Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Bioactive Compounds and Diabetes Mellitus: Prospects and Future Challenges

Author(s): Md. Mominur Rahman, Md. Rezaul Islam, Fazle Rabbi, Mohammad Touhidul Islam, Sharifa Sultana, Muniruddin Ahmed, Aayush Sehgal, Sukhbir Singh, Neelam Sharma and Tapan Behl*

Volume 28, Issue 16, 2022

Published on: 25 May, 2022

Page: [1304 - 1320] Pages: 17

DOI: 10.2174/1381612828666220412090808

Price: $65

Open Access Journals Promotions 2
Abstract

Diabetes mellitus is a metabolic condition that influences the endocrine framework. Hyperglycemia and hyperlipidemia are two of the most widely recognized metabolic irregularities in diabetes and two of the most well-known reasons for diabetic intricacies. Diabetes mellitus is a persistent illness brought about by metabolic irregularities in hyperglycemic pancreatic cells. Hyperglycemia can be brought about by an absence of insulin-producing beta cells in the pancreas (Type 1 diabetes mellitus) or inadequate insulin creation that does not work effectively (Type 2 diabetes mellitus). Present diabetes medication directs blood glucose levels in the systemic circulation to the typical levels. Numerous advanced prescription medicines have many negative results that can bring about unexpected severe issues during treatment of the bioactive compound from a different source that is beneficially affected by controlling and adjusting metabolic pathways or cycles. Moreover, a few new bioactive medications disengaged from plants have shown antidiabetic action with more noteworthy adequacy than the oral hypoglycemic agent that specialists have utilized in clinical treatment lately. Since bioactive mixtures are collected from familiar sources, they have a great activity in controlling diabetes mellitus. This study discusses bioactive compounds, their activity in managing diabetes mellitus, and their prospects. Though bioactive compounds have many health-beneficial properties, adequate clinical studies still need to acknowledge that they effectively manage diabetes mellitus.

Keywords: Diabetes mellitus, bioactive compounds, hyperglycemia, hyperlipidemia, insulin, medications.

[1]
World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications : Report of a WHO consultation Part 1, Diagnosis and classification of diabetes mellitus 1999. World Health Organization 1999. Available from: https://apps.who.int/iris/handle/10665/66040
[2]
Heise T, Nosek L, Rønn BB, et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 2004; 53(6): 1614-20.
[http://dx.doi.org/10.2337/diabetes.53.6.1614] [PMID: 15161770]
[3]
McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers 2019; 5(1): 47.
[http://dx.doi.org/10.1038/s41572-019-0098-8] [PMID: 31296866]
[4]
Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 2020; 18(2): 117-24.
[http://dx.doi.org/10.2174/1570161117666190502103733] [PMID: 31057114]
[5]
Type 1 Diabetes information on MedicineNet.com. MedicineNet 2021. Available from: https://www.medicinenet.com/script/main/art.asp?articlekey=42943
[6]
Diabetes and the pancreas: Insulin, complications, and function. 2019. Available from: https://www.medicalnewstoday.com/articles/325018
[7]
Editor. Diabetes 2019[Online] 2019. The pancreas is an organ located behind the lower part of the stomach, in front of the spine and plays an important part in diabetes. 2019. Available from: https://www.diabetes.co.uk/body/pancreas-and-diabetes.html
[8]
Acharya UR, Ghista DN, Nergui M, et al. Diabetes mellitus: Enquiry into its medical aspects and bioengineering of its monitoring and regulation. J Mech Med Biol 2012; 12(01): 1230001.
[http://dx.doi.org/10.1142/S0219519412004417]
[9]
Madić V, Petrović A, Jušković M, et al. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J Ethnopharmacol 2021; 265: 113210.
[http://dx.doi.org/10.1016/j.jep.2020.113210] [PMID: 32795501]
[10]
Ferdousi M, Kalteniece A, Azmi S, et al. Diagnosis of neuropathy and risk factors for corneal nerve loss in type 1 and type 2 diabetes: A corneal confocal microscopy study. Diabetes Care American Diabetes Association 2021; 44(1): 150-6.
[http://dx.doi.org/10.2337/dc20-1482] [PMID: 33144353]
[11]
Tandon S, Ayis S, Hopkins D, Harding S, Stadler M. The impact of pharmacological and lifestyle interventions on body weight in people with type 1 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2021; 23(2): 350-62.
[http://dx.doi.org/10.1111/dom.14221] [PMID: 33026152]
[12]
Desai S, Buchade S, Chitlange S, et al. Vaccines for type 1 diabetes: Prevention or reversal? Curr Diabetes Rev 2021; 17(1): 30-6.
[http://dx.doi.org/10.2174/1573399816666200330145501] [PMID: 32223735]
[13]
Bhoyar PK, Tripathi AK, Baheti JR, et al. Herbal antidiabetics: A review. Int J Res Pharm Sci 2011; 2(1): 30-7.
[14]
Sailesh KS. Padmanabha. A comparative study of the anti diabetic effect of oral administration of cinnamon, nutmeg and peppermint in Wistar albino rats. Int J Health Sci Res 2014; 4(2): 61-7.
[15]
Thulé PM. Mechanisms of current therapies for diabetes mellitus type 2. Adv Physiol Educ 2012; 36(4): 275-83.
[http://dx.doi.org/10.1152/advan.00094.2012] [PMID: 23209008]
[16]
Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel) 2020; 9(9): E252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[17]
Oh YS, Jun H-S. Role of bioactive food components in diabetes prevention: Effects on beta-cell function and preservation. Nutr Metab Insights 2014; 7: 51-9.
[http://dx.doi.org/10.4137/NMI.S13589] [PMID: 25092987]
[18]
Saeed F, Afzaal M, Niaz B, et al. Bitter melon (Momordica charantia): A natural healthy vegetable. Int J Food Prop 2018; 21(1): 1270-90.
[http://dx.doi.org/10.1080/10942912.2018.1446023]
[19]
Dandawate PR, Subramaniam D, Padhye SB, Anant S. Bitter melon: A panacea for inflammation and cancer. Chin J Nat Med 2016; 14(2): 81-100.
[http://dx.doi.org/10.1016/S1875-5364(16)60002-X] [PMID: 26968675]
[20]
Tan SP, Stathopoulos C, Parks S, Roach P. An optimised aqueous extract of phenolic compounds from bitter melon with high antioxidant capacity. Antioxidants 2014; 3(4): 814-29.
[http://dx.doi.org/10.3390/antiox3040814] [PMID: 26785242]
[21]
Steinfeld B, Scott J, Vilander G, et al. The role of Lean process improvement in implementation of evidence-based practices in behavioral health care. J Behav Health Serv Res 2015; 42(4): 504-18.
[http://dx.doi.org/10.1007/s11414-013-9386-3] [PMID: 24464179]
[22]
Ahmad Z, Zamhuri KF, Yaacob A, et al. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 2012; 17(8): 9631-40.
[http://dx.doi.org/10.3390/molecules17089631] [PMID: 22885359]
[23]
Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011; 19(1): 32-7.
[http://dx.doi.org/10.1016/j.phymed.2011.06.019] [PMID: 22133295]
[24]
Ratan ZA, Haidere MF, Hong YH, et al. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2021; 45(2): 199-210.
[http://dx.doi.org/10.1016/j.jgr.2020.02.004] [PMID: 33841000]
[25]
Konno C, Murakami M, Oshima Y, Hikino H. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of Panax ginseng roots. J Ethnopharmacol 1985; 14(1): 69-74.
[http://dx.doi.org/10.1016/0378-8741(85)90030-3] [PMID: 4087924]
[26]
Kimura M, Waki I, Tanaka O, Nagai Y, Shibata S. Pharmacological sequential trials for the fractionation of components with hypoglycemic activity in alloxan diabetic mice from ginseng radix. J Pharmacobiodyn 1981; 4(6): 402-9.
[http://dx.doi.org/10.1248/bpb1978.4.402] [PMID: 7288557]
[27]
Yokozawa T, Kobayashi T, Oura H, et al. Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull 1985; 33(2): 869-72.
[28]
Galal EE, Gawad MA. Antidiabetic activity of Egyptian onion “Allium cepa” extract. J Egypt Med Assoc 1965; 48(Suppl.): 14-45.
[PMID: 5873670]
[29]
Kumari K, Augusti KT. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa linn) as compared to standard drugs in alloxan diabetic rats. Indian J Exp Biol 2002; 40(9): 1005-9.
[PMID: 12587728]
[30]
Das S. Garlic - a natural source of cancer preventive compounds. Asian Pac J Cancer Prev 2002; 3(4): 305-11.
[PMID: 12716288]
[31]
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006; 13(9-10): 624-9.
[http://dx.doi.org/10.1016/j.phymed.2005.09.010] [PMID: 17085291]
[32]
Thomson M, Al-Amin ZM, Al-Qattan KK, et al. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diabetes Metab 2007; 15: 108-15.
[33]
Adinortey MB, Agbeko R, Boison D, et al. Phytomedicines used for diabetes mellitus in Ghana: A systematic search and review of preclinical and clinical evidence. Evid Based Complement Alternat Med 2019; 2019: 6021209.
[http://dx.doi.org/10.1155/2019/6021209] [PMID: 31118963]
[34]
Yimam M, Zhao J, Corneliusen B, Pantier M, Brownell L, Jia Q. Blood glucose lowering activity of aloe based composition, UP780, in alloxan induced insulin dependent mouse diabetes model. Diabetol Metab Syndr 2014; 6(1): 61.
[http://dx.doi.org/10.1186/1758-5996-6-61] [PMID: 24891878]
[35]
Kim K, Kim H, Kwon J, et al. Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine 2009; 16(9): 856-63.
[http://dx.doi.org/10.1016/j.phymed.2009.02.014] [PMID: 19303272]
[36]
Gupta R, Gupta R. Effect of Pterocarpus marsupium in streptozotocin-induced hyperglycemic state in rats: Comparison with glibenclamide. Diabetol Croat 2009; 38(2): 39-45.
[37]
Chakravarthy BK, Saroj G, Gambhir SS, et al. Pancreatic beta cell regeneration – a novel antidiabetic mechanism of Pterocarpus marsupium roxb. Indian J Pharmacol 1980; 12(2): 123.
[38]
Adinarayana D, Syamasundar KV. A new sesquiterpene alcohol from Pterocarpus marsupium. Phytochemistry 1982; 21(5): 1083-5.
[http://dx.doi.org/10.1016/S0031-9422(00)82421-8]
[39]
Ahmad F, Khalid P, Khan MM, Rastogi AK, Kidwai JR. Insulin like activity in (-) epicatechin. Acta Diabetol Lat 1989; 26(4): 291-300.
[http://dx.doi.org/10.1007/BF02624640] [PMID: 2698039]
[40]
Noor H, Ashcroft SJ. Pharmacological characterisation of the antihyperglycaemic properties of Tinospora crispa extract. J Ethnopharmacol 1998; 62(1): 7-13.
[http://dx.doi.org/10.1016/S0378-8741(98)00008-7] [PMID: 9720606]
[41]
Noipha K, Ratanachaiyavong S, Purintrapiban J, Herunsaleed A, Ninla-aesong P. Effect of Tinospora crispa on glucose uptake in skeletal muscle: Role of glucose transporter 1 expression and extracellular signal-regulated kinase1/2 activation. Asian Biomed 2011; 5(3): 361-9.
[42]
Klangjareonchai T, Roongpisuthipong C. The effect of Tinospora crispa on serum glucose and insulin levels in patients with type 2 diabetes mellitus. BioMed Res Int 2012; 2012: 808762.
[43]
Khan F, Sarker MMR, Ming LC, et al. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front Pharmacol Frontiers 2019; p. 10.
[44]
Sathya S, Kokilavani R, Gurusamy K. Hypoglycemic effect of Gymnema sylvestre (retz.,) R.Br leaf in normal and alloxan induced diabetic rats. Anc Sci Life 2008; 28(2): 12-4.
[PMID: 22557305]
[45]
Persaud SJ, Al-Majed H, Raman A, Jones PM. Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. J Endocrinol 1999; 163(2): 207-12.
[http://dx.doi.org/10.1677/joe.0.1630207] [PMID: 10556769]
[46]
Anand U, Nandy S, Mundhra A, Das N, Pandey DK, Dey A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist Updat 2020; 51: 100695.
[http://dx.doi.org/10.1016/j.drup.2020.100695] [PMID: 32442892]
[47]
Spasov AA, Samokhina MP, Bulanov AE. Antidiabetic properties of Gymnema sylvestre (a review). Pharm Chem J 2009; 42(11): 626.
[http://dx.doi.org/10.1007/s11094-009-0195-1]
[48]
Ochmian ID, Grajkowski J, Smolik M. Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits (Aronia melanocarpa). Not Bot Horti Agrobot Cluj-Napoca 2012; 40(1): 253-60.
[http://dx.doi.org/10.15835/nbha4017181]
[49]
Penumala M, Zinka RB, Shaik JB, et al. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer’s disease and diabetes mellitus dual therapy. BioMed Central 2018; 18(1): 1-13.
[http://dx.doi.org/10.1186/s12906-018-2140-x]
[50]
Maslov DL, Ipatova OM, Abakumova OIu, Tsvetkova TA, Prozorovskiĭ VN. Hypoglycemic effect of an extract from Aronia melanocarpa leaves. Vopr Med Khim 2002; 48(3): 271-7.
[PMID: 12243085]
[51]
Akhtar S, Ismail T, Fraternale D, et al. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem 2015; 174: 417-25.
[52]
Lin G-M, Chen Y-H, Yen P-L, Chang ST. Antihyperglycemic and antioxidant activities of twig extract from Cinnamomum osmophloeum. J Tradit Complement Med 2015; 6(3): 281-8.
[http://dx.doi.org/10.1016/j.jtcme.2015.08.005] [PMID: 27419094]
[53]
Wan L-S, Min Q-X, Wang Y-L, Yue YD, Chen JC. Xanthone glycoside constituents of swertia kouitchensis with α-glucosidase inhibitory activity. J Nat Prod 2013; 76(7): 1248-53.
[http://dx.doi.org/10.1021/np400082g] [PMID: 23805995]
[54]
Mukhtar HM, Ansari SH, Bhat ZA, Naved T. Antihyperglycemic activity of Cyamopsis tetragonoloba. Beans on blood glucose levels in alloxan-induced diabetic rats. Pharm Biol 2006; 44(1): 10-3.
[http://dx.doi.org/10.1080/13880200500509025]
[55]
Gandhi GR, Vanlalhruaia P, Stalin A, Irudayaraj SS, Ignacimuthu S, Paulraj MG. Polyphenols-rich Cyamopsis tetragonoloba (L.) Taub. beans show hypoglycemic and β-cells protective effects in type 2 diabetic rats. Food Chem Toxicol 2014; 66: 358-65.
[http://dx.doi.org/10.1016/j.fct.2014.02.001] [PMID: 24525096]
[56]
Li SA, Weroha SJ, Tawfik O, et al. Prevention of solely estrogen-induced mammary tumors in female aci rats by tamoxifen: Evidence for estrogen receptor mediation. J Endocrinol 2002; 175(2): 297-306.
[57]
Hannan JMA, Ojo OO, Ali L, et al. Actions underlying antidiabetic effects of Ocimum sanctum leaf extracts in animal models of type 1 and type 2 diabetes. European J Med Plants 2015; 5(1): 1-12.
[http://dx.doi.org/10.9734/EJMP/2015/11840]
[58]
Kim HY, Sin SM, Lee S, Cho KM, Cho EJ. The butanol fraction of bitter melon (Momordica charantia) scavenges free radicals and attenuates oxidative stress. Prev Nutr Food Sci 2013; 18(1): 18-22.
[http://dx.doi.org/10.3746/pnf.2013.18.1.018] [PMID: 24471105]
[59]
Tsai T-H, Huang C-J, Wu W-H, Huang WC, Chyuan JH, Tsai PJ. Antioxidant, cell-protective, and anti-melanogenic activities of leaf extracts from wild bitter melon (Momordica charantia linn. var. abbreviata Ser.) cultivars. Bot Stud (Taipei, Taiwan) 2014; 55(1): 78.
[http://dx.doi.org/10.1186/s40529-014-0078-y] [PMID: 28510957]
[60]
Kazeem MI, Ashafa AOT. In-vitro antioxidant and antidiabetic potentials of Dianthus basuticus burtt davy whole plant extracts. J Herb Med 2015; 5(3): 158-64.
[http://dx.doi.org/10.1016/j.hermed.2015.06.003]
[61]
Bhutkar MA, Bhise SB. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int J Chem Sci 2012; 10(1): 457-62.
[62]
Mahmood N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp Clin Pathol 2016; 25(6): 1253-64.
[http://dx.doi.org/10.1007/s00580-014-1967-x]
[63]
de Souza PM, de Oliveira Magalhães P. Application of microbial α-amylase in industry - A review. Braz J Microbiol 2010; 41(4): 850-61.
[http://dx.doi.org/10.1590/S1517-83822010000400004] [PMID: 24031565]
[64]
Sidhu AK, Wani SJ, Tamboli PS, et al. In vitro evaluation of anti-diabetic activity of leaf and callus extracts of Costus pictus 2012; 3(6): 4.
[65]
Jayasri MA, Gunasekaran S, Radha A, et al. Anti-diabetic effect of Costus pictus leaves in normal and streptozotocin-induced diabetic rats. Int J Diabetes Metab Citeseer 2008; 16(3): 117-22.
[66]
Aruna G, Baskaran V. Comparative study on the levels of carotenoids lutein, zeaxanthin and β-carotene in Indian spices of nutritional and medicinal importance. Food Chem 2010; 123(2): 404-9.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.056]
[67]
Nolan R, Shannon OM, Robinson N, Joel A, Houghton D, Malcomson FC. It’s no has Bean: A review of the effects of white kidney bean extract on body composition and metabolic health. Nutrients 2020; 12(5): 1398.
[http://dx.doi.org/10.3390/nu12051398] [PMID: 32414090]
[68]
Ishimoto M, Kitamura K. Growth inhibitory effects of an α-amylase inhibitor from the kidney bean, Phaseolus vulgaris (L.) on three species of Bruchids (Coleoptera: Bruchidae). Appl Entomol Zool 1989; 24(3): 281-6.
[http://dx.doi.org/10.1303/aez.24.281]
[69]
Baker CJ, Orlandi EW, Mock NM. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 1993; 102(4): 1341-4.
[http://dx.doi.org/10.1104/pp.102.4.1341] [PMID: 12231911]
[70]
Daboné C, Delisle HF, Receveur O. Poor nutritional status of schoolchildren in urban and peri-urban areas of Ouagadougou (Burkina Faso). Nutr J 2011; 10(1): 34.
[http://dx.doi.org/10.1186/1475-2891-10-34] [PMID: 21504619]
[71]
Micheli L, Lucarini E, Trallori E, et al. Phaseolus vulgaris L. Extract: Alpha-amylase inhibition against metabolic syndrome in mice. Nutrients 2019; 11(8): E1778.
[http://dx.doi.org/10.3390/nu11081778] [PMID: 31374931]
[72]
Asha S, Deevika B, Sadiq M. Euphorbia hirta linn - a review on traditional uses, phytochemistry and pharmacology. World J Pharm Res 2014.
[73]
Nidharna RM, Saemardji AA, Wirasutisna KR, Kardono LBS. Anti diabetes mellitus activity in vivo of ethanolic extract and ethyl acetate fraction of Euphorbia hirta L. Int J Pharmacol 2010; 6(3): 231-40.
[74]
Kumar S, Malhotra R, Kumar D. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn Rev 2010; 4(7): 58-61.
[http://dx.doi.org/10.4103/0973-7847.65327] [PMID: 22228942]
[75]
Tran N, Tran M, Truong H, Le L. Spray-drying microencapsulation of high concentration of bioactive compounds fragments from Euphorbia hirta L. extract and their effect on diabetes mellitus. Foods 2020; 9(7): E881.
[http://dx.doi.org/10.3390/foods9070881] [PMID: 32635546]
[76]
Al-Noory AS, Amreen A-N, Hymoor S. Antihyperlipidemic effects of ginger extracts in alloxan-induced diabetes and propylthiouracil-induced hypothyroidism in (rats). Pharmacognosy Res 2013; 5(3): 157-61.
[http://dx.doi.org/10.4103/0974-8490.112419] [PMID: 23901210]
[77]
El Gamal AA. Biological importance of marine algae. Saudi Pharm J 2010; 18(1): 1-25.
[http://dx.doi.org/10.1016/j.jsps.2009.12.001] [PMID: 23960716]
[78]
Nwosu F, Morris J, Lund VA, et al. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 2011; 126(3): 1006-2.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.111]
[79]
Husni A, Ustadi U, Wijayanti R. Inhibitory activity of α-amylase and α-glucosidase by Padina pavonica extracts. J Biol Sci (Faisalabad, Pak) 2014; 14(8): 515-20.
[http://dx.doi.org/10.3923/jbs.2014.515.520]
[80]
Firdaus M, Astawan M, Muchtadi D, Wresdiyati T, Waspadji S, Karyono SS. Prevention of endothelial dysfunction in streptozotocin-induced diabetic rats by Sargassum echinocarpum extract. Med J Indones 2010; 19(1): 32-5.
[http://dx.doi.org/10.13181/mji.v19i1.382]
[81]
Maity P, Hansda D, Bandyopadhyay U, Mishra DK. Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.) Corr. Indian J Exp Biol 2009; 47(11): 849-61.
[PMID: 20099458]
[82]
Subash Babu P, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde--a potential antidiabetic agent. Phytomedicine 2007; 14(1): 15-22.
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[83]
Goel R, Bhatia D, Gilani SJ, et al. Medicinal plants as antidiabetics : A review. 2012. Available from: /paper/MEDICINALPLANTS- AS-ANTI-DIABETICS-%3A-A-REVIEW-Goel- Bhatia/0dba9b1fc1a0e99617ec09816eac22001535003b. (Accessed May 30, 2021)
[84]
Atangwho IJ, Ebong PE, Eyong EU, et al. Comparative chemical composition of leaves of some antidiabetic medicinal plants: Azadirachta indica, Vernonia amygdalina and Gongronema latifolium. Afr J Biotechnol 2009; 8(18): 4685-9.
[85]
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[86]
Sharma B, Balomajumder C, Roy P. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol 2008; 46(7): 2376-83.
[http://dx.doi.org/10.1016/j.fct.2008.03.020] [PMID: 18474411]
[87]
Shinde J, Taldone T, Barletta M, et al. Alpha-glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohydr Res 2008; 343(7): 1278-81.
[http://dx.doi.org/10.1016/j.carres.2008.03.003] [PMID: 18374320]
[88]
Kumar S, Kavimani S, Jayaveera KN. A review on medicinal plants with potential antidiabetic activity. Int J Phytopharmacol 2013; pp. 253-60.
[89]
Oh WK, Lee CH, Lee MS, et al. Antidiabetic effects of extracts from Psidium guajava. J Ethnopharmacol 2005; 96(3): 411-5.
[http://dx.doi.org/10.1016/j.jep.2004.09.041] [PMID: 15619559]
[90]
Mukhtar HM, Ansari SH, Bhat ZA, Naved T, Singh P. Antidiabetic activity of an ethanol extract obtained from the stem bark of Psidium guajava (Myrtaceae). Pharmazie 2006; 61(8): 725-7.
[PMID: 16964719]
[91]
Basch E, Ulbricht C, Kuo G, Szapary P, Smith M. Therapeutic applications of fenugreek. Altern Med Rev 2003; 8(1): 20-7.
[PMID: 12611558]
[92]
Yuan C-S, Bieber EJ. Textbook of complementary and alternative medicine, 2003. CRC Press 2003.
[93]
Bnouham M, Ziyyat A, Mekhfi H, et al. Medicinal plants with potential antidiabetic activity-A review of ten years of herbal medicine research (1990-2000). Int J Diabetes Metab 2006; 14(1): 1-25.
[http://dx.doi.org/10.1159/000497588]
[94]
Venkatesh S, Thilagavathi J, Shyam Sundar D. Anti-diabetic activity of flowers of Hibiscus rosasinensis. Fitoterapia 2008; 79(2): 79-81.
[http://dx.doi.org/10.1016/j.fitote.2007.06.015] [PMID: 17850989]
[95]
Pankaj NK, Alam M, Roy BK. Antidiabetic activity of seed powder of Holarrhena antidysenterica in rabbits. Journal of Research-Birsa Agricultural University Birsa Agricultural University 2005; 17(1): 95.
[96]
Nayak P, Kar DM, Maharana L. ANtidiabetic activity of aerial parts of Argemone mexicana linn. in alloxan induced hyperglycaemic rats. 2011; 15.
[97]
Renault JH, Nuzillard JM, Le Crouérour G, Thépenier P, Zèches-Hanrot M, Le Men-Olivier L. Isolation of indole alkaloids from Catharanthus roseus by centrifugal partition chromatography in the pH-zone refining mode. J Chromatogr A 1999; 849(2): 421-31.
[http://dx.doi.org/10.1016/S0021-9673(99)00495-1] [PMID: 10457440]
[98]
Brun G, Dijoux M-G, David B, Mariotte A-M. A new flavonol glycoside from Catharanthus roseus. Phytochemistry 1999; 50(1): 167-9.
[http://dx.doi.org/10.1016/S0031-9422(98)00501-9]
[99]
Mantilla Perez M. Association mapping analysis for brassinosteroid candidate genes and plant architecture in a diverse "Sorghum bicolor" panel 2013.
[http://dx.doi.org/10.31274/etd-180810-3676]
[100]
Antia BS, Okokon JE. Effect of leaf juice of Catharanthus roseus Linn on cholesterol, triglyceride and lipoproteins levels in normal rats. Indian J Pharmacol 2005; 37(6): 401.
[http://dx.doi.org/10.4103/0253-7613.19081]
[101]
Simmonds MS, Howes M-JR. Plants used in the treatment of diabetes. Traditional medicines for modern time—antidiabetic plants CRC Press/Taylor and Francis Group 2006; 6: 19-82.
[102]
Ayodhya S, Kusum S, Anjali S. Hypoglycemic activity of different extracts of various herbal plants. IJRAP 2010; 1: 212-24.
[103]
Deshmukh TA, Yadav BV, Badole SL, et al. Antihyperglycaemic activity of petroleum ether extract of Ficus racemosa fruits in alloxan induced diabetic mice. 2007; 12: 504-15.
[104]
Singh D, Singh B, Goel RK. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J Ethnopharmacol 2011; 134(3): 565-83.
[http://dx.doi.org/10.1016/j.jep.2011.01.046] [PMID: 21296646]
[105]
Zhang M, Chen M, Zhang HQ, Sun S, Xia B, Wu FH. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia 2009; 80(8): 475-7.
[http://dx.doi.org/10.1016/j.fitote.2009.06.009] [PMID: 19545615]
[106]
Naowaboot J, Pannangpetch P, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U. Antihyperglycemic, antioxidant and antiglycation activities of mulberry leaf extract in streptozotocin-induced chronic diabetic rats. Plant Foods Hum Nutr 2009; 64(2): 116-21.
[http://dx.doi.org/10.1007/s11130-009-0112-5] [PMID: 19434497]
[107]
Yang X, Yang L, Zheng H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem Toxicol 2010; 48(8-9): 2374-9.
[http://dx.doi.org/10.1016/j.fct.2010.05.074] [PMID: 20561945]
[108]
Kim J-K, Kim M, Cho S-G, Kim MK, Kim SW, Lim YH. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J Ind Microbiol Biotechnol 2010; 37(6): 631-7.
[http://dx.doi.org/10.1007/s10295-010-0722-9] [PMID: 20411402]
[109]
Wang C-P, Wang Y, Wang X, et al. Mulberroside a possesses potent uricosuric and nephroprotective effects in hyperuricemic mice. Planta Med 2011; 77(8): 786-94.
[http://dx.doi.org/10.1055/s-0030-1250599] [PMID: 21154198]
[110]
Hung H-Y, Qian K, Morris-Natschke SL, Hsu CS, Lee KH. Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep 2012; 29(5): 580-606.
[http://dx.doi.org/10.1039/c2np00074a] [PMID: 22491825]
[111]
Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J Diabetes Metab Disord 2013; 12(1): 43.
[http://dx.doi.org/10.1186/2251-6581-12-43] [PMID: 23938049]
[112]
Sales PM, Souza PM, Simeoni LA, Silveira D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 2012; 15(1): 141-83.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[113]
Cantizani J, Ortiz J, Ravipati AS, et al. Screening for natural inhibitors in Chinese medicinal plants against glycogen synthase kinase 3β (GSK-3β). Pharmacologia 2014; pp. 205-14.
[114]
Bentos COG, Pereira AV. Inibidores DA GSK-3: Uma nova estratégia para a regeneração dental. Iniciac cient Cesumar 2017; 19(2): 195.
[115]
Li Y, Xu J, Chen Y, Mei Z, Xiao Y. Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-performance liquid chromatography. J Chromatogr A 2015; 1425: 8-16.
[http://dx.doi.org/10.1016/j.chroma.2015.10.062] [PMID: 26610618]
[116]
Larson SB, Greenwood A, Cascio D, Day J, McPherson A. Refined molecular structure of pig pancreatic α-amylase at 2.1 A resolution. J Mol Biol 1994; 235(5): 1560-84.
[http://dx.doi.org/10.1006/jmbi.1994.1107] [PMID: 8107092]
[117]
Lo Piparo E, Scheib H, Frei N, Williamson G, Grigorov M, Chou CJ. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase. J Med Chem 2008; 51(12): 3555-61.
[http://dx.doi.org/10.1021/jm800115x] [PMID: 18507367]
[118]
Frkic RL, He Y, Rodriguez BB, et al. Structure-Activity relationship of 2,4-dichloro-N-(3,5-dichloro-4-(quinolin-3-yloxy)phenyl)benzenesulfonamide (INT131) analogs for PPARγ-targeted antidiabetics. J Med Chem 2017; 60(11): 4584-93.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01727] [PMID: 28485590]
[119]
Goto T, Takahashi N, Hirai S, Kawada T. Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res 2010; 2010: 483958.
[http://dx.doi.org/10.1155/2010/483958] [PMID: 20613991]
[120]
Reyes BAS, Dufourt EC, Ross J, et al. Chapter 4 - Selected Phyto and Marine Bioactive Compounds: Alternatives for the Treatment of Type 2 Diabetes. In: Atta-ur-Rahman , Ed. Studies in Natural Products Chemistry. Elsevier 2018; 55: pp. 111-43.
[121]
Xu HE, Lambert MH, Montana VG, et al. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 2001; 98(24): 13919-24.
[http://dx.doi.org/10.1073/pnas.241410198] [PMID: 11698662]
[122]
Hanhineva K, Törrönen R, Bondia-Pons I, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11(4): 1365-402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[123]
van Raalte DH, Li M, Pritchard PH, Wasan KM. Peroxisome proliferator-activated receptor (PPAR)-α: A pharmacological target with a promising future. Pharm Res 2004; 21(9): 1531-8.
[http://dx.doi.org/10.1023/B:PHAM.0000041444.06122.8d] [PMID: 15497675]
[124]
Cronet P, Petersen JFW, Folmer R, et al. Structure of the PPARalpha and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure 2001; 9(8): 699-706.
[http://dx.doi.org/10.1016/S0969-2126(01)00634-7] [PMID: 11587644]
[125]
Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 2004; 25(9): 471-80.
[http://dx.doi.org/10.1016/j.tips.2004.07.006] [PMID: 15559249]
[126]
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005; 365(9467): 1333-46.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[127]
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int J Physiol Pathophysiol Pharmacol 2019; 11(3): 45-63.
[PMID: 31333808]
[128]
Monjiote DP, Leo EEM, Campos MRS. Functional and biological potential of bioactive compounds in foods for the dietary treatment of type 2 diabetes mellitus. In: Functional Food-Improve Health through Adequate Food. IntechOpen 2017.
[http://dx.doi.org/10.5772/intechopen.68788]
[129]
Yeh GY, Eisenberg DM, Kaptchuk TJ, et al. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes care Am Diabetes Assoc 2003; 26(4): 1277-94.
[http://dx.doi.org/10.2337/diacare.26.4.1277]
[130]
Ibáñez-Camacho R, Meckes-Lozoya M. Effect of a semipurified product obtained from Opuntia streptacantha L. (a cactus) on glycemia and triglyceridemia of rabbit. Arch Invest Med (Mex) 1983; 14(4): 437-43.
[PMID: 6678559]
[131]
Trejo-González A, Gabriel-Ortiz G, Puebla-Pérez AM, et al. A purified extract from prickly pear cactus (Opuntia fuliginosa) controls experimentally induced diabetes in rats. J Ethnopharmacol 1996; 55(1): 27-33.
[http://dx.doi.org/10.1016/S0378-8741(96)01467-5] [PMID: 9121164]
[132]
Frati-Munari AC, Yever-Garcés A, Islas-Andrade S, Ariza-Andráca CR, Chávez-Negrete A. Studies on the mechanism of “hypoglycemic” effect of nopal (Opuntia sp.). Arch Invest Med (Mex) 1987; 18(1): 7-12.
[PMID: 3307675]
[133]
Berk Z. Technology of production of edible flours and protein products from soybeans. Agricultural Services 1992; p. 97.
[134]
Céspedes EM, Riverón G, Alonso CA, et al. Evolución metabólica de pacientes diabéticos tipo 2 sometidos a un tratamiento combinado de dieta y ejercicios yoga. Revista Cubana de Investigaciones Biomédicas 1999. Editorial Ciencias Médicas 2002; 21(2): 98-101.
[135]
Garrido G A, Maza C. Fitoestrógenos dietarios y sus potenciales beneficios en la salud del adulto humano. Revista médica de Chile Sociedad Médica de Santiago 2003; 131(11): 1321-28.
[136]
Sterna V, Zute S, Brunava L. Oat grain composition and its nutrition benefice. Agriculture and agricultural science procedia 2016; 8: 252-6.
[http://dx.doi.org/10.1016/j.aaspro.2016.02.100]
[137]
Cabrera Llano JL, Cárdenas Ferrer M. Importancia de la fibra dietética para la nutrición humana. Rev Cubana Med Gen Integr 2006; 22(4).
[138]
Bantle JP, Wylie-Rosett J, Albright AL, et al. Nutrition recommendations and interventions for diabetes: A position statement of the American diabetes association. Diabetes Care 2008; 31(Suppl. 1): S61-78.
[http://dx.doi.org/10.2337/dc08-S061] [PMID: 18165339]
[139]
Brown AA, Hu FB. Dietary modulation of endothelial function: Implications for cardiovascular disease. Am J Clin Nutr 2001; 73(4): 673-86.
[http://dx.doi.org/10.1093/ajcn/73.4.673] [PMID: 11273841]
[140]
Geohas J, Daly A, Juturu V, Finch M, Komorowski JR. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized clinical trial. Am J Med Sci 2007; 333(3): 145-53.
[http://dx.doi.org/10.1097/MAJ.0b013e318031b3c9] [PMID: 17496732]
[141]
Lu Q, Björkhem I, Wretlind B, Diczfalusy U, Henriksson P, Freyschuss A. Effect of ascorbic acid on microcirculation in patients with Type II diabetes: A randomized placebo-controlled cross-over study. Clin Sci (Lond) 2005; 108(6): 507-13.
[http://dx.doi.org/10.1042/CS20040291] [PMID: 15675894]
[142]
Burr GO, Burr MMON. The nature and rôle of the fatty acids essential in nutrition. J Biol Chem 1930; 86(2): 587-621.
[http://dx.doi.org/10.1016/S0021-9258(20)78929-5]
[143]
Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: A new pharmacologic genus. Br J Pharmacol 2008; 153(Suppl. 1): S200-15.
[http://dx.doi.org/10.1038/sj.bjp.0707489] [PMID: 17965751]
[144]
Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006; 83(6)(Suppl.): 1505S-19S.
[http://dx.doi.org/10.1093/ajcn/83.6.1505S] [PMID: 16841861]
[145]
Manerba A, Vizzardi E, Metra M, Dei Cas L. n-3 PUFAs and cardiovascular disease prevention. Future Cardiol 2010; 6(3): 343-50.
[http://dx.doi.org/10.2217/fca.10.19] [PMID: 20462340]
[146]
Jiménez-Escrig A, Sánchez-Muniz FJ. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res 2000; 20(4): 585-98.
[http://dx.doi.org/10.1016/S0271-5317(00)00149-4]
[147]
Matsumura Y. Nutrition trends in Japan. Asia Pac J Clin Nutr 2001; 10(Suppl.): S40-7.
[http://dx.doi.org/10.1046/j.1440-6047.2001.0100s1S40.x] [PMID: 11708582]
[148]
Siró I, Kápolna E, Kápolna B, Lugasi A. Functional food. Product development, marketing and consumer acceptance--a review. Appetite 2008; 51(3): 456-67.
[http://dx.doi.org/10.1016/j.appet.2008.05.060] [PMID: 18582508]
[149]
Kim J, Shin A, Lee J-S, Youn S, Yoo KY. Dietary factors and breast cancer in Korea: An ecological study. Breast J 2009; 15(6): 683-6.
[http://dx.doi.org/10.1111/j.1524-4741.2009.00817.x] [PMID: 19686228]
[150]
Kadam SU, Prabhasankar P. Marine foods as functional ingredients in bakery and pasta products. Food Res Int 2010; 43(8): 1975-80.
[http://dx.doi.org/10.1016/j.foodres.2010.06.007]
[151]
Vessby B, Gustafsson I-B, Boberg J, Karlström B, Lithell H, Werner I. Substituting polyunsaturated for saturated fat as a single change in a Swedish diet: Effects on serum lipoprotein metabolism and glucose tolerance in patients with hyperlipoproteinaemia. Eur J Clin Invest 1980; 10(3): 193-202.
[http://dx.doi.org/10.1111/j.1365-2362.1980.tb00020.x] [PMID: 6783415]
[152]
Vessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001; 44(3): 312-9.
[http://dx.doi.org/10.1007/s001250051620] [PMID: 11317662]
[153]
Garg A, Grundy SM, Unger RH. Comparison of effects of high and low carbohydrate diets on plasma lipoproteins and insulin sensitivity in patients with mild NIDDM. Diabetes 1992; 41(10): 1278-85.
[http://dx.doi.org/10.2337/diab.41.10.1278] [PMID: 1397701]
[154]
Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001; 294(5548): 1871-5.
[155]
Sánchez-Machado DI, López-Cervantes J, López-Hernández J, Paseiro-Losada P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 2004; 85(3): 439-44.
[http://dx.doi.org/10.1016/j.foodchem.2003.08.001]
[156]
Mann JI, De Leeuw I, Hermansen K, et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr Metab Cardiovasc Dis 2004; 14(6): 373-94.
[http://dx.doi.org/10.1016/S0939-4753(04)80028-0] [PMID: 15853122]
[157]
MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR. Nutritional value of edible seaweeds. Nutr Rev 2007; 65(12 Pt 1): 535-43.
[http://dx.doi.org/10.1111/j.1753-4887.2007.tb00278.x] [PMID: 18236692]
[158]
Kim MS, Kim JY, Choi WH, Lee SS. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutr Res Pract 2008; 2(2): 62-7.
[http://dx.doi.org/10.4162/nrp.2008.2.2.62] [PMID: 20126367]
[159]
Stern JL, Hagerman AE, Steinberg PD, Mason PK. Phlorotannin-protein interactions. J Chem Ecol 1996; 22(10): 1877-99.
[http://dx.doi.org/10.1007/BF02028510] [PMID: 24227114]
[160]
Anhê FF, Desjardins Y, Pilon G, et al. Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition 2013; 1(4): 105-14.
[http://dx.doi.org/10.1016/j.phanu.2013.07.004]
[161]
Eom S-H, Lee S-H, Yoon N-Y, et al. α-Glucosidase- and α-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric 2012; 92(10): 2084-90.
[http://dx.doi.org/10.1002/jsfa.5585] [PMID: 22271637]
[162]
Sharifuddin Y, Chin Y-X, Lim P-E, Phang SM. Potential bioactive compounds from seaweed for diabetes management. Mar Drugs 2015; 13(8): 5447-91.
[http://dx.doi.org/10.3390/md13085447] [PMID: 26308010]
[163]
Kurihara H, Mitani T, Kawabata J, Takahashi K. Inhibitory potencies of bromophenols from Rhodomelaceae algae against α-glucosidase activity. Fish Sci 1999; 65(2): 300-3.
[http://dx.doi.org/10.2331/fishsci.65.300]
[164]
Iwai K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 2008; 63(4): 163-9.
[http://dx.doi.org/10.1007/s11130-008-0098-4] [PMID: 18958624]
[165]
Lee S-H, Park M-H, Heo S-J, et al. Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 2010; 48(10): 2633-7.
[http://dx.doi.org/10.1016/j.fct.2010.06.032] [PMID: 20600532]
[166]
Teixeira VL, Rocha FD, Houghton PJ, Kaplan MA, Pereira RC. α-amylase inhibitors from Brazilian seaweeds and their hypoglycemic potential. Fitoterapia 2007; 78(1): 35-6.
[http://dx.doi.org/10.1016/j.fitote.2006.09.017] [PMID: 17067759]
[167]
Tonks NK. PTP1B: From the sidelines to the front lines! FEBS Lett 2003; 546(1): 140-8.
[http://dx.doi.org/10.1016/S0014-5793(03)00603-3] [PMID: 12829250]
[168]
Lee S, Wang Q. Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Med Res Rev 2007; 27(4): 553-73.
[http://dx.doi.org/10.1002/med.20079] [PMID: 17039461]
[169]
Kim KY, Nguyen TH, Kurihara H, Kim SM. α-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci 2010; 75(5): H145-50.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01629.x] [PMID: 20629879]
[170]
Lee S-H. Yong-Li, Karadeniz F, Kim M-M, Kim S-K. α-glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric 2009; 89(9): 1552-8.
[http://dx.doi.org/10.1002/jsfa.3623]
[171]
Okada Y, Ishimaru A, Suzuki R, Okuyama T. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: Potential for the effective treatment of diabetic complications. J Nat Prod 2004; 67(1): 103-5.
[http://dx.doi.org/10.1021/np030323j] [PMID: 14738398]
[172]
Son YK, Jin SE, Kim H-R, Woo HC, Jung HA, Choi JS. Inhibitory activities of the edible brown alga Laminaria japonica on glucose-mediated protein damage and rat lens aldose reductase. Fish Sci 2011; 77(6): 1069-79.
[http://dx.doi.org/10.1007/s12562-011-0406-z]
[173]
Jung HA, Yoon NY, Woo M-H, Choi JS. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish Sci 2008; 74(6): 1363-5.
[http://dx.doi.org/10.1111/j.1444-2906.2008.01670.x]
[174]
Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 2006; 44(7): 1144-50.
[http://dx.doi.org/10.1016/j.fct.2006.02.002] [PMID: 16554116]
[175]
Balboa EM, Conde E, Moure A, Falqué E, Domínguez H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 2013; 138(2-3): 1764-85.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.026] [PMID: 23411309]
[176]
Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996; 334(18): 1150-5.
[http://dx.doi.org/10.1056/NEJM199605023341802] [PMID: 8602180]
[177]
Hennekens CH, Buring JE, Manson JE, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 1996; 334(18): 1145-9.
[http://dx.doi.org/10.1056/NEJM199605023341801] [PMID: 8602179]
[178]
Al-Rowais NA. Herbal medicine in the treatment of diabetes mellitus. Saudi Med J 2002; 23(11): 1327-31.
[179]
Atta-Ur-Rahman Zaman K. Medicinal plants with hypoglycemic activity. J Ethnopharmacol 1989; 26(1): 1-55.
[http://dx.doi.org/10.1016/0378-8741(89)90112-8] [PMID: 2664356]
[180]
Cook N. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 1996; 7(2): 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[181]
Ndhlala AR, Moyo M, Van Staden J. Natural antioxidants: Fascinating or mythical biomolecules? Molecules 2010; 15(10): 6905-30.
[http://dx.doi.org/10.3390/molecules15106905] [PMID: 20938402]
[182]
Puupponen-Pimiä R, Nohynek L, Alakomi H-L, Oksman-Caldentey KM. Bioactive berry compounds-novel tools against human pathogens. Appl Microbiol Biotechnol 2005; 67(1): 8-18.
[http://dx.doi.org/10.1007/s00253-004-1817-x] [PMID: 15578177]
[183]
Campbell TF, McKenzie J, Murray J, Delgoda R, Bowen-Forbes CS. Rubus rosifolius varieties as antioxidant and potential chemopreventive agents. J Funct Foods 2017; 37: 49-57.
[http://dx.doi.org/10.1016/j.jff.2017.07.040]
[184]
Den Hartogh DJ, Tsiani E. Antidiabetic Properties of Naringenin: A citrus fruit polyphenol. Biomolecules 2019; 9(3): 99.
[http://dx.doi.org/10.3390/biom9030099] [PMID: 30871083]
[185]
Zygmunt K, Faubert B, MacNeil J, Tsiani E. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 2010; 398(2): 178-83.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.048] [PMID: 20558145]
[186]
Kim Y, Keogh JB, Clifton PM. Polyphenols and glycemic control. Nutrients 2016; 8(1): 17.
[http://dx.doi.org/10.3390/nu8010017] [PMID: 26742071]
[187]
Loureiro G, Martel F. The effect of dietary polyphenols on intestinal absorption of glucose and fructose: Relation with obesity and type 2 diabetes. Food Rev Int 2019; 35(4): 390-406.
[http://dx.doi.org/10.1080/87559129.2019.1573432]
[188]
Li C, Li X, Han H, et al. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: A meta-analysis of randomized, controlled trials. Medicine Wolters Kluwer Health 2016; 95(26): pe4088.
[http://dx.doi.org/10.1097/MD.0000000000004088]
[189]
Varghese SM, Thomas J. Polyphenolic constituents in mulberry leaf extract (M. latifolia L. cv. BC259) and its antidiabetic effect in streptozotocin induced diabetic rats. Pak J Pharm Sci 2019; 32(1): 69-74.
[PMID: 30772792]
[190]
Mollace V, Scicchitano M, Paone S, et al. Hypoglycemic and hypolipemic effects of a new lecithin formulation of bergamot polyphenolic fraction: A double blind, randomized, placebo- controlled study. Endocr Metab Immune Disord Drug Targets 2019; 19(2): 136-43.
[191]
Yang L, Ling W, Yang Y, et al. Role of purified anthocyanins in improving cardiometabolic risk factors in Chinese men and women with prediabetes or early untreated diabetes-a randomized controlled trial. Nutrients 2017; 9(10): 1104.
[http://dx.doi.org/10.3390/nu9101104] [PMID: 28994705]
[192]
Rambaran TF. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Appl Sci 2020; 2(8): 1335.
[http://dx.doi.org/10.1007/s42452-020-3110-8]
[193]
Kuo T, McQueen A, Chen T-C, et al. Regulation of Glucose Homeostasis by Glucocorticoids. In: Wang JC, Harris C, Eds. Glucocorticoid signaling: From molecules to mice to man springer. New York: Springer 2015; pp. 99-126.
[http://dx.doi.org/10.1007/978-1-4939-2895-8_5]
[194]
Villa P, Costantini B, Suriano R, et al. The differential effect of the phytoestrogen genistein on cardiovascular risk factors in postmenopausal women: Relationship with the metabolic status. J Clin Endocrinol Metab 2009; 94(2): 552-8.
[http://dx.doi.org/10.1210/jc.2008-0735] [PMID: 19017760]
[195]
Kayaniyil S, Retnakaran R, Harris SB, et al. Prospective associations of vitamin D with β-cell function and glycemia: The PROspective metabolism and ISlet cell evaluation (PROMISE) cohort study. Diabetes American Diabetes Association 2011; 60(11): 2947-53.
[http://dx.doi.org/10.2337/db11-0465] [PMID: 21911752]
[196]
Group ES. 2 S. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. Diabetologia 1999; 42(1): 51-4.
[http://dx.doi.org/10.1007/s001250051112]
[197]
Boucher BJ, Mannan N, Noonan K, Hales CN, Evans SJ. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in east London Asians. Diabetologia 1995; 38(10): 1239-45.
[http://dx.doi.org/10.1007/BF00422375] [PMID: 8690178]
[198]
Kumar S, Davies M, Zakaria Y, et al. Improvement in glucose tolerance and beta-cell function in a patient with vitamin D deficiency during treatment with vitamin D. Postgrad Med J 1994; 70(824): 440-3.
[http://dx.doi.org/10.1136/pgmj.70.824.440] [PMID: 8029165]
[199]
Wang L, Liu S, Manson JE, Gaziano JM, Buring JE, Sesso HD. The consumption of lycopene and tomato-based food products is not associated with the risk of type 2 diabetes in women. J Nutr 2006; 136(3): 620-5.
[http://dx.doi.org/10.1093/jn/136.3.620] [PMID: 16484534]
[200]
Li P-J, Jin T, Luo D-H, et al. Effect of prolonged radiotherapy treatment time on survival outcomes after intensity-modulated radiation therapy in nasopharyngeal carcinoma. PLoS One 2015; 10(10): e0141332.
[http://dx.doi.org/10.1371/journal.pone.0141332] [PMID: 26506559]
[201]
Tao L, Zhu F, Qin C, et al. Nature’s contribution to today’s pharmacopeia. Nat Biotechnol 2014; 32(10): 979-80.
[http://dx.doi.org/10.1038/nbt.3034] [PMID: 25299914]
[202]
Li W, Yuan G, Pan Y, et al. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review. Frontiers in pharmacology. Frontiers (Boulder) 2017; 8: 74.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy