Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Perspective

Endocrine Disruptors and Obesity: An Overview

Author(s): Isanna Murro, Giuseppe Lisco, Carmen Di Noia, Luisa Lampignano, Roberta Zupo, Vito Angelo Giagulli, Edoardo Guastamacchia, Vincenzo Triggiani and Giovanni De Pergola*

Volume 22, Issue 8, 2022

Published on: 12 May, 2022

Page: [798 - 806] Pages: 9

DOI: 10.2174/1871530322666220328122300

Open Access Journals Promotions 2
Abstract

Obesity is a growing pandemic. Endocrine-disrupting chemicals are widespread in the environment. In this perspective, the authors examine the issue related to the exposure to several chemicals with endocrine-disrupting properties as promoting factors to obesity. Data show that Phthalates, Bisphenol compounds, Persistent Organic Pollutants (POPs), solvents, and personal care products can modify metabolic properties in a dose-response and sex-specific manner. Phthalates and bisphenol compounds increase body mass index, waist circumference, waist to height ratio, and the sum of skinfold thicknesses in women and not in men. Low-dose exposure to Persistent Organic Pollutants is strongly associated with increased body mass index in men and decreased this parameter in women. The mechanism through which these compounds act on anthropometric parameters is not entirely understood. Several studies suggest a possible interference in gonadotropin secretion and the thyroid axis. These inspire a decrease in both total and free testosterone levels in men and FT3 and FT4 levels in women, particularly after a pregnancy. The impact of endocrine disruptor chemicals on adipose tissue inflammation and future cardio-metabolic disorders remains to be elucidated. Therefore, studies involving both healthy and obese individuals are needed to unambiguously confirm results from in vitro and animal models.

Keywords: Endocrine-disrupting chemicals, obesity, adipose tissue, phthalates, bisphenols, persistent organic pollutants.

Graphical Abstract
[1]
Tremmel, M.; Gerdtham, U.G.; Nilsson, P.M.; Saha, S. Economic burden of obesity: A systematic literature review. Int. J. Environ. Res. Public Health, 2017, 14(4), 435.
[http://dx.doi.org/10.3390/ijerph14040435] [PMID: 28422077]
[2]
Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature, 2006, 444(7121), 881-887.
[http://dx.doi.org/10.1007/978-0-387-32164-6_8]
[3]
Zupo, R.; Castellana, F.; Panza, F.; Castellana, M.; Lampignano, L.; Cincione, R.I.; Triggiani, V.; Giannelli, G.; Dibello, V.; Sardone, R.; De Pergola, G. Nonalcoholic fatty liver disease is positively associated with increased glycated haemoglobin levels in subjects without di-abetes. J. Clin. Med., 2021, 10(8), 1695.
[http://dx.doi.org/10.3390/jcm10081695] [PMID: 33920792]
[4]
Castellana, M.; Donghia, R.; Guerra, V.; Procino, F.; Lampignano, L.; Castellana, F.; Zupo, R.; Sardone, R.; De Pergola, G.; Romanelli, F.; Trimboli, P.; Giannelli, G. Performance of fatty liver index in identifying non-alcoholic fatty liver disease in population studies. A meta-analysis. J. Clin. Med., 2021, 10(9), 1877.
[http://dx.doi.org/10.3390/jcm10091877] [PMID: 33925992]
[5]
De Pergola, G.; Cortese, F.; Termine, G.; Meliota, G.; Carbonara, R.; Masiello, M.; Cortese, A.M.; Silvestris, F.; Caccavo, D.; Ciccone, M.M. Uric acid, metabolic syndrome and atherosclerosis: The chicken or the egg, which comes first? Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 251-259.
[http://dx.doi.org/10.2174/1871530318666180212101548] [PMID: 29437024]
[6]
Resta, O.; Caratozzolo, G.; Pannacciulli, N.; Stefàno, A.; Giliberti, T.; Carpagnano, G.E.; De Pergola, G. Gender, age and menopause ef-fects on the prevalence and the characteristics of obstructive sleep apnea in obesity. Eur. J. Clin. Invest., 2003, 33(12), 1084-1089.
[http://dx.doi.org/10.1111/j.1365-2362.2003.01278.x] [PMID: 14636291]
[7]
Resta, O.; Foschino-Barbaro, M.P.; Legari, G.; Talamo, S.; Bonfitto, P.; Palumbo, A.; Minenna, A.; Giorgino, R.; De Pergola, G. Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int. J. Obes., 2001, 25(5), 669-675.
[http://dx.doi.org/10.1038/sj.ijo.0801603] [PMID: 11360149]
[8]
De Pergola, G.; De Mitrio, V.; Giorgino, F.; Sciaraffia, M.; Minenna, A.; Di Bari, L.; Pannacciulli, N.; Giorgino, R. Increase in both pro-thrombotic and anti-thrombotic factors in obese premenopausal. women: Relationship with body fat distribution. Int. J. Obes., 1997, 21(7), 527-535.
[http://dx.doi.org/10.1038/sj.ijo.0800435] [PMID: 9226481]
[9]
De Pergola, G.; Nardecchia, A.; Guida, P.; Silvestris, F. Arterial hypertension in obesity: Relationships with hormone and anthropometric parameters. Eur. J. Cardiovasc. Prev. Rehabil., 2011, 18(2), 240-247.
[http://dx.doi.org/10.1177/1741826710389367] [PMID: 21450671]
[10]
De Pergola, G.; Nardecchia, A.; Cirillo, M.; Boninfante, B.; Sciaraffia, M.; Giagulli, V.A.; Triggiani, V.; Silvestris, F. Higher waist circum-ference, fasting hyperinsulinemia and insulin resistance characterize hypertensive patients with impaired glucose metabolism. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(4), 297-301.
[http://dx.doi.org/10.2174/1871530315666150506125651] [PMID: 25944063]
[11]
Dwivedi, A.K.; Dubey, P.; Cistola, D.P.; Reddy, S.Y. Association between obesity and cardiovascular outcomes: Updated evidence from meta-analysis studies. Curr. Cardiol. Rep., 2020, 22(4), 25.
[http://dx.doi.org/10.1007/s11886-020-1273-y] [PMID: 32166448]
[12]
De Pergola, G.; Nardecchia, A.; Giagulli, V.A.; Triggiani, V.; Guastamacchia, E.; Minischetti, M.C.; Silvestris, F. Obesity and heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 51-57.
[http://dx.doi.org/10.2174/1871530311313010007] [PMID: 23369137]
[13]
Giagulli, V.A.; Castellana, M.; Murro, I.; Pelusi, C.; Guastamacchia, E.; Triggiani, V.; De Pergola, G. The role of diet and weight loss in improving secondary hypogonadism in men with obesity with or without type 2 diabetes mellitus. Nutrients, 2019, 11(12), 2975.
[http://dx.doi.org/10.3390/nu11122975] [PMID: 31817436]
[14]
De Pergola, G.; Tartagni, M.; d’Angelo, F.; Centoducati, C.; Guida, P.; Giorgino, R. Abdominal fat accumulation, and not insulin re-sistance, is associated to oligomenorrhea in non-hyperandrogenic overweight/obese women. J. Endocrinol. Invest., 2009, 32(2), 98-101.
[http://dx.doi.org/10.1007/BF03345694] [PMID: 19411803]
[15]
De Pergola, G.; Maldera, S.; Tartagni, M.; Pannacciulli, N.; Loverro, G.; Giorgino, R. Inhibitory effect of obesity on gonadotropin, estra-diol, and inhibin B levels in fertile women. Obesity (Silver Spring), 2006, 14(11), 1954-1960.
[http://dx.doi.org/10.1038/oby.2006.228] [PMID: 17135611]
[16]
Silvestris, E.; de Pergola, G.; Rosania, R.; Loverro, G. Obesity as disruptor of the female fertility. Reprod. Biol. Endocrinol., 2018, 16(1), 22.
[http://dx.doi.org/10.1186/s12958-018-0336-z] [PMID: 29523133]
[17]
De Pergola, G.; Silvestris, F. Obesity as a major risk factor for cancer. J. Obes., 2013, 2013, 291546.
[http://dx.doi.org/10.1155/2013/291546] [PMID: 24073332]
[18]
Simone, V.; D’Avenia, M.; Argentiero, A.; Felici, C.; Rizzo, F.M.; De Pergola, G.; Silvestris, F. Obesity and breast cancer: Molecular in-terconnections and potential clinical applications. Oncologist, 2016, 21(4), 404-417.
[http://dx.doi.org/10.1634/theoncologist.2015-0351] [PMID: 26865587]
[19]
Salaün, H.; Thariat, J.; Vignot, M.; Merrouche, Y.; Vignot, S. Obesity and cancer. Bull. Cancer, 2017, 104(1), 30-41.
[PMID: 28007295]
[20]
De Pergola, G.; Nitti, A.; Bartolomeo, N.; Gesuita, A.; Giagulli, V.A.; Triggiani, V.; Guastamacchia, E.; Silvestris, F. Possible role of hy-perinsulinemia and insulin resistance in lower vitamin D levels in overweight and obese patients. BioMed Res. Int., 2013, 2013, 921348.
[http://dx.doi.org/10.1155/2013/921348] [PMID: 23509804]
[21]
De Pergola, G.; Martino, T.; Zupo, R.; Caccavo, D.; Pecorella, C.; Paradiso, S.; Silvestris, F.; Triggiani, V. 25 Hydroxyvitamin D levels are negatively and independently associated with fat mass in a cohort of healthy overweight and obese subjects. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 838-844.
[http://dx.doi.org/10.2174/1871530319666190122094039] [PMID: 30666920]
[22]
Pi-Sunyer, F.X. The obesity epidemic: Pathophysiology and consequences of obesity. Obes. Res., 2002, 10(S12)(Suppl. 2), 97S-104S.
[http://dx.doi.org/10.1038/oby.2002.202] [PMID: 12490658]
[23]
Hill, J.O.; Peters, J.C. Environmental contributions to the obesity epidemic. Science, 1998, 280(5368), 1371-1374.
[http://dx.doi.org/10.1126/science.280.5368.1371] [PMID: 9603719]
[24]
Janesick, A.S.; Blumberg, B. Obesogens: An emerging threat to public health. Am. J. Obstet. Gynecol., 2016, 214(5), 559-565.
[http://dx.doi.org/10.1016/j.ajog.2016.01.182] [PMID: 26829510]
[25]
Nappi, F.; Barrea, L.; Di Somma, C.; Savanelli, M.C.; Muscogiuri, G.; Orio, F.; Savastano, S. Endocrine aspects of environmental “Obe-sogen” pollutants. Int. J. Environ. Res. Public Health, 2016, 13(8), 765.
[http://dx.doi.org/10.3390/ijerph13080765] [PMID: 27483295]
[26]
Grün, F.; Blumberg, B. Environmental obesogens: Organotins and endocrine disruption in via nuclear receptor signaling. Endocrinology, 2006, 147(6)(Suppl.), S50-S55.
[http://dx.doi.org/10.1210/en.2005-1129] [PMID: 16690801]
[27]
Heindel, J.J.; Vom Saal, F.S.; Blumberg, B.; Bovolin, P.; Calamandrei, G.; Ceresini, G.; Cohn, B.A.; Fabbri, E.; Gioiosa, L.; Kassotis, C.; Legler, J.; La Merrill, M.; Rizzir, L.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Montanini, L.; Molteni, L.; Nagel, S.C.; Parmigiani, S.; Panzica, G.; Paterlini, S.; Pomatto, V.; Ruzzin, J.; Sartor, G.; Schug, T.T.; Street, M.E.; Suvorov, A.; Volpi, R.; Zoeller, R.T.; Palanza, P. Parma consensus statement on metabolic disruptors. Environ. Health, 2015, 14, 54.
[28]
Cooke, G.M. Effect of organotins on human aromatase activity in vitro. Toxicol. Lett., 2002, 126(2), 121-130.
[http://dx.doi.org/10.1016/S0378-4274(01)00451-9] [PMID: 11751016]
[29]
White, R.; Jobling, S.; Hoare, S.A.; Sumpter, J.P.; Parker, M.G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 1994, 135(1), 175-182.
[http://dx.doi.org/10.1210/endo.135.1.8013351] [PMID: 8013351]
[30]
Kanayama, T.; Kobayashi, N.; Mamiya, S.; Nakanishi, T.; Nishikawa, J. Organotin compounds promote adipocyte differentiation as ago-nists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol. Pharmacol., 2005, 67(3), 766-774.
[http://dx.doi.org/10.1124/mol.104.008409] [PMID: 15611480]
[31]
Gravel, S.; Lavoué, J.; Bakhiyi, B.; Lavoie, J.; Roberge, B.; Patry, L.; Bouchard, M.F.; Verner, M.A.; Zayed, J.; Labrèche, F. Multi-exposures to suspected endocrine disruptors in electronic waste recycling workers: Associations with thyroid and reproductive hor-mones. Int. J. Hyg. Environ. Health, 2020, 22, 5113445.
[http://dx.doi.org/10.1016/j.ijheh.2019.113445] [PMID: 31962273]
[32]
Wang, H.; Zhou, Y.; Tang, C.; He, Y.; Wu, J.; Chen, Y.; Jiang, Q. Urinary phthalate metabolites are associated with body mass index and waist circumference in Chinese school children. PLoS One, 2013, 8(2), e56800.
[http://dx.doi.org/10.1371/journal.pone.0056800] [PMID: 23437242]
[33]
Yang, T.C.; Peterson, K.E.; Meeker, J.D.; Sánchez, B.N.; Zhang, Z.; Cantoral, A.; Solano, M.; Tellez-Rojo, M.M. Bisphenol A and phthalates in utero and in childhood: Association with child BMI z-score and adiposity. Environ. Res., 2017, 156, 326-333.
[http://dx.doi.org/10.1016/j.envres.2017.03.038] [PMID: 28390300]
[34]
Vafeiadi, M.; Myridakis, A.; Roumeliotaki, T.; Margetaki, K.; Chalkiadaki, G.; Dermitzaki, E.; Venihaki, M.; Sarri, K.; Vassilaki, M.; Leventakou, V.; Stephanou, E.G.; Kogevinas, M.; Chatzi, L. Association of early life exposure to phthalates with obesity and cardiometa-bolic traits in childhood: Sex specific associations. Front. Public Health, 2018, 6, 327.
[http://dx.doi.org/10.3389/fpubh.2018.00327] [PMID: 30538977]
[35]
Deierlein, A.L.; Wolff, M.S.; Pajak, A.; Pinney, S.M.; Windham, G.C.; Galvez, M.P.; Silva, M.J.; Calafat, A.M.; Kushi, L.H.; Biro, F.M.; Teitelbaum, S.L. Breast cancer and environment research program. longitudinal associations of phthalate exposures during childhood and body size measurements in young girls. Epidemiology, 2016, 27(4), 492-499.
[http://dx.doi.org/10.1097/EDE.0000000000000489] [PMID: 27031039]
[36]
Ribeiro, C.; Mendes, V.; Peleteiro, B.; Delgado, I.; Araújo, J.; Aggerbeck, M.; Annesi-Maesano, I; Sarigiannis, D.; Ramos, E. Association between the exposure to phthalates and adiposity: A meta-analysis in children and adults. Environ Res,, 2019, 179(Pt A) 108780
[http://dx.doi.org/10.1016/j.envres.2019.108780]
[37]
Hoepner, L.A.; Bisphenol, A. A narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome pro-liferator-activated receptor gamma. Environ. Res., 2019, 173, 54-68.
[http://dx.doi.org/10.1016/j.envres.2019.03.012] [PMID: 30897403]
[38]
Rubin, B.S.; Schaeberle, C.M.; Soto, A.M. The case for BPA as an obesogen: Contributors to the controversy. Front. Endocrinol. (Lausanne) 2019, 10, 30.
[http://dx.doi.org/10.3389/fendo.2019.00030] [PMID: 30787907]
[39]
Amin, M.M.; Ebrahim, K.; Hashemi, M.; Shoshtari-Yeganeh, B.; Rafiei, N.; Mansourian, M.; Kelishadi, R. Association of exposure to bisphenol A with obesity and cardiometabolic risk factors in children and adolescents. Int. J. Environ. Health Res., 2019, 29(1), 94-106.
[http://dx.doi.org/10.1080/09603123.2018.1515896] [PMID: 30203985]
[40]
Mustieles, V.; Casas, M.; Ferrando-Marco, P.; Ocón-Hernández, O.; Reina-Pérez, I.; Rodríguez-Carrillo, A.; Vela-Soria, F.; Pérez-Lobato, R.; Navarrete-Muñoz, E.M.; Freire, C.; Olea, N.; Fernández, M.F. Bisphenol A and adiposity measures in peripubertal boys from the INMA-Granada cohort. Environ. Res., 2019, 173, 443-451.
[http://dx.doi.org/10.1016/j.envres.2019.03.045] [PMID: 30974370]
[41]
Wassenaar, P.N.H.; Trasande, L.; Legler, J. Systematic review and meta-analysis of early-life exposure to bisphenol A and obesity-related outcomes in rodents. Environ. Health Perspect., 2017, 125(10), 106001.
[http://dx.doi.org/10.1289/EHP1233] [PMID: 28982642]
[42]
Jacobson, M.H.; Woodward, M.; Bao, W.; Liu, B.; Trasande, L. Urinary bisphenols and obesity prevalence among U.S. children and adolescents. J. Endocr. Soc., 2019, 3(9), 1715-1726.
[http://dx.doi.org/10.1210/js.2019-00201] [PMID: 31528831]
[43]
Ben-Jonathan, N.; Hugo, E.R.; Brandebourg, T.D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol., 2009, 304(1-2), 49-54.
[http://dx.doi.org/10.1016/j.mce.2009.02.022] [PMID: 19433247]
[44]
Guo, J.; Zhang, J.; Wu, C.; Xiao, H.; Lv, S.; Lu, D.; Qi, X.; Feng, C.; Liang, W.; Chang, X.; Zhang, Y.; Xu, H.; Cao, Y.; Wang, G.; Zhou, Z. Urinary bisphenol A concentrations and adiposity measures at age 7 years in a prospective birth cohort. Chemosphere, 2020, 25, 1126340.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126340] [PMID: 32135373]
[45]
Zhang, Y.; Dong, T.; Hu, W.; Wang, X.; Xu, B.; Lin, Z.; Hofer, T.; Stefanoff, P.; Chen, Y.; Wang, X.; Xia, Y. Association between expo-sure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models. Environ. Int., 2019, 123, 325-336.
[http://dx.doi.org/10.1016/j.envint.2018.11.076] [PMID: 30557812]
[46]
Liu, B.; Lehmler, H.J.; Sun, Y.; Xu, G.; Liu, Y.; Zong, G.; Sun, Q.; Hu, F.B.; Wallace, R.B.; Bao, W. Bisphenol A substitutes and obesity in US adults: Analysis of a population-based, cross-sectional study. Lancet Planet. Health, 2017, 1(3), e114-e122.
[http://dx.doi.org/10.1016/S2542-5196(17)30049-9] [PMID: 29308453]
[47]
Do, M.T.; Chang, V.C.; Mendez, M.A.; de Groh, M. Urinary bisphenol A and obesity in adults: Results from the Canadian Health Measures Survey. Health Promot. Chronic Dis. Prev. Can., 2017, 37(12), 403-412.
[http://dx.doi.org/10.24095/hpcdp.37.12.02] [PMID: 29236378]
[48]
Hao, M.; Ding, L.; Xuan, L.; Wang, T.; Li, M.; Zhao, Z.; Lu, J.; Xu, Y.; Chen, Y.; Wang, W.; Bi, Y.; Xu, M.; Ning, G. Urinary bisphenol A concentration and the risk of central obesity in Chinese adults: A prospective study. J. Diabetes, 2018, 10(6), 442-448.
[http://dx.doi.org/10.1111/1753-0407.12531] [PMID: 28097815]
[49]
Warner, M.; Wesselink, A.; Harley, K.G.; Bradman, A.; Kogut, K.; Eskenazi, B. Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the CHAMACOS study cohort. Am. J. Epidemiol., 2014, 179(11), 1312-1322.
[http://dx.doi.org/10.1093/aje/kwu046]
[50]
Vafeiadi, M.; Georgiou, V.; Chalkiadaki, G.; Rantakokko, P.; Kiviranta, H.; Karachaliou, M.; Fthenou, E.; Venihaki, M.; Sarri, K.; Vass-ilaki, M.; Kyrtopoulos, S.A.; Oken, E.; Kogevinas, M.; Chatzi, L. Association of prenatal exposure to persistent organic pollutants with obesity and cardiometabolic traits in early childhood: The rhea mother-child cohort (Crete, Greece). Environ. Health Perspect., 2015, 123(10), 1015-1021.
[http://dx.doi.org/10.1289/ehp.1409062] [PMID: 25910281]
[51]
Lee, D.H.; Lind, L.; Jacobs, D.R., Jr; Salihovic, S.; van Bavel, B.; Lind, P.M. Associations of persistent organic pollutants with abdominal obesity in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Environ. Int., 2012, 40, 170-178.
[http://dx.doi.org/10.1016/j.envint.2011.07.010] [PMID: 21835469]
[52]
Elobeid, M.A.; Padilla, M.A.; Brock, D.W.; Ruden, D.M.; Allison, D.B. Endocrine disruptors and obesity: An examination of selected persistent organic pollutants in the NHANES 1999-2002 data. Int. J. Environ. Res. Public Health, 2010, 7(7), 2988-3005.
[http://dx.doi.org/10.3390/ijerph7072988] [PMID: 20717554]
[53]
Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 2004, 89(6), 2548-2556.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[54]
Ahima, R.S.; Flier, J.S. Adipose tissue as an endocrine organ. Trends Endocrinol. Metab., 2000, 11(8), 327-332.
[http://dx.doi.org/10.1016/S1043-2760(00)00301-5] [PMID: 10996528]
[55]
Grün, F.; Blumberg, B. Endocrine disrupters as obesogens. Mol. Cell. Endocrinol., 2009, 304(1-2), 19-29.
[http://dx.doi.org/10.1016/j.mce.2009.02.018] [PMID: 19433244]
[56]
Biemann, R.; Navarrete Santos, A.; Navarrete Santos, A.; Riemann, D.; Knelangen, J.; Blüher, M.; Koch, H.; Fischer, B. Endocrine dis-rupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows. Biochem. Biophys. Res. Commun., 2012, 417(2), 747-752.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.028] [PMID: 22197818]
[57]
Masuno, H.; Kidani, T.; Sekiya, K.; Sakayama, K.; Shiosaka, T.; Yamamoto, H.; Honda, K. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J. Lipid Res., 2002, 43(5), 676-684.
[http://dx.doi.org/10.1016/S0022-2275(20)30108-5] [PMID: 11971937]
[58]
Masuno, H.; Okamoto, S.; Iwanami, J.; Honda, K.; Shiosaka, T.; Kidani, T.; Sakayama, K.; Yamamoto, H. Effect of 4-nonylphenol on cell proliferation and adipocyte formation in cultures of fully differentiated 3T3-L1 cells. Toxicol. Sci., 2003, 75(2), 314-320.
[http://dx.doi.org/10.1093/toxsci/kfg203] [PMID: 12883076]
[59]
le Maire, A.; Grimaldi, M.; Roecklin, D.; Dagnino, S.; Vivat-Hannah, V.; Balaguer, P.; Bourguet, W. Activation of RXR-PPAR heterodi-mers by organotin environmental endocrine disruptors. EMBO Rep., 2009, 10(4), 367-373.
[http://dx.doi.org/10.1038/embor.2009.8] [PMID: 19270714]
[60]
Kirchner, S.; Kieu, T.; Chow, C.; Casey, S.; Blumberg, B. Prenatal exposure to the environmental obesogen tributyltin predisposes mul-tipotent stem cells to become adipocytes. Mol. Endocrinol., 2010, 24(3), 526-539.
[http://dx.doi.org/10.1210/me.2009-0261] [PMID: 20160124]
[61]
Ferré, P. The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes, 2004, 53(Suppl. 1), S43-S50.
[http://dx.doi.org/10.2337/diabetes.53.2007.S43] [PMID: 14749265]
[62]
Mukherjee, R.; Davies, P.J.; Crombie, D.L.; Bischoff, E.D.; Cesario, R.M.; Jow, L.; Hamann, L.G.; Boehm, M.F.; Mondon, C.E.; Nadzan, A.M.; Paterniti, J.R., Jr; Heyman, R.A. Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature, 1997, 386(6623), 407-410.
[http://dx.doi.org/10.1038/386407a0] [PMID: 9121558]
[63]
Grün, F.; Watanabe, H.; Zamanian, Z.; Maeda, L.; Arima, K.; Cubacha, R.; Gardiner, D.M.; Kanno, J.; Iguchi, T.; Blumberg, B. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol., 2006, 20(9), 2141-2155.
[http://dx.doi.org/10.1210/me.2005-0367] [PMID: 16613991]
[64]
Pan, G.; Hanaoka, T.; Yoshimura, M.; Zhang, S.; Wang, P.; Tsukino, H.; Inoue, K.; Nakazawa, H.; Tsugane, S.; Takahashi, K. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): A cross-sectional study in China. Environ. Health Perspect., 2006, 114(11), 1643-1648.
[http://dx.doi.org/10.1289/ehp.9016] [PMID: 17107847]
[65]
Henrotin, J.B.; Feigerlova, E.; Robert, A.; Dziurla, M.; Burgart, M.; Lambert-Xolin, A.M.; Jeandel, F.; Weryha, G. Decrease in serum tes-tosterone levels after short-term occupational exposure to diisononyl phthalate in male workers. Occup. Environ. Med., 2020, 77(4), 214-222.
[http://dx.doi.org/10.1136/oemed-2019-106261] [PMID: 32079716]
[66]
Woodward, M.J.; Obsekov, V.; Jacobson, M.H.; Kahn, L.G.; Trasande, L. Phthalates and sex steroid hormones among men from NHANES, 2013-2016. J. Clin. Endocrinol. Metab., 2020, 105(4), e1225-e1234.
[http://dx.doi.org/10.1210/clinem/dgaa039] [PMID: 31996892]
[67]
Dishaw, L.V.; Macaulay, L.J.; Roberts, S.C.; Stapleton, H.M. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr. Opin. Pharmacol., 2014, 19, 125-133.
[http://dx.doi.org/10.1016/j.coph.2014.09.018] [PMID: 25306433]
[68]
De Coster, S.; van Larebeke, N. Endocrine-disrupting chemicals: Associated disorders and mechanisms of action. J. Environ. Public Health, 2012, 2012713696.
[http://dx.doi.org/10.1155/2012/713696] [PMID: 22991565]
[69]
Kassotis, C.D.; Stapleton, H.M. Endocrine-mediated mechanisms of metabolic disruption and new approaches to examine the public health threat. Front. Endocrinol. (Lausanne), 2019, 10, 39.
[http://dx.doi.org/10.3389/fendo.2019.00039] [PMID: 30792693]
[70]
Johns, L.E.; Ferguson, K.K.; Soldin, O.P.; Cantonwine, D.E.; Rivera-González, L.O.; Del Toro, L.V.; Calafat, A.M.; Ye, X.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during preg-nancy: A longitudinal analysis. Reprod. Biol. Endocrinol., 2015, 13, 4.
[http://dx.doi.org/10.1186/1477-7827-13-4]
[71]
Is associated with weight change through 1 year postpartum among women in the early-life exposure in mexico to environmental toxi-cants project. J. Womens Health (Larchmt.), 2020, 29(11), 1419-1426.
[http://dx.doi.org/10.1089/jwh.2019.8078] [PMID: 32233978]
[72]
Rodríguez-Carmona, Y.; Cantoral, A.; Trejo-Valdivia, B.; Téllez-Rojo, M.M.; Svensson, K.; Peterson, K.E.; Meeker, J.D.; Schnaas, L.; Solano, M.; Watkins, D.J. Phthalate exposure during pregnancy and long-term weight gain in women. Environ. Res., 2019, 169, 26-32.
[http://dx.doi.org/10.1016/j.envres.2018.10.014] [PMID: 30408750]
[73]
Laisi, A.; Tuominen, R.; Männistö, P.; Savolainen, K.; Mattila, J. The effect of maneb, zineb, and ethylenethiourea on the humoral activity of the pituitary-thyroid axis in rat. Arch. Toxicol. Suppl., 1985, 8, 253-258.
[http://dx.doi.org/10.1007/978-3-642-69928-3_37] [PMID: 3938269]
[74]
Laflamme, L.; Hamann, G.; Messier, N.; Maltais, S.; M-F., Langlois RXR acts as a coregulator in the regulation of genes of the hypothala-mo-pituitary axis by thyroid hormone receptors. J. Mol. Endocrinol., 2002, 29(1), 61-72.
[http://dx.doi.org/10.1677/jme.0.0290061] [PMID: 12200229]
[75]
Kouidhi, S.; Seugnet, I.; Decherf, S.; Guissouma, H.; Elgaaied, A.B.; Demeneix, B.; Clerget-Froidevaux, M.S. Peroxisome proliferator-activated receptor-gamma (PPARgamma) modulates hypothalamic Trh regulation in vivo. Mol. Cell. Endocrinol., 2010, 317(1-2), 44-52.
[http://dx.doi.org/10.1016/j.mce.2009.11.001] [PMID: 19900503]
[76]
Møller, S.E.; Ajslev, T.A.; Andersen, C.S.; Dalgård, C.; Sørensen, T.I. Risk of childhood overweight after exposure to tobacco smoking in prenatal and early postnatal life. PLoS One, 2014, 9(10), e109184.
[http://dx.doi.org/10.1371/journal.pone.0109184] [PMID: 25310824]
[77]
Braun, J.M.; Li, N.; Arbuckle, T.E.; Dodds, L.; Massarelli, I.; Fraser, W.D.; Lanphear, B.P.; Muckle, G. Association between gestational urinary bisphenol a concentrations and adiposity in young children: The MIREC study. Environ. Res., 2019, 172, 454-461.
[http://dx.doi.org/10.1016/j.envres.2019.02.038] [PMID: 30831435]
[78]
Birks, L.; Casas, M.; Garcia, A.M.; Alexander, J.; Barros, H.; Bergström, A.; Bonde, J.P.; Burdorf, A.; Costet, N.; Danileviciute, A.; Eg-gesbø, M.; Fernández, M.F.; González-Galarzo, M.C.; Hanke, W.; Jaddoe, V.; Kogevinas, M.; Kull, I.; Lertxundi, A.; Melaki, V.; Ander-sen, A.N.; Olea, N.; Polanska, K.; Rusconi, F.; Santa-Marina, L.; Santos, A.C.; Vrijkotte, T.; Zugna, D.; Nieuwenhuijsen, M.; Cordier, S.; Vrijheid, M. Occupational exposure to endocrine-disrupting chemicals and birth weight and length of gestation: A European meta-analysis. Environ. Health Perspect., 2016, 124(11), 1785-1793.
[http://dx.doi.org/10.1289/EHP208] [PMID: 27152464]
[79]
Legler, J.; Hamers, T. van Eck van der Sluijs-van de Bor, M.; Schoeters, G.; van der Ven, L.; Eggesbo, M.; Koppe, J.; Feinberg, M.; Trn-ovec, T. The OBELIX project: Early life exposure to endocrine disruptors and obesity. Am. J. Clin. Nutr., 2011, 94(6)(Suppl.), 1933S-1938S.
[http://dx.doi.org/10.3945/ajcn.110.001669] [PMID: 21543539]
[80]
Day, C.P. From fat to inflammation. Gastroenterology, 2006, 130(1), 207-210.
[http://dx.doi.org/10.1053/j.gastro.2005.11.017] [PMID: 16401483]
[81]
Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New insight into adiponectin role in obesity and obesity-related diseases. BioMed Res. Int., 2014, 2014, 658913.
[http://dx.doi.org/10.1155/2014/658913] [PMID: 25110685]
[82]
Crujeiras, A.B.; Carreira, M.C.; Cabia, B.; Andrade, S.; Amil, M.; Casanueva, F.F. Leptin resistance in obesity: An epigenetic landscape. Life Sci., 2015, 140, 57-63.
[http://dx.doi.org/10.1016/j.lfs.2015.05.003] [PMID: 25998029]
[83]
Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Ettinger, A.S.; Shapiro, G.D.; Fisher, M.; Morisset, A.S.; Taback, S.; Bouchard, M.F.; Mon-nier, P.; Dallaire, R.; Fraser, W.D. A birth cohort study to investigate the association between prenatal phthalate and bisphenol A expo-sures and fetal markers of metabolic dysfunction. Environ. Health, 2014, 13(1), 84.
[http://dx.doi.org/10.1186/1476-069X-13-84] [PMID: 25336252]
[84]
Menale, C.; Grandone, A.; Nicolucci, C.; Cirillo, G.; Crispi, S.; Di Sessa, A.; Marzuillo, P.; Rossi, S.; Mita, D.G.; Perrone, L.; Diano, N.; Miraglia Del Giudice, E. Bisphenol A is associated with insulin resistance and modulates adiponectin and resistin gene expression in obese children. Pediatr. Obes., 2017, 12(5), 380-387.
[http://dx.doi.org/10.1111/ijpo.12154] [PMID: 27187765]
[85]
Shoshtari-Yeganeh, B.; Zarean, M.; Mansourian, M.; Riahi, R.; Poursafa, P.; Teiri, H.; Rafiei, N.; Dehdashti, B.; Kelishadi, R. Systematic review and meta-analysis on the association between phthalates exposure and insulin resistance. Environ. Sci. Pollut. Res. Int., 2019, 26(10), 9435-9442.
[http://dx.doi.org/10.1007/s11356-019-04373-1] [PMID: 30734259]
[86]
Chait, A.; den Hartigh, L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovas-cular disease. Front. Cardiovasc. Med., 2020, 7, 22.
[http://dx.doi.org/10.3389/fcvm.2020.00022] [PMID: 32158768]
[87]
Sam, S. Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk. Horm. Mol. Biol. Clin. Investig., 2018, 33(1), 20180014.
[http://dx.doi.org/10.1515/hmbci-2018-0014] [PMID: 29522417]
[88]
Piché, M.E.; Poirier, P.; Lemieux, I.; Després, J.P. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: An update. Prog. Cardiovasc. Dis., 2018, 61(2), 103-113.
[http://dx.doi.org/10.1016/j.pcad.2018.06.004] [PMID: 29964067]
[89]
Cheng, L.; Wang, J.; Dai, H.; Duan, Y.; An, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Ma, Q.; Li, Y.; Li, P.; Du, H.; Zhao, B. Brown and beige adipose tissue: A novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte, 2021, 10(1), 48-65.
[http://dx.doi.org/10.1080/21623945.2020.1870060] [PMID: 33403891]
[90]
Anthony, S.R.; Guarnieri, A.R.; Gozdiff, A.; Helsley, R.N.; Phillip Owens, A., III; Tranter, M. Mechanisms linking adipose tissue in-flammation to cardiac hypertrophy and fibrosis. Clin. Sci. (Lond.), 2019, 133(22), 2329-2344.
[http://dx.doi.org/10.1042/CS20190578] [PMID: 31777927]
[91]
Roth, C.L.; Molica, F.; Kwak, B.R. Browning of white adipose tissue as a therapeutic tool in the fight against atherosclerosis. Metabolites, 2021, 11(5), 319.
[http://dx.doi.org/10.3390/metabo11050319] [PMID: 34069148]
[92]
Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev., 2004, 84(1), 277-359.
[http://dx.doi.org/10.1152/physrev.00015.2003] [PMID: 14715917]
[93]
Herz, C.T.; Kiefer, F.W. Adipose tissue browning in mice and humans. J. Endocrinol., 2019, 241(3), R97-R109.
[http://dx.doi.org/10.1530/JOE-18-0598] [PMID: 31144796]
[94]
Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol., 2021, 320(3), C375-C391.
[http://dx.doi.org/10.1152/ajpcell.00379.2020] [PMID: 33356944]
[95]
Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesi-ty to insulin resistance and type 2 diabetes. Front. Physiol., 2020, 10, 1607.
[http://dx.doi.org/10.3389/fphys.2019.01607] [PMID: 32063863]
[96]
Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol., 2017, 13(11), 633-643.
[http://dx.doi.org/10.1038/nrendo.2017.90] [PMID: 28799554]
[97]
Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest., 2007, 117(1), 175-184.
[http://dx.doi.org/10.1172/JCI29881] [PMID: 17200717]
[98]
Saxton, S.N.; Clark, B.J.; Withers, S.B.; Eringa, E.C.; Heagerty, A.M. Mechanistic links between obesity, diabetes, and blood pressure: Role of perivascular adipose tissue. Physiol. Rev., 2019, 99(4), 1701-1763.
[http://dx.doi.org/10.1152/physrev.00034.2018] [PMID: 31339053]
[99]
Röszer, T. Understanding the biology of self-renewing macrophages. Cells, 2018, 7(8), 103.
[http://dx.doi.org/10.3390/cells7080103] [PMID: 30096862]
[100]
Huang, F.M.; Chang, Y.C.; Lee, S.S.; Yang, M.L.; Kuan, Y.H. Expression of pro-inflammatory cytokines and mediators induced by bi-sphenol A in via ERK-NFκB and JAK1/2-STAT3 pathways in macrophages. Environ. Toxicol., 2019, 34(4), 486-494.
[http://dx.doi.org/10.1002/tox.22702] [PMID: 30609183]
[101]
Lu, X.; Li, M.; Wu, C.; Zhou, C.; Zhang, J.; Zhu, Q.; Shen, T. Bisphenol A promotes macrophage proinflammatory subtype polarization in via upregulation of IRF5 expression in vitro. Toxicol. In Vitro, 2019, 60, 97-106.
[http://dx.doi.org/10.1016/j.tiv.2019.05.013] [PMID: 31108126]
[102]
Yamashita, U.; Sugiura, T.; Yoshida, Y.; Kuroda, E. Effect of endocrine disrupters on macrophage functions in vitro. J. UOEH, 2005, 27(1), 1-10.
[http://dx.doi.org/10.7888/juoeh.27.1_1] [PMID: 15794588]
[103]
Xu, M.; Li, Y.; Wang, X.; Zhang, Q.; Wang, L.; Zhang, X.; Cui, W.; Han, X.; Ma, N.; Li, H.; Fang, H.; Tang, S.; Li, J.; Liu, Z.; Yang, H.; Jia, X. Role of hepatocyte- and macrophage-specific [formula: See text] in hepatotoxicity induced by diethylhexyl phthalate in mice. Environ. Health Perspect., 2022, 130(1), 17005.
[http://dx.doi.org/10.1289/EHP9373] [PMID: 35019730]
[104]
Bølling, A.K.; Ovrevik, J.; Samuelsen, J.T.; Holme, J.A.; Rakkestad, K.E.; Mathisen, G.H.; Paulsen, R.E.; Korsnes, M.S.; Becher, R. Mono-2-ethylhexylphthalate (MEHP) induces TNF-α release and macrophage differentiation through different signalling pathways in RAW264.7 cells. Toxicol. Lett., 2012, 209(1), 43-50.
[http://dx.doi.org/10.1016/j.toxlet.2011.11.016] [PMID: 22143055]
[105]
Lee, J.W.; Park, S.; Han, H.K.; Gye, M.C.; Moon, E.Y. Di-(2-ethylhexyl) phthalate enhances melanoma tumor growth in via differential effect on M1-and M2-polarized macrophages in mouse model. Environ. Pollut., 2018, 233, 833-843.
[http://dx.doi.org/10.1016/j.envpol.2017.10.030] [PMID: 29144988]
[106]
Fang, C.; Ning, B.; Waqar, A.B.; Niimi, M.; Li, S.; Satoh, K.; Shiomi, M.; Ye, T.; Dong, S.; Fan, J. Bisphenol A exposure induces metabol-ic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J. Appl. Toxicol., 2015, 35(9), 1058-1070.
[http://dx.doi.org/10.1002/jat.3103] [PMID: 25619500]
[107]
Campioli, E.; Martinez-Arguelles, D.B.; Papadopoulos, V. In utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate pro-motes local adipose and systemic inflammation in adult male offspring. Nutr. Diabetes, 2014, 4(5), e115.
[http://dx.doi.org/10.1038/nutd.201413] [PMID: 24799162]
[108]
Lisco, G.; Giagulli, V.A.; Iovino, M.; Guastamacchia, E.; Pergola, G.; Triggiani, V. Endocrine-disrupting chemicals: Introduction to the theme. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21. Epub ahead of print
[http://dx.doi.org/10.2174/1871530321666210413124425] [PMID: 33847259]

© 2024 Bentham Science Publishers | Privacy Policy