Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Unwinding Link between Coronavirus and Diabetes Patient

Author(s): Shailendra Singh Bhadauria, Rishabha Malviya* and Pramod Kumar Sharma

Volume 22, Issue 11, 2022

Published on: 04 August, 2022

Page: [1091 - 1110] Pages: 20

DOI: 10.2174/1871530322666220329150238

Price: $65

Open Access Journals Promotions 2
Abstract

The COVID-19 illness is a highly contagious disease presently affecting more than 200 countries caused by the SARS-CoV-2 coronavirus (Severe Acute Respiratory Syndrome Coronavirus-2). Persons with diabetes mellitus (DM), severe obesity, cardiovascular disease, and hypertension are more likely to be infected with COVID-19 and are at a higher risk of death. The COVID-19 pandemic is overlapping the preexisting diabetes pandemic to produce fast and very vulnerable groups of COVID-19 and diabetes patients. Evidence relating to COVID-19 and diabetes is less but continues to emerge. In this context, we present evidence identified through rapid reviews. The current manuscript aims to provide information on diabetic patients suffering from COVID-19. Consequently, diabetic people have a higher susceptibility to severe SARS-CoV- 2 infections since defects in the glucose metabolism exacerbate the COVID-19 pathogenesis. After an extensive literature survey, it can come to an end that specific care is required for diabetes patients suffering from the COVID-19 virus. COVID-19 infection in diabetic patients may lead to loss of life if immediate care is not taken. This paper gives insight into the COVID-19 disease complications relevant to diabetes and emphasizes the current information and emerging concepts for SARS-CoV-2 infections in patients with DM.

Keywords: COVID-19, diabetes, pathophysiology of diabetes, viral infection, treatment, mechanism, risk management, healthcare.

Graphical Abstract
[1]
Kelly, J. Diabetes: What is diabetes ? CDC Natl. Cent. Chronic Dis. Prev. Heal. Promot., 2011, 1-3.
[2]
Nouhjah, S.; Jahanfar, S. Challenges of diabetes care management in developing countries with a high incidence of Covid-19: A brief report. Diabetes Metab. Syndr., 2020, 14(5), 731-732.
[http://dx.doi.org/10.1016/j.dsx.2020.05.012] [PMID: 32473905]
[3]
Shabto, J.M.; Loerinc, L.; O'Keefe, G.A.; O'Keefe, J. Characteristics and outcomes of Covid-19 positive patients with diabetes managed as outpatients. Diabetes Res. Clin. Pract., 2020, 164, 108229.
[4]
Orioli, L.; Hermans, M.P.; Thissen, J.P.; Maiter, D.; Vandeleene, B.; Yombi, J.C. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-8.
[5]
World Health Organization. World Heal Organ, 2021. Available from: https://covid19.who.int/ [Accessed on 10th March 2022].
[6]
Ceriello, A.; Stoian, A.P.; Rizzo, M. Covid-19 and diabetes management: What should be considered? Diabetes Res. Clin. Pract., 2020, 163, 108151.
[7]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[8]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[9]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[10]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[11]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[12]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[13]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of Angiotensin Converting Enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[14]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[15]
Cuschieri, S.; Grech, S. Covid-19 and diabetes: The why, the what and the how. J. Diabetes Complications, 2020, 34(9), 107637.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107637] [PMID: 32456846]
[16]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[17]
Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[18]
Li, X.C.; Zhang, J.; Zhuo, J.L. The vasoprotective axes of the reninangiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol. Res., 2017, 125(Pt A), 21-38.
[http://dx.doi.org/10.1016/j.phrs.2017.06.005] [PMID: 28619367]
[19]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for Covid-19 infection? Lancet Respir. Med., 2020, 8(4), e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[20]
Singh, A.K.; Gupta, R.; Ghosh, A.; Misra, A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab. Syndr., 2020, 14(4), 303-310.
[http://dx.doi.org/10.1016/j.dsx.2020.04.004] [PMID: 32298981]
[21]
Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N. Engl. J. Med., 2020, 382(17), 1653-1659.
[http://dx.doi.org/10.1056/NEJMsr2005760] [PMID: 32227760]
[22]
Hoffmann, M.; Kleine-Weber, H.; Krüger, N.; Mueller, M.A.; Drosten, C.; Pöhlmann, S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv., 2019. Available from: https://www.biorxiv.org/content/10.1101/2020.01.31.929042v1
[23]
Chen, X.; Hu, W.; Ling, J.; Mo, P.; Zhang, Y.; Jiang, Q.; Ma, Z.; Cao, Q.; Deng, L.; Song, S.; Zheng, R. Hypertension and diabetes delay the viral clearance in Covid-19 patients. MedRxiv, 2020.
[24]
Roca-Ho, H.; Riera, M.; Palau, V.; Pascual, J.; Soler, M.J. Characterization of ACE and ACE-2 expression within different organs of the NOD mouse. Int. J. Mol. Sci., 2017, 18(3), 563.
[http://dx.doi.org/10.3390/ijms18030563] [PMID: 28273875]
[25]
Rao, S.; Lau, A.; So, H.C. Exploring diseases/traits and blood proteins causally related to expression of ACE-2, the putative receptor of SARS-CoV-2: A Mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care, 2020, 43(7), 1416-1426.
[http://dx.doi.org/10.2337/dc20-0643] [PMID: 32430459]
[26]
Fernandez, C.; Rysä, J.; Almgren, P.; Nilsson, J.; Engström, G.; Orho-Melander, M.; Ruskoaho, H.; Melander, O. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med., 2018, 284(4), 377-387.
[http://dx.doi.org/10.1111/joim.12783] [PMID: 29888466]
[27]
Kulcsar, K.A.; Coleman, C.M.; Beck, S.E.; Frieman, M.B. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight, 2019, 4(20), 131774.
[http://dx.doi.org/10.1172/jci.insight.131774] [PMID: 31550243]
[28]
Maddaloni, E.; Buzzetti, R. Covid-19 and diabetes mellitus: Unveiling the interaction of two pandemics. Diabetes Metab. Res. Rev., 2020, 36(7), e33213321.
[http://dx.doi.org/10.1002/dmrr.3321] [PMID: 32233018]
[29]
Yang, J.K.; Lin, S.S.; Ji, X.J.; Guo, L.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol., 2010, 47(3), 193-199.
[http://dx.doi.org/10.1007/s00592-009-0109-4] [PMID: 19333547]
[30]
Kajiwara, C.; Kusaka, Y.; Kimura, S.; Yamaguchi, T.; Nanjo, Y.; Ishii, Y.; Udono, H.; Standiford, T.J.; Tateda, K. Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J. Immunol., 2018, 200(2), 623-631.
[http://dx.doi.org/10.4049/jimmunol.1700474] [PMID: 29246951]
[31]
Zhang, M.; He, J.Q. Impacts of metformin on tuberculosis incidence and clinical outcomes in patients with diabetes: A systematic review and meta-analysis. Eur. J. Clin. Pharmacol., 2020, 76(2), 149-159.
[http://dx.doi.org/10.1007/s00228-019-02786-y] [PMID: 31786617]
[32]
Mendy, A.; Gopal, R.; Alcorn, J.F.; Forno, E. Reduced mortality from lower respiratory tract disease in adult diabetic patients treated with metformin. Respirology, 2019, 24(7), 646-651.
[http://dx.doi.org/10.1111/resp.13486] [PMID: 30761687]
[33]
Ho, T.W.; Huang, C.T.; Tsai, Y.J.; Lien, A.S.; Lai, F.; Yu, C.J. Metformin use mitigates the adverse prognostic effect of diabetes mellitus in chronic obstructive pulmonary disease. Respir. Res., 2019, 20(1), 69.
[http://dx.doi.org/10.1186/s12931-019-1035-9] [PMID: 30953517]
[34]
Gorricho, J.; Garjón, J.; Alonso, A.; Celaya, M.C.; Saiz, L.C.; Erviti, J.; López, A. Use of oral antidiabetic agents and risk of community-acquired pneumonia: A nested case-control study. Br. J. Clin. Pharmacol., 2017, 83(9), 2034-2044.
[http://dx.doi.org/10.1111/bcp.13288] [PMID: 28294379]
[35]
Xiang, J.Y.; Chi, Y.Y.; Han, J.X.; Kong, P.; Liang, Z.; Wang, D.; Xiang, H.; Xie, Q. Litchi chinensis seed prevents obesity and modulates the gut microbiota and mycobiota compositions in high-fat diet-induced obese zebrafish. Food Funct., 2022, 13(5), 2832-2845.
[http://dx.doi.org/10.1039/D1FO03991A]
[36]
Romaní-Pérez, M.; Outeiriño-Iglesias, V.; Moya, C.M.; Santisteban, P.; González-Matías, L.C.; Vigo, E.; Mallo, F. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SPB in the lungs of type 1 diabetes rats. Endocrinology, 2015, 156(10), 3559-3569.
[http://dx.doi.org/10.1210/en.2014-1685] [PMID: 26196539]
[37]
Centers for Disease Control and Prevention. Cent Dis Control Prev, 2020. Available from: https://www. cdc. gov/coronavirus/2019-ncov/hcp/clinicalguidance- management-patients. html [Accessed on accessed April 29, 2020].
[38]
World Health Organization. Modes of Transmission of Virus Causing Covid-19: Implications for IPC Precaution Recommendations: Scientific Brief, 27 March 2020; World Health Organization, 2020, pp. 1-4.
[39]
Robson, B. Covid-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput. Biol. Med., 2020, 121, 103749.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103749] [PMID: 32568687]
[40]
Hulswit, R.J.; de Haan, C.A.; Bosch, B.J. Coronavirus spike protein and tropism changes. Adv. Virus Res., 2016, 96, 29-57.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.004] [PMID: 27712627]
[41]
Poduri, R.; Joshi, G.; Jagadeesh, G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cell. Signal., 2020, 74, 109721.
[http://dx.doi.org/10.1016/j.cellsig.2020.109721] [PMID: 32711111]
[42]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (Covid-19) outbreak–an update on the status. Mil. Med. Res., 2020, 7(1), 1-0.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[43]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[44]
Wang, G.; Wu, C.; Zhang, Q.; Wu, F.; Yu, B.; Lv, J.; Li, Y.; Li, T.; Zhang, S; Wu, C.; Wu, G. C-reactive protein level may predict the risk of Covid-19 aggravation. Open Forum Infect. Dis., 2020, 7(5), ofaa153.
[45]
Care, D. 6. Glycemic targets: Standards of medical care in diabetes-2019. Diabetes Care, 2019, 42(Suppl. 1), S61-S70.
[http://dx.doi.org/10.2337/dc19-S006] [PMID: 30559232]
[46]
Yang, P.; Feng, J.; Peng, Q.; Liu, X.; Fan, Z. Advanced glycation end products: Potential mechanism and therapeutic target in cardiovascular complications under diabetes. Oxid. Med. Cell. Longev., 2019, 2019, 9570616.
[http://dx.doi.org/10.1155/2019/9570616] [PMID: 31885827]
[47]
Gosmanov, AR; Gosmanova, EO Kitabchi, AE Hyperglycemic crises: Diabetic ketoacidosis (DKA), and Hyperglycemic Hyperosmolar State (HHS); Endotext, 2018.
[48]
Carey, I.M.; Critchley, J.A.; DeWilde, S.; Harris, T.; Hosking, F.J.; Cook, D.G. Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study. Diabetes Care, 2018, 41(3), 513-521.
[http://dx.doi.org/10.2337/dc17-2131] [PMID: 29330152]
[49]
Duncan, B.B.; Schmidt, M.I.; Pankow, J.S.; Ballantyne, C.M.; Couper, D.; Vigo, A.; Hoogeveen, R.; Folsom, A.R.; Heiss, G. Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes, 2003, 52(7), 1799-1805.
[http://dx.doi.org/10.2337/diabetes.52.7.1799] [PMID: 12829649]
[50]
Kengne, A.P.; Batty, G.D.; Hamer, M.; Stamatakis, E.; Czernichow, S. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: Pooled analyses of 25,979 participants from four U.K. prospective cohort studies. Diabetes Care, 2012, 35(2), 396-403.
[http://dx.doi.org/10.2337/dc11-1588] [PMID: 22210562]
[51]
Byass, P. Eco-epidemiological assessment of the Covid-19 epidemic in China, January-February 2020. Glob. Health Action, 2020, 13(1), 1760490.
[http://dx.doi.org/10.1080/16549716.2020.1760490] [PMID: 32404043]
[52]
Cai, G. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. MedRxiv, 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.02.05.20020107v3
[53]
Hung, I.F.; Lau, S.K.; Woo, P.C.; Yuen, K.Y. Viral loads in clinical specimens and SARS manifestations. Hong Kong Med. J., 2009, 15(Suppl. 9), 20-22.
[PMID: 20393220]
[54]
Schoen, K.; Horvat, N.; Guerreiro, N.F.C.; de Castro, I.; de Giassi, K.S. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect. Dis., 2019, 19(1), 964.
[http://dx.doi.org/10.1186/s12879-019-4592-0] [PMID: 31718571]
[55]
Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; Eggo, R.M. Age-dependent effects in the transmission and control of Covid-19 epidemics. Nat. Med., 2020, 26(8), 1205-1211.
[http://dx.doi.org/10.1038/s41591-020-0962-9] [PMID: 32546824]
[56]
Eslami, H.; Jalili, M. The role of environmental factors to transmission of SARS-CoV-2 (Covid-19). AMB Express, 2020, 10(1), 92.
[http://dx.doi.org/10.1186/s13568-020-01028-0] [PMID: 32415548]
[57]
Fan, Q.; Zhang, W.; Li, B.; Li, D.J.; Zhang, J.; Zhao, F. Association between ABO blood group system and Covid-19 susceptibility in Wuhan. Front. Cell. Infect. Microbiol., 2020, 10, 404.
[http://dx.doi.org/10.3389/fcimb.2020.00404] [PMID: 32793517]
[58]
Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. No association of Covid-19 transmission with temperature or UV radiation in Chinese cities. Eur. Respir. J., 2020, 55(5), 2000517.
[http://dx.doi.org/10.1183/13993003.00517-2020] [PMID: 32269084]
[59]
Zietz, M.; Zucker, J.; Tatonetti, N.P. Testing the association between blood type and Covid-19 infection, intubation, and death. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.08.20058073]
[60]
Critchley, J.A.; Carey, I.M.; Harris, T.; Dewilde, S.; Hosking, F.J.; Cook, D.G. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care, 2018, 41(10), 2127-2135.
[61]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[62]
Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; Cookingham, J.; Coppa, K.; Diefenbach, M.A.; Dominello, A.J.; Duer-Hefele, J.; Falzon, L.; Gitlin, J.; Hajizadeh, N.; Harvin, T.G.; Hirschwerk, D.A.; Kim, E.J.; Kozel, Z.M.; Marrast, L.M.; Mogavero, J.N.; Osorio, G.A.; Qiu, M.; Zanos, T.P. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with Covid-19 in the New York City area. JAMA, 2020, 323(20), 2052-2059.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[63]
Yang, J.K.; Feng, Y.; Yuan, M.Y.; Yuan, S.Y.; Fu, H.J.; Wu, B.Y.; Sun, G.Z.; Yang, G.R.; Zhang, X.L.; Wang, L.; Xu, X.; Xu, X.P.; Chan, J.C. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet. Med., 2006, 23(6), 623-628.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01861.x] [PMID: 16759303]
[64]
Allard, R.; Leclerc, P.; Tremblay, C.; Tannenbaum, T.N. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care, 2010, 33(7), 1491-1493.
[http://dx.doi.org/10.2337/dc09-2215] [PMID: 20587722]
[65]
Biology, H.; Marshall, R.J.; Armart, P.; Hulme, K.D.; Chew, K.Y.; Brown, A.C. Glycemic variability in diabetes increases the severity of influenza. MBio, 2020, 11(2), e02841-e02919.
[66]
Erener, S. Diabetes, infection risk and COVID-19. Mol. Metab., 2020, 39, 101044.
[http://dx.doi.org/10.1016/j.molmet.2020.101044] [PMID: 32585364]
[67]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE-2. Cell, 2020, 181(4), 905-913.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[68]
Baggio, S.; L’Huillier, A.G.; Yerly, S.; Bellon, M.; Wagner, N.; Rohr, M.; Huttner, A.; Blanchard-Rohner, G.; Loevy, N.; Kaiser, L.; Jacquerioz, F.; Eckerle, I. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in the upper respiratory tract of children and adults with early acute coronavirus disease 2019 (COVID-19). Clin. Infect. Dis., 2021, 73(1), 148-150.
[http://dx.doi.org/10.1093/cid/ciaa1157] [PMID: 32761228]
[69]
Drucker, D.J. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications. Endocr. Rev., 2020, 41(3), 457-470.
[http://dx.doi.org/10.1210/endrev/bnaa011] [PMID: 32294179]
[70]
Philips, B.J.; Meguer, J.X.; Redman, J.; Baker, E.H. Factors determining the appearance of glucose in upper and lower respiratory tract secretions. Intensive Care Med., 2003, 29(12), 2204-2210.
[http://dx.doi.org/10.1007/s00134-003-1961-2] [PMID: 14647890]
[71]
Kohio, H.P.; Adamson, A.L. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection. Virology, 2013, 444(1-2), 301-309.
[http://dx.doi.org/10.1016/j.virol.2013.06.026] [PMID: 23876457]
[72]
Reading, P.C.; Allison, J.; Crouch, E.C.; Anders, E.M. Increased susceptibility of diabetic mice to influenza virus infection: Compromise of collectin-mediated host defense of the lung by glucose? J. Virol., 1998, 72(8), 6884-6887.
[http://dx.doi.org/10.1128/JVI.72.8.6884-6887.1998] [PMID: 9658139]
[73]
Darvishi-Khezri, H.; Alipour, A.; Emami Zeydi, A.; Firouzian, A.; Mahmudi, G.; Omrani-Nava, M. Is type 2 diabetes mellitus in mechanically ventilated adult trauma patients potentially related to the occurrence of ventilator-associated pneumonia? J. Res. Med. Sci., 2016, 21, 19.
[http://dx.doi.org/10.4103/1735-1995.179887] [PMID: 27904565]
[74]
Anandhalakshmi, S.; Manikandan, S.; Ganeshkumar, P.; Ramachandran, C. Alveolar gas exchange and pulmonary functions in patients with type II diabetes mellitus. J. Clin. Diagn. Res., 2013, 7(9), 1874-1877.
[http://dx.doi.org/10.7860/JCDR/2013/6550.3339] [PMID: 24179886]
[75]
Komatsu, W.R.; Barros Neto, T.L.; Chacra, A.R.; Dib, S.A. Aerobic exercise capacity and pulmonary function in athletes with and without type 1 diabetes. Diabetes Care, 2010, 33(12), 2555-2557.
[http://dx.doi.org/10.2337/dc10-0769] [PMID: 20807874]
[76]
Popov, D.; Simionescu, M. Alterations of lung structure in experimental diabetes, and diabetes associated with hyperlipidaemia in hamsters. Eur. Respir. J., 1997, 10(8), 1850-1858.
[http://dx.doi.org/10.1183/09031936.97.10081850] [PMID: 9272930]
[77]
Weynand, B.; Jonckheere, A.; Frans, A.; Rahier, J. Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration, 1999, 66(1), 14-19.
[http://dx.doi.org/10.1159/000029331] [PMID: 9973685]
[78]
Chen, I.Y.; Moriyama, M.; Chang, M.F.; Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol., 2019, 10, 50.
[http://dx.doi.org/10.3389/fmicb.2019.00050] [PMID: 30761102]
[79]
Wang, T.; Du, Z.; Zhu, F.; Cao, Z.; An, Y.; Gao, Y.; Jiang, B. Comorbidities and multi-organ injuries in the treatment of Covid-19. Lancet, 2020, 395(10228), e52.
[http://dx.doi.org/10.1016/S0140-6736(20)30558-4] [PMID: 32171074]
[80]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in Covid-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[81]
Avogaro, A.; Albiero, M.; Menegazzo, L.; de Kreutzenberg, S.; Fadini, G.P. Endothelial dysfunction in diabetes: The role of reparatory mechanisms. Diabetes Care, 2011, 34(Suppl. 2), S285-S290.
[http://dx.doi.org/10.2337/dc11-s239] [PMID: 21525470]
[82]
Hulme, K.D.; Gallo, L.A.; Short, K.R. Influenza virus and glycemic variability in diabetes: A killer combination? Front. Microbiol., 2017, 8, 861.
[http://dx.doi.org/10.3389/fmicb.2017.00861] [PMID: 28588558]
[83]
Perrone, L.A.; Plowden, J.K.; García-Sastre, A.; Katz, J.M.; Tumpey, T.M. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog., 2008, 4(8), e1000115.
[http://dx.doi.org/10.1371/journal.ppat.1000115] [PMID: 18670648]
[84]
Short, K.R.; Kroeze, E.J.B.V.; Fouchier, R.A.M.; Kuiken, T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect. Dis., 2014, 14(1), 57-69.
[http://dx.doi.org/10.1016/S1473-3099(13)70286-X] [PMID: 24239327]
[85]
Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(4), 844-847.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[86]
Cui, S.; Chen, S.; Li, X.; Liu, S.; Wang, F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(6), 1421-1424.
[http://dx.doi.org/10.1111/jth.14830] [PMID: 32271988]
[87]
Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; Endeman, H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res., 2020, 191, 145-147.
[http://dx.doi.org/10.1016/j.thromres.2020.04.013] [PMID: 32291094]
[88]
Antoniak, S. The coagulation system in host defense. Res. Pract. Thromb. Haemost., 2018, 2(3), 549-557.
[http://dx.doi.org/10.1002/rth2.12109] [PMID: 30046760]
[89]
Carr, M.E. Diabetes mellitus: A hypercoagulable state. J. Diabetes Complications, 2001, 15(1), 44-54.
[http://dx.doi.org/10.1016/S1056-8727(00)00132-X] [PMID: 11259926]
[90]
Kearney, K.; Tomlinson, D.; Smith, K.; Ajjan, R. Hypofibrinolysis in diabetes: A therapeutic target for the reduction of cardiovascular risk. Cardiovasc. Diabetol., 2017, 16(1), 34.
[http://dx.doi.org/10.1186/s12933-017-0515-9] [PMID: 28279217]
[91]
Stegenga, M.E.; van der Crabben, S.N.; Blümer, R.M.; Levi, M.; Meijers, J.C.; Serlie, M.J.; Tanck, M.W.; Sauerwein, H.P.; van der Poll, T. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood, 2008, 112(1), 82-89.
[http://dx.doi.org/10.1182/blood-2007-11-121723] [PMID: 18316629]
[92]
Gupta, R.; Ghosh, A.; Singh, A.K.; Misra, A. Clinical considerations for patients with diabetes in times of Covid-19 epidemic. Diabetes Metab. Syndr., 2020, 14(3), 211-212.
[http://dx.doi.org/10.1016/j.dsx.2020.03.002] [PMID: 32172175]
[93]
Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S.J.; Esghaei, M.; Pirhajati-Mahabadi, V.; Monavari, S.H.; Ataei-Pirkooh, A. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J. Biomed. Sci., 2019, 26(1), 70.
[http://dx.doi.org/10.1186/s12929-019-0563-4] [PMID: 31500628]
[94]
Hemilä, H. Vitamin C intake and susceptibility to pneumonia. Pediatr. Infect. Dis. J., 1997, 16(9), 836-837.
[http://dx.doi.org/10.1097/00006454-199709000-00003] [PMID: 9306475]
[95]
Leng, Z; Zhu, R; Hou, W; Feng, Y; Yang, Y Han, Q Transplantation of ACE-2 - mesenchymal stem cells improves the outcome of patients with Covid-19 pneumonia. 2020, 11(2), 216-28.
[96]
Gu, H.; Xie, Z.; Li, T.; Zhang, S.; Lai, C.; Zhu, P. Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus. Nat Publ Gr, 2015, 2016, 1-10.
[http://dx.doi.org/10.1038/srep19840] [PMID: 26813885]
[97]
Gurwitz, D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res., 2020, 81(5), 537-540.
[http://dx.doi.org/10.1002/ddr.21656] [PMID: 32129518]
[98]
European Medicines Agency. EMA advises continued use of medicines for hypertension, heart or kidney disease during Covid-19 pandemic., 2020, 31(3), 1-2. Available from: https://www.ema.europa.eu/en/documents/press-release/ema-advises-continued-use-medicines-hypertension-heart-kidney-disease-during-covid-19-pandemic_en.pdf
[99]
Toto, R.D.; Tian, M.; Fakouhi, K.; Champion, A.; Bacher, P. Effects of calcium channel blockers on proteinuria in patients with diabetic nephropathy. J. Clin. Hypertens. (Greenwich), 2008, 10(10), 761-769.
[http://dx.doi.org/10.1111/j.1751-7176.2008.00016.x] [PMID: 19090877]
[100]
Hsia, D.S.; Grove, O.; Cefalu, W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes., 2017, 24(1), 73-79.
[PMID: 27898586]
[101]
Filippatos, T.D.; Panagiotopoulou, T.V.; Elisaf, M.S. Adverse effects of GLP-1 receptor agonists. Rev. Diabet. Stud., 2014, 11(3-4), 202-230.
[http://dx.doi.org/10.1900/RDS.2014.11.202] [PMID: 26177483]
[102]
Gibb, F.W.; Homer, N.Z.M.; Faqehi, A.M.M.; Upreti, R.; Livingstone, D.E.; Mcinnes, K.J. Aromatase inhibition reduces insulin sensitivity in healthy men. J. Clin. Endocrinol. Metab., 2016, 101(5), 2040-2046.
[103]
Perico, L.; Remuzzi, G. Should COVID-19 concern nephrologists? why and to what extent; the emerging impasse of angiotensin blockade. Nephron, 2020, 144(5), 213-221.
[104]
Giammaria, D.; Pajewski, A. Can early treatment of patients with risk factors contribute to managing the COVID-19 pandemic? J. Glob. Health, 2020, 10(1), 010377.
[http://dx.doi.org/10.7189/jogh.10.010377] [PMID: 32582439]
[105]
Molina, J.M.; Delaugerre, C.; Le Goff, J.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect., 2020, 50(4), 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[106]
Stadler, K.; Ha, H.R.; Ciminale, V.; Spirli, C.; Saletti, G.; Schiavon, M. Amiodarone alters late endosomes and inhibits SARS coronavirus infection at a post-endosomal level. Am. J. Respir. Cell Mol. Biol., 2008, 39(2), 142-149.
[107]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T. SARS-CoV-2 cell entry depends on ACE-2 and TMPRSS2 and is blocked by a clinically proven article SARS-CoV-2 cell entry depends on ACE-2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[108]
European Medicines Agency. Update on treatments and vaccines against COVID-19 under development., 2020. Available from: https://www.ema.europa.eu/en/news/update-treatments-vaccines against-covid-19-under-development
[109]
Cristelo, C.; Azevedo, C.; Marques, J.M.; Nunes, R.; Sarmento, B. SARS-CoV-2 and diabetes: New challenges for the disease. Diabetes Res. Clin. Pract., 2020, 164, 108228.
[110]
Gupta, R.; Hussain, A.; Misra, A. Diabetes and COVID-19: Evidence, current status and unanswered research questions. Eur. J. Clin. Nutr., 2020, 74(6), 864-870.
[http://dx.doi.org/10.1038/s41430-020-0652-1] [PMID: 32404898]
[111]
Hu, X.; Zhang, Q.; Guo, M.; Yuan, Q.; Tong, X.; Zhang, Q.; Lin, L.; Zhang, L.; Lv, S.; Liu, X.; Gao, C. Deletion of RNF186 expression suppresses diet-induced hepatic steatosis by regulating insulin activity. iScience, 2022, 25(2), 103859.
[http://dx.doi.org/10.1016/j.isci.2022.103859]
[112]
Romaní-pérez, M.; Outeiriño-iglesias, V.; Moya, C.M.; Santisteban, P.; González-matías, L.C.; Vigo, E.; Mallo, F. and SP-B Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology, 2015, 156(10), 3559-69.
[113]
Arabi, Y.M.; Balkhy, H.H.; Hayden, F.G.; Bouchama, A.; Luke, T.; Baillie, J.K.; Al-Omari, A.; Hajeer, A.H.; Senga, M.; Denison, M.R.; Nguyen-Van-Tam, J.S.; Shindo, N.; Bermingham, A.; Chappell, J.D.; Van Kerkhove, M.D.; Fowler, R.A. Middle East respiratory syndrome. N. Engl. J. Med., 2017, 376(6), 584-594.
[http://dx.doi.org/10.1056/NEJMsr1408795] [PMID: 28177862]
[114]
Yang, W.; Cai, X.; Han, X.; Ji, L. DPP-4 inhibitors and risk of infections: A meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev., 2016, 32(4), 391-404.
[http://dx.doi.org/10.1002/dmrr.2723] [PMID: 26417956]
[115]
Filippatos, T.D.; Liontos, A.; Papakitsou, I.; Elisaf, M.S. SGLT2 inhibitors and cardioprotection: A matter of debate and multiple hypotheses. Postgrad. Med., 2019, 131(2), 82-88.
[http://dx.doi.org/10.1080/00325481.2019.1581971] [PMID: 30757937]
[116]
Couselo-Seijas, M.; Agra-Bermejo, R.M.; Fernández, A.L.; Martínez-Cereijo, J.M.; Sierra, J.; Soto-Pérez, M.; Rozados-Luis, A.; González-Juanatey, J.R.; Eiras, S. High released lactate by epicardial fat from coronary artery disease patients is reduced by dapagliflozin treatment. Atherosclerosis, 2020, 292(292), 60-69.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.016] [PMID: 31783199]
[117]
Salem, E.S.; Grobe, N.; Elased, K.M. Insulin treatment attenuates renal ADAM17 and ACE-2 shedding in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(6), F629-F639.
[118]
Cure, E.; Cumhur Cure, C. Comment on “Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19”. J. Med. Virol., 2020, 92(9), 1423-1424.
[http://dx.doi.org/10.1002/jmv.25848] [PMID: 32266994]
[119]
Bilodeau, M.S.; Leiter, J.C. Angiotensin 1-7 in the rostro-ventrolateral medulla increases blood pressure and splanchnic sympathetic nerve activity in anesthetized rats. Respir. Physiol. Neurobiol., 2018, 247, 103-111.
[http://dx.doi.org/10.1016/j.resp.2017.10.003] [PMID: 28993263]
[120]
Yang, P.; Gu, H.; Zhao, Z.; Wang, W.; Cao, B.; Lai, C.; Yang, X.; Zhang, L.; Duan, Y.; Zhang, S.; Chen, W. Angiotensin-Converting Enzyme 2 (ACE-2) mediates influenza H7N9 virus-induced acute lung injury. Sci. Rep., 2014, 4(1), 1-6.
[121]
Fedson, D.S.; Jacobson, J.R.; Rordam, M.; Opal, M. Treating the host response to ebola virus disease with generic statins and angiotensin receptor blockers. MBio, 2015, 6(3), e00716-e00815.
[122]
Khan, A.; Benthin, C.; Zeno, B.; Albertson, T.E.; Boyd, J.; Christie, J.D. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care, 2017, 21(1), 1-9.
[123]
Zhang, P.; Zhu, L.; Cai, J.; Lei, F.; Qin, J.J.; Xie, J.; Liu, Y.M.; Zhao, Y.C.; Huang, X.; Lin, L.; Xia, M.; Chen, M.M.; Cheng, X.; Zhang, X.; Guo, D.; Peng, Y.; Ji, Y.X.; Chen, J.; She, Z.G.; Wang, Y.; Xu, Q.; Tan, R.; Wang, H.; Lin, J.; Luo, P.; Fu, S.; Cai, H.; Ye, P.; Xiao, B.; Mao, W.; Liu, L.; Yan, Y.; Liu, M.; Chen, M.; Zhang, X.J.; Wang, X.; Touyz, R.M.; Xia, J.; Zhang, B.H.; Huang, X.; Yuan, Y.; Loomba, R.; Liu, P.P.; Li, H. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with Covid-19. Circ. Res., 2020, 126(12), 1671-1681.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317134] [PMID: 32302265]
[124]
Gupta, R.; Misra, A. Contentious issues and evolving concepts in the clinical presentation and management of patients with COVID-19 infection with reference to use of therapeutic and other drugs used in Co-morbid diseases (Hypertension, diabetes etc.). Diabetes Metab. Syndr., 2020, 14(3), 251-254.
[http://dx.doi.org/10.1016/j.dsx.2020.03.012] [PMID: 32247213]
[125]
Sun, Q.; Li, J.; Gao, F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J. Diabetes, 2014, 5(2), 89-96.
[http://dx.doi.org/10.4239/wjd.v5.i2.89] [PMID: 24765237]
[126]
Sardu, C.; D’Onofrio, N.; Balestrieri, M.L.; Barbieri, M.; Rizzo, M.R.; Messina, V.; Maggi, P.; Coppola, N.; Paolisso, G.; Marfella, R. Outcomes in patients with hyperglycemia affected by COVID-19: Can we do more on glycemic control? Diabetes Care, 2020, 43(7), 1408-1415.
[http://dx.doi.org/10.2337/dc20-0723] [PMID: 32430456]
[127]
Shehav-Zaltzman, G.; Segal, G.; Konvalina, N.; Tirosh, A. Remote glucose monitoring of hospitalized, quarantined patients with diabetes and COVID 19. Diabetes Care, 2020, 43(7), e75-e76.
[http://dx.doi.org/10.2337/dc20-0696] [PMID: 32409500]
[128]
Sharma, S.; Ray, A.; Sadasivam, B. Metformin in COVID-19: A possible role beyond diabetes. Diabetes Res. Clin. Pract., 2020, 164, 108183.
[http://dx.doi.org/10.1016/j.diabres.2020.108183] [PMID: 32360697]
[129]
Busse, L.W.; Chow, J.H.; McCurdy, M.T.; Khanna, A.K. COVID-19 and the RAAS-a potential role for angiotensin II? Editorial Crit Care, 2020, 24(1), 136.
[http://dx.doi.org/10.1186/s13054-020-02862-1] [PMID: 32264922]
[130]
Thakur, V.; Ratho, R.K. OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J. Med. Virol., 2022, 94(5), 1821-1824.
[http://dx.doi.org/10.1002/jmv.27541] [PMID: 34936120]
[131]
Romaní-Pérez, M.; Outeiriño-Iglesias, V.; Moya, C.M.; Santisteban, P.; González-Matías, L.C.; Vigo, E.; Mallo, F. Activation of GLP-1 receptor by liraglutide increases ACE-2 expression, reversing right ventricular hypertrophy, and improving the production of SP-A and SP-B in the lungs of Type 1 diabetes rats. Endocrinology, 2015, 156(10), 3559-3569.
[http://dx.doi.org/10.1210/en.2014-1685] [PMID: 26196539]
[132]
Tripathy, D.; Danielle, G.; Fiorentino, T.V.; Perez-Cardena, Z.; Chavez-Velasquez, A.; Kamath, S. Pioglitazone improves glucose metabolism and modulates skeletal muscle TIMP-3- TACE dyad in Type 2 diabetes mellitus: A randomized, double blind, placebo controlled, mechanistic study. Diabetologia, 2013, 56, 2153-2163.
[http://dx.doi.org/10.1007/s00125-013-2976-z] [PMID: 23811853]
[133]
Chen, R.; Luo, X.; Jiang, X.; Deng, S. Vinexin β deficiency exacerbates diet-induced obesity, hepatosteatosis, insulin resistance and endoplasmic reticulum stress in mice. Biochem. Biophys. Res. Commun., 2022, 596, 14-21.
[http://dx.doi.org/10.1016/j.bbrc.2022.01.062] [PMID: 35104662]
[134]
Liu, L.; Iketani, S.; Guo, Y.; Chan, J.F.; Wang, M.; Liu, L.; Luo, Y.; Chu, H.; Huang, Y.; Nair, M.S.; Yu, J.; Chik, K.K.; Yuen, T.T.; Yoon, C.; To, K.K.; Chen, H.; Yin, M.T.; Sobieszczyk, M.E.; Huang, Y.; Wang, H.H.; Sheng, Z.; Yuen, K.Y.; Ho, D.D. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022, 602(7898), 676-681.
[http://dx.doi.org/10.1038/s41586-021-04388-0] [PMID: 35016198]
[135]
Iacobellis, G. Phase 4 clinical trial. Effects of DPP4 inhibition on COVID 19 patients with type 2 diabetes. Completion date: 2020 Oct 30 (NCT04341935); , 2020. Available from: https//:Clinicaltrials.gov
[136]
Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci., 2017, 18(5), E1083.
[http://dx.doi.org/10.3390/ijms18051083] [PMID: 28524098]
[137]
Vishnu, G. Phase 3 study valuating the efficacy and safety of dapagliflozin in respiratory failure in patients with COVID-19 (DARE-19). Identifier: NCT04350593; , 2020. Retrieved from Available from: https/:Clinicaltrials.gov
[138]
Dis, L.I. Personal view a minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis., 2020, 20, e192-197.
[139]
Walsh, K.M. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications Daniel., 2018, 40, 1-30.
[140]
Sosibo, A.M.; Khathi, A. Pre-diabetes and COVID-19, could we be missing the silent killer? Exp. Biol. Med. (Maywood), 2021, 246(4), 369-370.
[http://dx.doi.org/10.1177/1535370220973451] [PMID: 33215530]
[141]
Cameron, A.R.; Morrison, V.; Levin, D.; Mohan, M.; Forteath, C.; Mcneilly, A.D. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res., 2016, 119(5), 652-665.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445]
[142]
Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol., 2021, 17(1), 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[143]
Malgie, J.; Schoones, J.W.; Pijls, B.G. Decreased mortality in coronavirus disease 2019 patients treated with tocilizumab: A rapid systematic review and meta-analysis of observational studies. Clin. Infect. Dis., 2021, 72(11), e742-e749.
[http://dx.doi.org/10.1093/cid/ciaa1445] [PMID: 32964913]
[144]
Hasanin, A.; Mostafa, M. Evaluation of fluid responsiveness during COVID-19 pandemic: What are the remaining choices? J. Anesth., 2020, 34(5), 758-764.
[http://dx.doi.org/10.1007/s00540-020-02801-y] [PMID: 32451626]
[145]
Khan, A.A.; Ata, F.; Munir, W.; Yousaf, Z. Fluid replacement versus fluid restriction in COVID-19 associated hyponatremia. Cureus, 2020, 12(7), e9059.
[http://dx.doi.org/10.7759/cureus.9059] [PMID: 32782878]
[146]
Liu, J.; Wang, L.N. Peroxisome proliferator‐activated receptor gamma agonists for preventing recurrent stroke and other vascular events in patients with stroke or transient ischaemic attack. Cochrane Database Syst. Rev., 2015, (10), CD010693.
[http://dx.doi.org/10.1002/14651858.CD010693.pub3]
[147]
Kernan, W.N.; Viscoli, C.M.; Furie, K.L.; Young, L.H.; Inzucchi, S.E.; Gorman, M.; Guarino, P.D.; Lovejoy, A.M.; Peduzzi, P.N.; Conwit, R.; Brass, L.M.; Schwartz, G.G.; Adams, H.P., Jr; Berger, L.; Carolei, A.; Clark, W.; Coull, B.; Ford, G.A.; Kleindorfer, D.; O’Leary, J.R.; Parsons, M.W.; Ringleb, P.; Sen, S.; Spence, J.D.; Tanne, D.; Wang, D.; Winder, T.R. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med., 2016, 374(14), 1321-1331.
[http://dx.doi.org/10.1056/NEJMoa1506930] [PMID: 26886418]
[148]
Lim, S.; Oh, T.J.; Dawson, J.; Sattar, N. Diabetes drugs and stroke risk: Intensive versus conventional glucose-lowering strategies, and implications of recent cardiovascular outcome trials. Diabetes Obes. Metab., 2020, 22(1), 6-15.
[http://dx.doi.org/10.1111/dom.13850] [PMID: 31379119]
[149]
Nauck, M.A.; Meier, J.J.; Cavender, M.A.; Abd El Aziz, M.; Drucker, D.J. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation, 2017, 136(9), 849-870.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028136] [PMID: 28847797]
[150]
Prattichizzo, F.; La Sala, L.; Rydén, L.; Marx, N.; Ferrini, M.; Valensi, P.; Ceriello, A. Glucose-lowering therapies in patients with type 2 diabetes and cardiovascular diseases. Eur. J. Prev. Cardiol., 2019, 26(2)(suppl.), 73-80.
[http://dx.doi.org/10.1177/2047487319880040] [PMID: 31766918]
[151]
Hahn, K.; Ejaz, A.A.; Kanbay, M.; Lanaspa, M.A.; Johnson, R.J. Acute kidney injury from SGLT2 inhibitors: Potential mechanisms. Nat. Rev. Nephrol., 2016, 12(12), 711-712.
[http://dx.doi.org/10.1038/nrneph.2016.159] [PMID: 27847389]
[152]
Hahn, K.; Kanbay, M.; Lanaspa, M.A.; Johnson, R.J.; Ejaz, A.A. Serum uric acid and acute kidney injury: A mini review. J. Adv. Res., 2017, 8(5), 529-536.
[http://dx.doi.org/10.1016/j.jare.2016.09.006] [PMID: 28748118]
[153]
Sözen, M.; Çölkesen, F.; Arslan, Ş.; Çölkesen, F.; Karaköse, M.; Erayman, İ.; Demirbaş, S.; Teke, T. Are patients with diabetes mellitus at increased risk of COVID-19 infection? Association between diabetes and COVID-19. Arch. Curr. Med. Res., 2021, 2(1), 38-44.
[http://dx.doi.org/10.47482/acmr.2021.13]
[154]
Apicella, M.; Campopiano, M.C.; Mantuano, M.; Mazoni, L.; Coppelli, A.; Del Prato, S. COVID-19 in people with diabetes: Understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol., 2020, 8(9), 782-792.
[http://dx.doi.org/10.1016/S2213-8587(20)30238-2] [PMID: 32687793]
[155]
Zhang, Y.; Cui, Y.; Shen, M.; Zhang, J.; Liu, B.; Dai, M.; Chen, L.; Han, D.; Fan, Y.; Zeng, Y.; Li, W.; Lin, F.; Li, S.; Chen, X.; Pan, P. Association of diabetes mellitus with disease severity and prognosis in COVID-19: A retrospective cohort study. Diabetes Res. Clin. Pract., 2020, 165, 108227.
[http://dx.doi.org/10.1016/j.diabres.2020.108227] [PMID: 32446795]
[156]
Kumar, A.; Arora, A.; Sharma, P.; Anikhindi, S.A.; Bansal, N.; Singla, V.; Khare, S.; Srivastava, A. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab. Syndr., 2020, 14(4), 535-545.
[http://dx.doi.org/10.1016/j.dsx.2020.04.044] [PMID: 32408118]
[157]
Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; Ou, C.Q.; Li, L.; Chen, P.Y.; Sang, L.; Wang, W.; Li, J.F.; Li, C.C.; Ou, L.M.; Cheng, B.; Xiong, S.; Ni, Z.Y.; Xiang, J.; Hu, Y.; Liu, L.; Shan, H.; Lei, C.L.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Cheng, L.L.; Ye, F.; Li, S.Y.; Zheng, J.P.; Zhang, N.F.; Zhong, N.S.; He, J.X. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J., 2020, 55(5), 2000547.
[http://dx.doi.org/10.1183/13993003.00547-2020] [PMID: 32217650]
[158]
Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol., 2020, 109(5), 531-538.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[159]
Fadini, G.P.; Morieri, M.L.; Longato, E.; Avogaro, A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J. Endocrinol. Invest., 2020, 43(6), 867-869.
[http://dx.doi.org/10.1007/s40618-020-01236-2] [PMID: 32222956]
[160]
Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.F.; Chernyak, Y.; Tobin, K.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. BMJ, 2020, 369, m1966.
[161]
Roncon, L.; Zuin, M.; Rigatelli, G.; Zuliani, G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J. Clin. Virol., 2020, 127, 104354.
[http://dx.doi.org/10.1016/j.jcv.2020.104354] [PMID: 32305882]
[162]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[163]
Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; Li, H.; Zhang, P.; Song, X.; Chen, X.; Xiang, M.; Zhang, C.; Bai, L.; Xiang, D.; Chen, M.M.; Liu, Y.; Yan, Y.; Liu, M.; Mao, W.; Zou, J.; Liu, L.; Chen, G.; Luo, P.; Xiao, B.; Zhang, C.; Zhang, Z.; Lu, Z.; Wang, J.; Lu, H.; Xia, X.; Wang, D.; Liao, X.; Peng, G.; Ye, P.; Yang, J.; Yuan, Y.; Huang, X.; Guo, J.; Zhang, B.H.; Li, H. Association of blood glucose control and outcomes in patients with COVID-19and pre-existing type 2 diabetes. Cell Metab., 2020, 31(6), 1068-1077.
[http://dx.doi.org/10.1016/j.cmet.2020.04.021] [PMID: 32369736]
[164]
Yan, Y.; Yang, Y.; Wang, F.; Ren, H.; Zhang, S.; Shi, X.; Yu, X.; Dong, K. Clinical characteristics and outcomes of patients with severe Covid-19 with diabetes. BMJ Open Diabetes Res. Care, 2020, 8(1), e001343.
[http://dx.doi.org/10.1136/bmjdrc-2020-001343] [PMID: 32345579]
[165]
Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: A systematic review and meta-analysis. Int. J. Infect. Dis., 2020, 94, 91-95.
[166]
Holman, N.; Knighton, P.; Kar, P.; O’Keefe, J.; Curley, M.; Weaver, A.; Barron, E.; Bakhai, C.; Khunti, K.; Wareham, N.J.; Sattar, N.; Young, B.; Valabhji, J. Risk factors for COVID-19-related mortality in people with Type 1 and Type 2 diabetes in England: A population-based cohort study. Lancet Diabetes Endocrinol., 2020, 8(10), 823-833.
[http://dx.doi.org/10.1016/S2213-8587(20)30271-0] [PMID: 32798471]
[167]
Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; Cockburn, J. OpenSAFELY: Factors associated with COVID-19 death in 17 million patients. Nature, 2020, 584(7821), 430.
[http://dx.doi.org/10.1038/s41586-020-2521-4]
[168]
Dunn, E.J.; Grant, P.J. Type 2 diabetes: An atherothrombotic syndrome. Curr. Mol. Med., 2005, 5(3), 323-332.
[http://dx.doi.org/10.2174/1566524053766059] [PMID: 15892651]
[169]
Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; Zheng, L.; Huang, K. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care, 2020, 43(7), 1399-1407.
[http://dx.doi.org/10.2337/dc20-0660] [PMID: 32409498]
[170]
Hollander, J.E.; Carr, B.G. Virtually perfect? Telemedicine for COVID-19. N. Engl. J. Med., 2020, 382(18), 1679-1681.
[http://dx.doi.org/10.1056/NEJMp2003539] [PMID: 32160451]
[171]
Rogers, L.C.; Lavery, L.A.; Joseph, W.S.; Armstrong, D.G. All feet on deck-the role of podiatry during the COVID-19 Pandemic: Preventing hospitalizations in an overburdened healthcare system, reducing amputation and death in people with diabetes. J. Am. Podiatr. Med. Assoc., 2020.
[http://dx.doi.org/10.7547/20-051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy