Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Applications of Nanotechnology-based Approaches to Overcome Multi-drug Resistance in Cancer

Author(s): Sana Kalave, Namita Hegde and Kapil Juvale*

Volume 28, Issue 38, 2022

Published on: 21 October, 2022

Page: [3140 - 3157] Pages: 18

DOI: 10.2174/1381612828666220401142300

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is one of the leading causes of death worldwide. Chemotherapy and radiation therapy are the major treatments used for the management of cancer. Multidrug resistance (MDR) is a major hindrance faced in the treatment of cancer and is also responsible for cancer relapse. To date, several studies have been carried out on strategies to overcome or reverse MDR in cancer. Unfortunately, the MDR reversing agents have been proven to have minimal clinical benefits, and eventually, no improvement has been made in therapeutic efficacy to date. Thus, several investigational studies have also focused on overcoming drug resistance rather than reversing the MDR. In this review, we focus primarily on nanoformulations regarded as a novel approach to overcome or bypass the MDR in cancer. The nanoformulation systems serve as an attractive strategy as these nanosized materials selectively get accumulated in tumor tissues, thereby improving the clinical outcomes of patients suffering from MDR cancer. In the current work, we present an overview of recent trends in the application of various nano-formulations, belonging to different mechanistic classes and functionalization like carbon nanotubes, carbon nanohorns, carbon nanospheres, liposomes, dendrimers, etc., to overcome MDR in cancer. A detailed overview of these techniques will help researchers in exploring the applicability of nanotechnologybased approaches to treat MDR.

Keywords: MDR, ABC transporters, nanotechnology, nanocarriers, multidrug resistance, cancer.

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Chearwae, W.; Wu, C.P.; Chu, H.Y.; Lee, T.R.; Ambudkar, S.V.; Limtrakul, P. Curcuminoids purified from turmeric powder modulate the function of human multidrug resistance protein 1 (ABCC1). Cancer Chemother. Pharmacol., 2006, 57(3), 376-388.
[http://dx.doi.org/10.1007/s00280-005-0052-1] [PMID: 16021489]
[3]
Gillet, J.P.; Gottesman, M.M. Mechanisms of multidrug resistance in cancer. Methods Mol. Biol., 2010, 596, 47-76.
[4]
Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res., 2001, 42(7), 1007-1017.
[http://dx.doi.org/10.1016/S0022-2275(20)31588-1] [PMID: 11441126]
[5]
Cai, L.; Qin, X.; Xu, Z. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega, 2019, 4(7), 12036-12042.
[http://dx.doi.org/10.1021/acsomega.9b01142] [PMID: 31460316]
[6]
Choi, C.H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int., 2005, 5(1), 30.
[http://dx.doi.org/10.1186/1475-2867-5-30] [PMID: 16202168]
[7]
Gupta, S.K.; Singh, P.; Ali, V.; Verma, M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol. Rev., 2020, 14(2), 448.
[http://dx.doi.org/10.4081/oncol.2020.448] [PMID: 32676170]
[8]
Vasiliou, V; Vasiliou, K; Nebert, DW Human ATP-binding cassette (ABC) transporter family. Hum Genomics., 2009, 3(3), 281-290.
[http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[9]
Szakács, G.; Hall, M.D.; Gottesman, M.M. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem. Rev., 2014, 114(11), 5753-5774.
[http://dx.doi.org/10.1021/cr4006236] [PMID: 24758331]
[10]
Liu, M.; Fu, M.; Yang, X. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111284] [PMID: 32771817]
[11]
Lepeltier, E.; Rijo, P.; Rizzolio, F. Nanomedicine to target multidrug resistant tumors. Drug Resist. Updat., 2020, 52, 100704.
[http://dx.doi.org/10.1016/j.drup.2020.100704] [PMID: 32512316]
[12]
Coley, H.M. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat. Rev., 2008, 34(4), 378-390.
[http://dx.doi.org/10.1016/j.ctrv.2008.01.007] [PMID: 18367336]
[13]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[14]
Eckford, P.D.W.; Sharom, F.J. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem. J., 2005, 389(2), 517-526.
[http://dx.doi.org/10.1042/BJ20050047] [PMID: 15799713]
[15]
Das, M.; Nariya, P.; Joshi, A. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydr. Polym., 2020, 247, 116751.
[http://dx.doi.org/10.1016/j.carbpol.2020.116751] [PMID: 32829867]
[16]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[17]
Rosenberg, M.F.; Mao, Q.; Holzenburg, A.; Ford, R.C.; Deeley, R.G.; Cole, S.P.C. The structure of the multidrug resistance protein 1 (MRP1/ABCC1). crystallization and single-particle analysis. J. Biol. Chem., 2001, 276(19), 16076-16082.
[http://dx.doi.org/10.1074/jbc.M100176200] [PMID: 11279022]
[18]
Yao, Y.; Zhou, Y.; Liu, L. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci., 2020, 7, 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[19]
Cole, S.P.C. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem., 2014, 289(45), 30880-30888.
[http://dx.doi.org/10.1074/jbc.R114.609248] [PMID: 25281745]
[20]
Dalpiaz, A.; Paganetto, G.; Botti, G.; Pavan, B. Cancer stem cells and nanomedicine: New opportunities to combat multidrug resistance? Drug Discov. Today, 2020, 25(9), 1651-1667.
[http://dx.doi.org/10.1016/j.drudis.2020.07.023] [PMID: 32763499]
[21]
Munoz, M.; Henderson, M.; Haber, M.; Norris, M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life, 2007, 59(12), 752-757.
[http://dx.doi.org/10.1080/15216540701736285] [PMID: 18085475]
[22]
Blokzijl, H.; van Steenpaal, A.; Borght, S.V. Up-regulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel disease. J. Biol. Chem., 2008, 283(51), 35630-35637.
[http://dx.doi.org/10.1074/jbc.M804374200] [PMID: 18838379]
[23]
Majidinia, M.; Mirza-Aghazadeh-Attari, M.; Rahimi, M. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life, 2020, 72(5), 855-871.
[http://dx.doi.org/10.1002/iub.2215] [PMID: 31913572]
[24]
Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[25]
Choudhury, H.; Pandey, M.; Yin, T.H. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater. Sci. Eng. C, 2019, 101, 596-613.
[http://dx.doi.org/10.1016/j.msec.2019.04.005] [PMID: 31029353]
[26]
Nakanishi, T.; Ross, D.D. Breast cancer resistance protein (BCRP/ABCG2): Its role in multidrug resistance and regulation of its gene expression. Chin. J. Cancer, 2012, 31(2), 73-99.
[http://dx.doi.org/10.5732/cjc.011.10320] [PMID: 22098950]
[27]
Muriithi, W.; Wanjiku Macharia, L.; Pilotto Heming, C. ABC transporters and the hallmarks of cancer: Roles in cancer aggressiveness beyond multidrug resistance. Cancer Biol. Med., 2020, 17(2), 253-269.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0284] [PMID: 32587767]
[28]
Hur, W.; Yoon, S. Molecular pathogenesis of radiation-induced cell toxicity in stem cells. Int. J. Mol. Sci., 2017, 18(12), 2749.
[http://dx.doi.org/10.3390/ijms18122749] [PMID: 29258244]
[29]
Chen, Y.; Chen, H.; Shi, J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol. Pharm., 2014, 11(8), 2495-2510.
[http://dx.doi.org/10.1021/mp400596v] [PMID: 24224544]
[30]
Yamashita, F.; Hashida, M. Pharmacokinetic considerations for targeted drug delivery. Adv. Drug Deliv. Rev., 2013, 65(1), 139-147.
[http://dx.doi.org/10.1016/j.addr.2012.11.006] [PMID: 23280371]
[31]
Murakami, M.; Cabral, H.; Matsumoto, Y. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Transl. Med., 2011, 3(64), 64ra2.
[http://dx.doi.org/10.1126/scitranslmed.3001385] [PMID: 21209412]
[32]
Qin, L.; Wu, L.; Jiang, S. Multifunctional micelle delivery system for overcoming multidrug resistance of doxorubicin. J. Drug Target., 2018, 26(4), 289-295.
[http://dx.doi.org/10.1080/1061186X.2017.1379525] [PMID: 28901798]
[33]
Braunová, A.; Kostka, L.; Sivák, L. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J. Control. Release, 2017, 245, 41-51.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.020] [PMID: 27871991]
[34]
Soma, E.C.; Dubernet, C.; Bentolila, D.; Benita, S.; Couvreur, P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials, 2000, 21(1), 1-7.
[http://dx.doi.org/10.1016/S0142-9612(99)00125-8] [PMID: 10619673]
[35]
Kumar, M.; Sharma, G.; Misra, C. -desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci. Eng. C, 2018, 89, 274-282.
[http://dx.doi.org/10.1016/j.msec.2018.03.033] [PMID: 29752099]
[36]
Wu, P.; Li, S.; Zhang, H. Design real-time reversal of tumor multidrug resistance cleverly with shortened carbon nanotubes. Drug Des. Devel. Ther., 2014, 8, 2431-2438.
[PMID: 25525333]
[37]
Zhang, H.; Xiong, J.; Guo, L.; Patel, N.; Guang, X. Integrated traditional Chinese and western medicine modulator for overcoming the multidrug resistance with carbon nanotubes. RSC Advances, 2015, 5(87), 71287-71296.
[http://dx.doi.org/10.1039/C5RA09627H]
[38]
Wang, N.; Feng, Y.; Zeng, L.; Zhao, Z.; Chen, T. Functionalized multiwalled carbon nanotubes as carriers of ruthenium complexes to antagonize cancer multidrug resistance and radioresistance. ACS Appl. Mater. Interfaces, 2015, 7(27), 14933-14945.
[http://dx.doi.org/10.1021/acsami.5b03739] [PMID: 26107995]
[39]
Raza, K.; Kumar, D.; Kiran, C. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity. Mol. Pharm., 2016, 13(7), 2423-2432.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00183] [PMID: 27182646]
[40]
Kaur, V.; Garg, T.; Rath, G.; Goyal, A.K. Therapeutic potential of nanocarrier for overcoming to P-glycoprotein. J. Drug Target., 2014, 22(10), 859-870.
[http://dx.doi.org/10.3109/1061186X.2014.947295] [PMID: 25101945]
[41]
Henry-Toulmé, N.; Grouselle, M.; Ramaseilles, C. Multidrug resistance bypass in cells exposed to doxorubicin-loaded nanospheres. Biochem. Pharmacol., 1995, 50(8), 1135-1139.
[http://dx.doi.org/10.1016/0006-2952(95)00226-P] [PMID: 7488226]
[42]
Vergara, D.; Bellomo, C.; Zhang, X. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine, 2012, 8(6), 891-899.
[http://dx.doi.org/10.1016/j.nano.2011.10.014] [PMID: 23066648]
[43]
Elumalai, R.; Patil, S.; Maliyakkal, N.; Rangarajan, A.; Kondaiah, P.; Raichur, A.M. Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers. Nanomedicine, 2015, 11(4), 969-981.
[http://dx.doi.org/10.1016/j.nano.2015.01.005] [PMID: 25659647]
[44]
Shen, Y.; Jin, E.; Zhang, B. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J. Am. Chem. Soc., 2010, 132(12), 4259-4265.
[http://dx.doi.org/10.1021/ja909475m] [PMID: 20218672]
[45]
You, Y.; Xu, Z.; Chen, Y. Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer. Drug Deliv., 2018, 25(1), 448-460.
[http://dx.doi.org/10.1080/10717544.2018.1435746] [PMID: 29405790]
[46]
Anwar, M; Akhter, S; Mallick, N Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studies. Pharmacol Res, 2016, 113(Pt A), 146-165.
[47]
Kuo, W.S.; Ku, Y.C.; Sei, H.T.; Cheng, F-Y.; Yeh, C-S. Paclitaxel-loaded stabilizer-free poly(D,L-lactide-co-glycolide) nanoparticles conjugated with quantum dots for reversion of anti-cancer drug resistance and cancer cellular imaging. J. Chin. Chem. Soc., 2009, 56(5), 923-934.
[http://dx.doi.org/10.1002/jccs.200900136]
[48]
Kesharwani, S.S.; Kaur, S.; Tummala, H.; Sangamwar, A.T. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin. Drug Deliv., 2018, 15(11), 1127-1142.
[http://dx.doi.org/10.1080/17425247.2018.1537261] [PMID: 30324813]
[49]
Zhou, Y.; Wang, R.; Chen, B.; Sun, D.; Hu, Y.; Xu, P. Daunorubicin and gambogic acid coloaded cysteamine-CdTe quantum dots minimizing the multidrug resistance of lymphoma in vitro and in vivo. Int. J. Nanomedicine, 2016, 11, 5429-5442.
[http://dx.doi.org/10.2147/IJN.S115037] [PMID: 27799767]
[50]
Wang, J.; Wang, F.; Li, F. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(17), 2954-2962.
[http://dx.doi.org/10.1039/C5TB02450A] [PMID: 27152196]
[51]
Sui, X.; Luo, C.; Wang, C.; Zhang, F.; Zhang, J.; Guo, S. Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine, 2016, 12(7), 1997-2006.
[http://dx.doi.org/10.1016/j.nano.2016.03.010] [PMID: 27085903]
[52]
Zhang, G.; Shi, L.; Selke, M.; Wang, X. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: In vitro and in vivo evaluation. Nanoscale Res. Lett., 2011, 6(1), 418.
[http://dx.doi.org/10.1186/1556-276X-6-418] [PMID: 21711951]
[53]
Li, X.; Li, P.; Zhang, Y. Novel mixed polymeric micelles for enhancing delivery of anticancer drug and overcoming multidrug resistance in tumor cell lines simultaneously. Pharm. Res., 2010, 27(8), 1498-1511.
[http://dx.doi.org/10.1007/s11095-010-0147-1] [PMID: 20411408]
[54]
Kim, S.C.; Kim, D.W.; Shim, Y.H. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. J. Control. Release, 2001, 72(1-3), 191-202.
[http://dx.doi.org/10.1016/S0168-3659(01)00275-9] [PMID: 11389998]
[55]
Kim, D.; Lee, E.S.; Oh, K.T.; Gao, Z.G.; Bae, Y.H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008, 4(11), 2043-2050.
[http://dx.doi.org/10.1002/smll.200701275] [PMID: 18949788]
[56]
Liu, Y.; Wang, W.; Yang, J.; Zhou, C.; Sun, J. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharmaceut Sci, 2013, 8(3), 159-167.
[http://dx.doi.org/10.1016/j.ajps.2013.07.021]
[57]
Oudard, S.; Thierry, A.; Jorgensen, T.J.; Rahman, A. Sensitization of multidrug-resistant colon cancer cells to doxorubicin encapsulated in liposomes. Cancer Chemother. Pharmacol., 1991, 28(4), 259-265.
[PMID: 1678995]
[58]
Salzano, G.; Navarro, G.; Trivedi, M.S.; De Rosa, G.; Torchilin, V.P. Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol. Cancer Ther., 2015, 14(4), 1075-1084.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0556] [PMID: 25657335]
[59]
Duan, X.; Xiao, J.; Yin, Q. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano, 2013, 7(7), 5858-5869.
[http://dx.doi.org/10.1021/nn4010796] [PMID: 23734880]
[60]
Dinarvand, R.; Varshochian, R.; Kamalinia, G.; Goodarzi, N.; Atyabi, F. Recent approaches to overcoming multiple drug resistance in breast cancer using modified liposomes. Clin. Lipidol., 2013, 8(4), 391-394.
[http://dx.doi.org/10.2217/clp.13.33]
[61]
Sen, R.; Sahoo, S.K.; Satpathy, S. Liposomes as drug delivery system: A brief review. Int J Res Pharm Sci, 2014, 5(4), 309-321.
[62]
Palmeira, A.; Sousa, E.; Vasconcelos, M.H.; Pinto, M.M. Three decades of P-gp inhibitors: Skimming through several generations and scaffolds. Curr. Med. Chem., 2012, 19(13), 1946-2025.
[http://dx.doi.org/10.2174/092986712800167392] [PMID: 22257057]
[63]
Negi, L.M.; Jaggi, M.; Joshi, V.; Ronodip, K.; Talegaonkar, S. Hyaluronan coated liposomes as the intravenous platform for delivery of imatinib mesylate in MDR colon cancer. Int. J. Biol. Macromol., 2015, 73(1), 222-235.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.026] [PMID: 25478964]
[64]
Song, C.; Li, Y.; Li, T. Long-circulating drug-dye-based micelles with ultrahigh pH-sensitivity for deep tumor penetration and superior chemo-photothermal therapy. Adv. Funct. Mater., 2020, 30(11), 1906309.
[http://dx.doi.org/10.1002/adfm.201906309]
[65]
Jiang, L.; Li, L.; He, X. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials, 2015, 52(1), 126-139.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.004] [PMID: 25818419]
[66]
Zhao, Y.Z.; Dai, D.D.; Lu, C.T. Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Lett., 2013, 330(1), 74-83.
[http://dx.doi.org/10.1016/j.canlet.2012.11.031] [PMID: 23186833]
[67]
Zhou, J.; Zhao, W.Y.; Ma, X. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials, 2013, 34(14), 3626-3638.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.078] [PMID: 23422592]
[68]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Wu, X.Y. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J. Control. Release, 2006, 116(3), 275-284.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.007] [PMID: 17097178]
[69]
Li, Y.; He, H.; Jia, X.; Lu, W.L.; Lou, J.; Wei, Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials, 2012, 33(15), 3899-3908.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.004] [PMID: 22364698]
[70]
Logashenko, E.B.; Vladimirova, A.V.; Repkova, M.N.; Venyaminova, A.G.; Chernolovskaya, E.L.; Vlassov, V.V. Silencing of MDR 1 gene in cancer cells by siRNA. Nucleosides Nucleotides Nucleic Acids, 2004, 23(6-7), 861-866.
[http://dx.doi.org/10.1081/NCN-200026032] [PMID: 15560073]
[71]
Kono, K.; Kojima, C.; Hayashi, N. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin. Biomaterials, 2008, 29(11), 1664-1675.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.017] [PMID: 18194811]
[72]
Lu, H.L.; Syu, W.J.; Nishiyama, N.; Kataoka, K.; Lai, P.S. Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J. Control. Release, 2011, 155(3), 458-464.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.005] [PMID: 21689700]
[73]
Li, D.; Fan, Y.; Shen, M.; Bányai, I.; Shi, X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(2), 277-285.
[http://dx.doi.org/10.1039/C8TB02723D] [PMID: 32254552]
[74]
Thakur, S.; Tekade, R.K.; Kesharwani, P.; Jain, N.K. The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers. J. Nanopart. Res., 2013, 15(5), 1625.
[http://dx.doi.org/10.1007/s11051-013-1625-2]
[75]
Gu, Y.; Guo, Y.; Wang, C. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C, 2017, 70(Pt 1), 572-585.
[http://dx.doi.org/10.1016/j.msec.2016.09.035] [PMID: 27770930]
[76]
Wang, J.; Wang, R.; Zhang, F. Overcoming multidrug resistance by a combination of chemotherapy and photothermal therapy mediated by carbon nanohorns. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(36), 6043-6051.
[http://dx.doi.org/10.1039/C6TB01469K] [PMID: 32263493]
[77]
Ajima, K.; Murakami, T.; Mizoguchi, Y. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano, 2008, 2(10), 2057-2064.
[http://dx.doi.org/10.1021/nn800395t] [PMID: 19206452]
[78]
Sun, Y.; Chen, X.Y.; Zhu, Y.J.; Liu, P-F.; Zhu, M-J.; Duan, Y-R. Synthesis of calcium phosphate/GPC-mPEG hybrid porous nanospheres for drug delivery to overcome multidrug resistance in human breast cancer. J. Mater. Chem., 2012, 22(11), 5128-5136.
[http://dx.doi.org/10.1039/c2jm15586a]
[79]
Xu, W.; Gao, X.; Ge, P.; Jiang, F.; Zhang, X.; Xie, J. Dendrimer-like mesoporous silica nanospheres with suitable surface functionality to combat the multidrug resistance. Int. J. Pharm., 2018, 553(1-2), 349-362.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.056] [PMID: 30393166]
[80]
Ling, G.; Zhang, T.; Zhang, P.; Sun, J.; He, Z. Nanostructured lipid–carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux. Drug Dev. Ind. Pharm., 2016, 42(8), 1351-1359.
[http://dx.doi.org/10.3109/03639045.2015.1135937] [PMID: 26754913]
[81]
Negi, L.M.; Jaggi, M.; Talegaonkar, S. A logical approach to optimize the nanostructured lipid carrier system of irinotecan: Efficient hybrid design methodology. Nanotechnology, 2013, 24(1), 15104.
[http://dx.doi.org/10.1088/0957-4484/24/1/015104] [PMID: 23221112]
[82]
Reshma, P.L.; Unnikrishnan, B.S.; Preethi, G.U. Overcoming drug-resistance in lung cancer cells by paclitaxel loaded galactoxyloglucan nanoparticles. Int. J. Biol. Macromol., 2019, 136, 266-274.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.075] [PMID: 31201909]
[83]
Prasad, P.; Cheng, J.; Shuhendler, A.; Rauth, A.M.; Wu, X.Y. A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells. Drug Deliv. Transl. Res., 2012, 2(2), 95-105.
[http://dx.doi.org/10.1007/s13346-011-0051-1] [PMID: 25786718]
[84]
Singh, M.S.; Juvale, K.; Wiese, M.; Lamprecht, A. Evaluation of dual P-gp-BCRP inhibitors as nanoparticle formulation. Eur. J. Pharm. Sci., 2015, 77, 1-8.
[http://dx.doi.org/10.1016/j.ejps.2015.04.027] [PMID: 25976226]
[85]
Juvale, K.; Gallus, J.; Wiese, M. Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Bioorg. Med. Chem., 2013, 21(24), 7858-7873.
[http://dx.doi.org/10.1016/j.bmc.2013.10.007] [PMID: 24184213]
[86]
Juvale, K.; Wiese, M. 4-Substituted-2-phenylquinazolines as inhibitors of BCRP. Bioorg. Med. Chem. Lett., 2012, 22(21), 6766-6769.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.024] [PMID: 23017888]
[87]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[88]
He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Res. Int., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/578290] [PMID: 24195076]
[89]
Dadwal, A.; Baldi, A.; Narang, R.K. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46, 295-305.
[90]
Colone, M.; Calcabrini, A.; Stringaro, A. Drug delivery systems of natural products in oncology. Molecules, 2020, 25(19), 4560.
[http://dx.doi.org/10.3390/molecules25194560] [PMID: 33036240]
[91]
Iannazzo, D.; Pistone, A.; Celesti, C. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials, 2019, 9(2), 282.
[http://dx.doi.org/10.3390/nano9020282] [PMID: 30781623]
[92]
Fan, H.; Yu, X.; Wang, K. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur. J. Med. Chem., 2019, 182, 111620.
[http://dx.doi.org/10.1016/j.ejmech.2019.111620] [PMID: 31470307]
[93]
Wakaskar, R.R. Polymeric micelles and their properties. J. Nanomed. Nanotechnol., 2017, 8(2), 1000433.
[http://dx.doi.org/10.4172/2157-7439.1000433]
[94]
Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[95]
Penoy, N.; Grignard, B.; Evrard, B.; Piel, G. A supercritical fluid technology for liposome production and comparison with the film hydration method. Int. J. Pharm., 2021, 592, 120093.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120093] [PMID: 33212171]
[96]
Sharma, D.; Ali, A.A.E.; Trivedi, L.R. An Updated review on: Liposomes as drug delivery system. Pharmatutor, 2018, 6(2), 50-62.
[http://dx.doi.org/10.29161/PT.v6.i2.2018.50]
[97]
Zhang, J.; Li, M.; Wang, M. Effects of the surface charge of polyamidoamine dendrimers on cellular exocytosis and the exocytosis mechanism in multidrug-resistant breast cancer cells. J. Nanobiotechnology, 2021, 19(1), 135.
[http://dx.doi.org/10.1186/s12951-021-00881-w] [PMID: 33980270]
[98]
Anitha, P.; Bhargavi, J.; Sravani, G.; Aruna, B. Recent progress of dendrimers in drug delivery for cancer therapy. Int J Appl Pharmaceut, 2018, 10(5), 34.
[http://dx.doi.org/10.22159/ijap.2018v10i5.27075]
[99]
Sandoval-Yañez, C.; Castro Rodriguez, C. Dendrimers: Amazing platforms for bioactive molecule delivery systems. Materials, 2020, 13(3), 570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[100]
Sani, E.; Barison, S.; Pagura, C. Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt. Express, 2010, 18(5), 5179-5187.
[http://dx.doi.org/10.1364/OE.18.005179] [PMID: 20389531]
[101]
Zhu, S.; Xu, G. Carbon nanohorns and their biomedical applications carbon nanohorns and their biomedical applications. In: Nanotechnologies for the Life Sciences: Carbon nanomaterials; Kumar, C.S.S.R., Ed.; Wiley, 2012; pp. 87-109.
[102]
Curcio, M.; Cirillo, G.; Saletta, F. Carbon nanohorns as effective nanotherapeutics in cancer therapy. J Carbon Res, 2021, 7(1), 3.
[103]
Zhao, Q.; Lin, Y.; Han, N. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv., 2017, 24, 94-107.
[http://dx.doi.org/10.1080/10717544.2017.1399300]
[104]
Lungu, I.I.; Grumezescu, A.M.; Volceanov, A.; Andronescu, E. Nanobiomaterials used in cancer therapy: An up-to-date overview. Molecules, 2019, 24(19), 3547.
[http://dx.doi.org/10.3390/molecules24193547] [PMID: 31574993]
[105]
Singh, A.; Garg, G.; Sharma, P.K. Nanospheres: A novel approach for targeted drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2010, 5(3), 84-88.
[106]
Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics, 2020, 12(3), 288.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[107]
Pinheiro, M.; Ribeiro, R.; Vieira, A.; Andrade, F.; Reis, S. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2467-2475.
[http://dx.doi.org/10.2147/DDDT.S104395] [PMID: 27536067]
[108]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[109]
Kemp, J.A.; Kwon, Y.J. Cancer nanotechnology: Current status and perspectives. Nano Converg., 2021, 8(1), 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7] [PMID: 34727233]
[110]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy