390.
[http://dx.doi.org/10.1016/j.jallcom.2019.02.255]
[7]
Teymourinia, H.; Salavati-Niasari, M.; Amiri, O. Simple synthesis of Cu2O/GQDs nanocomposite with different morphologies fabricated by tuning the synthesis parameters as novel antibacterial material. Compos., Part B Eng., 2019, 172, 785-794.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.047]
[8]
Jackson, N.; Czaplewski, L.; Piddock, L.J.V. Discovery and development of new antibacterial drugs: Learning from experience? J. Antimicrob. Chemother., 2018, 73(6), 1452-1459.
[http://dx.doi.org/10.1093/jac/dky019] [PMID: 29438542]
[9]
Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A.; Amiri, O.; Goli, H.R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloys Compd., 2020, 820, 153186.
[http://dx.doi.org/10.1016/j.jallcom.2019.153186]
[10]
Karami, M.; Ghanbari, M.; Amiri, O.; Salavati-Niasari, M. Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method. Separ. Purif. Tech., 2020, 253, 117526.
[http://dx.doi.org/10.1016/j.seppur.2020.117526]
[11]
Teymourinia, H.; Amiri, O.; Salavati-Niasari, M. Synthesis and characterization of cotton-silver-graphene quantum dots (cotton/Ag/GQDs) nanocomposite as a new antibacterial nanopad. Chemosphere, 2021, 267, 129293.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129293] [PMID: 33348263]
[12]
Burki, T.K. Development of new antibacterial agents: A sense of urgency needed. Lancet Respir. Med., 2021, 9(6), e54.
[http://dx.doi.org/10.1016/S2213-2600(21)00230-7] [PMID: 34000239]
[13]
Klahn, P.; Brönstrup, M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat. Prod. Rep., 2017, 34(7), 832-885.
[http://dx.doi.org/10.1039/C7NP00006E] [PMID: 28530279]
[14]
Ghanbari, M.; Salavati-Niasari, M. Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities. Ecotoxicol. Environ. Saf., 2021, 208, 111712.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111712] [PMID: 33396043]
[15]
Domalaon, R.; Idowu, T.; Zhanel, G.G.; Schweizer, F. Antibiotic hybrids: The next generation of agents and adjuvants against gram-negative pathogens? Clin. Microbiol. Rev., 2018, 31(2), e00077-e17.
[http://dx.doi.org/10.1128/CMR.00077-17] [PMID: 29540434]
[16]
Singh, U.P.; Singh, R.K.; Bhat, H.R.; Subhashchandra, Y.P.; Kumar, V.; Kumawat, M.K.; Gahtori, P. Synthesis and antibacterial evaluation of series of novel tri-substituted-s-triazine derivatives. Med. Chem. Res., 2011, 20(9), 1603-1610.
[http://dx.doi.org/10.1007/s00044-010-9446-7]
[17]
Singh, U.P.; Pathak, M.; Dubey, V.; Bhat, H.R.; Gahtori, P.; Singh, R.K. Design, synthesis, antibacterial activity, and molecular docking studies of novel hybrid 1,3-thiazine-1,3,5-triazine derivatives as potential bacterial translation inhibitor. Chem. Biol. Drug Des., 2012, 80(4), 572-583.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01430.x] [PMID: 22702334]
[18]
Dubey, V.; Pathak, M.; Bhat, H.R.; Singh, U.P. Design, facile synthesis, and antibacterial activity of hybrid 1,3,4-thiadiazole-1,3,5-triazine derivatives tethered via -S- bridge. Chem. Biol. Drug Des., 2012, 80(4), 598-604.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01433.x] [PMID: 22716235]
[19]
Singh, B.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Structure-guided discovery of 1,3,5-triazine-pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate. Bioorg. Med. Chem. Lett., 2014, 24(15), 3321-3325.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.103] [PMID: 24961639]
[20]
Masih, A.; Shrivastava, J.K.; Bhat, H.R.; Singh, U.P. Potent antibacterial activity of dihydydropyrimidine-1,3,5-triazines via inhibition of DNA gyrase and antifungal activity with favourable metabolic profile. Chem. Biol. Drug Des., 2020, 96(2), 861-869.
[http://dx.doi.org/10.1111/cbdd.13695] [PMID: 32333828]
[21]
Blotny, G. Recent applications of 2, 4, 6-trichloro-1, 3, 5-triazine and its derivatives in organic synthesis. Tetrahedron, 2006, 62(41), 9507-9522.
[http://dx.doi.org/10.1016/j.tet.2006.07.039]
[22]
Bhat, H.R.; Singh, U.P.; Thakur, A.; Kumar Ghosh, S.; Gogoi, K.; Prakash, A.; Singh, R.K. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Exp. Parasitol., 2015, 157, 59-67.
[http://dx.doi.org/10.1016/j.exppara.2015.06.016] [PMID: 26164360]
[23]
Li, L.X.; Jiao, J.; Wang, X.B.; Chen, M.; Fu, X.C.; Si, W.J.; Yang, C.L. Synthesis, Characterization, and antifungal activity of novel benzo[4,5] imidazo[1,2-d] [1,2,4]triazine derivatives. Molecules, 2018, 23(4), 746.
[http://dx.doi.org/10.3390/molecules23040746] [PMID: 29570685]
[24]
Mibu, N.; Yokomizo, K.; Koga, A.; Honda, M.; Mizokami, K.; Fujii, H.; Ota, N.; Yuzuriha, A.; Ishimaru, K.; Zhou, J.; Miyata, T.; Sumoto, K. Synthesis and antiviral activities of some 2,4,6-trisubstituted 1,3,5-triazines. Chem. Pharm. Bull. (Tokyo), 2014, 62(10), 1032-1040.
[http://dx.doi.org/10.1248/cpb.c14-00421] [PMID: 25273062]
[25]
Srivastava, J.K.; Dubey, P.; Singh, S.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Bhat. H.R.; Kumawat, M.K.; Singh, U.P. Discovery of novel 1,3,5-triazine-thiazolidine-2,4-diones as dipeptidyl peptidase-4 inhibitors with antibacterial activity targeting the S1 pocket for the treatment of type 2 diabetes. RSC Advances, 2015, 5(19), 14095-14102.
[http://dx.doi.org/10.1039/C4RA16903D]
[26]
Yan, W.; Zhao, Y.; He, J. Anti breast cancer activity of selected 1,3,5 triazines via modulation of EGFR TK. Mol. Med. Rep., 2018, 18(5), 4175-4184.
[http://dx.doi.org/10.3892/mmr.2018.9426] [PMID: 30152850]
[27]
Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem., 2019, 162, 435-447.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[28]
Modh, R.P.; De Clercq, E.; Pannecouque, C.; Chikhalia, K.H. Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline-triazine derivatives. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 100-108.
[http://dx.doi.org/10.3109/14756366.2012.755622] [PMID: 23327639]
[29]
Bhat, H.R.; Masih, A.; Shakya, A.; Ghosh, S.K.; Singh, U.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4 aminoquinoline 1,3,5 triazine derivatives. J. Heterocycl. Chem., 2020, 57(1), 390-399.
[http://dx.doi.org/10.1002/jhet.3791]
[30]
Yang, R.; Du, W.; Yuan, H. Synthesis and biological evaluation of 2-phenyl-4-aminoquinolines as potential antifungal agents. Mol. Divers., 2020, 24(4), 1065-1075.
[http://dx.doi.org/10.1007/s11030-019-10012-1] [PMID: 31705363]
[31]
Bhat, H.R.; Singh, U.P.; Gahtori, P.; Ghosh, S.K.; Gogoi, K.; Prakash, A.; Singh, R.K. Singh, R.K. 4-Aminoquinoline-1,3,5-triazine: Design, synthesis, in vitro antimalarial activity and docking studies. New J. Chem., 2013, 37(9), 2654-2662.
[http://dx.doi.org/10.1039/c3nj00317e]
[32]
Shoichet, B.K.; Kuntz, I.D. Protein docking and complementarity. J. Mol. Biol., 1991, 221(1), 327-346.
[http://dx.doi.org/10.1016/0022-2836(91)80222-G] [PMID: 1920412]
[33]
National Committee forClinical Laboratory Standards (NCCLs), Standard Methods for DilutionAntimicrobialSusceptibility Tests for Bacteria, Which Grows Aerobically, Nat. Comm. Lab.Standards,Villanova 1982. 242.
[34]
Bhat, H.R.; Gupta, S.K.; Singh, U.P. Discovery of potent, novel antibacterial hybrid conjugates from 4-aminoquinoline and 1,3,5-triazine: Design, synthesis and antibacterial evaluation. RSC Advances, 2012, 2(33), 12690-12695.
[http://dx.doi.org/10.1039/c2ra22353h]
[35]
Bhat, H.R.; Pandey, P.K.; Ghosh, S.K.; Singh, U.P. Development of 4-aminoquinoline-1,3,5-triazine conjugates as potent antibacterial agent through facile synthetic route. Med. Chem. Res., 2013, 22(10), 5056-5065.
[http://dx.doi.org/10.1007/s00044-013-0521-8]
[36]
Panigrahi, S.K. Strong and weak hydrogen bonds in protein-ligand complexes of kinases: A comparative study. Amino Acids, 2008, 34(4), 617-633.
[http://dx.doi.org/10.1007/s00726-007-0015-4] [PMID: 18180869]
[37]
Qian, S.B.; Waldron, L.; Choudhary, N.; Klevit, R.E.; Chazin, W.J.; Patterson, C. Engineering a ubiquitin ligase reveals conformational flexibility required for ubiquitin transfer. J. Biol. Chem., 2009, 284(39), 26797-26802.
[http://dx.doi.org/10.1074/jbc.M109.032334] [PMID: 19648119]
[38]
Desiraju, G.R. The C-h···o hydrogen bond: structural implications and supramolecular design. Acc. Chem. Res., 1996, 29(9), 441-449.
[http://dx.doi.org/10.1021/ar950135n] [PMID: 23618410]
[39]
Panigrahi, S.K.; Desiraju, G.R. Strong and weak hydrogen bonds in the protein-ligand interface. Proteins, 2007, 67(1), 128-141.
[http://dx.doi.org/10.1002/prot.21253] [PMID: 17206656]
[40]
Pathak, P.; Thakur, A.; Bhat, H.R.; Singh, U.P. Hybrid 4 Aminoquinoline 1,3,5 triazine Derivatives: Design, Synthesis, Characterization, and Antibacterial Evaluation. J. Heterocycl. Chem., 2015, 52(4), 1108-1113.
[http://dx.doi.org/10.1002/jhet.2210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy