Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Toxic Effects of Endocrine Disrupting Chemicals (EDCs) on Gut Microbiota: Bisphenol A (BPA) A Review

Author(s): Ioannis Alexandros Charitos*, Skender Topi, Roberto Gagliano-Candela, Emanuele De Nitto, Lorenzo Polimeno, Monica Montagnani and Luigi Santacroce

Volume 22, Issue 7, 2022

Published on: 17 May, 2022

Page: [716 - 727] Pages: 12

DOI: 10.2174/1871530322666220325114045

Open Access Journals Promotions 2
Abstract

Background: Bisphenol A (BPA), an important industrial material widely applied in daily products, is considered an endocrine-disrupting chemical that may adversely affect humans. Growing evidence has shown that intestinal bacterial alterations caused by BPA exposure play an important role in several local and systemic diseases.

Aims: Finding evidence that BPA-induced alterations in gut microbiota composition and activity may perturb its role on human health.

Results: Evidence from several experimental settings shows that both low and high doses of BPA interfere with the hormonal, homeostatic, and reproductive systems in animals and humans. Moreover, it has recently been classified as an environmental obesogenic, with metabolic-disrupting effects on lipid metabolism and pancreatic b-cell functions. Several evidence characterizes PBA as an environmental contributor to type II diabetes, metabolic syndromes, and obesity. However, the highest estimates of the exposure derived from foods alone or in combination with other sources are 3 to 5 times below the new tolerable daily intake (TDI) value, today reduced by the European Food Safety Authority (EFSA) experts from 50 micrograms per kilogramme of bodyweight per day (μg/kg bw/day) to 4 μg/kg bw/day.

Conclusion: Considering estimates for the total amount of BPA that can be ingested daily over a lifetime, many International Health Authorities conclude that dietary exposure of adult humans to BPA does not represent a risk to consumers' health, declaring its safety due to very-low established levels in food and water and any appreciable health risk.

Keywords: Bisphenol A, endocrine-disrupting chemicals, toxicology, toxic substances, gut microbiota, probiotics.

Graphical Abstract
[1]
Bottalico, L.; Castellaneta, F.; Charitos, I.A. From hydrotherapy to the discovery of the gut microbiota: The historical gastrointestinal health concept. Pharmacophore, 2020, 11(2), 82-90.
[2]
Inchingolo, F.; Dipalma, G.; Cirulli, N.; Cantore, S.; Saini, R.S.; Altini, V.; Santacroce, L.; Ballini, A.; Saini, R. Microbiological results of improvement in periodontal condition by administration of oral probiotics. J. Biol. Regul. Homeost. Agents, 2018, 32(5), 1323-1328.
[PMID: 30334433]
[3]
Giudice, G.; Cutrignelli, D.A.; Sportelli, P.; Limongelli, L.; Tempesta, A.; Gioia, G.D.; Santacroce, L.; Maiorano, E.; Favia, G. Rhino-cerebral mucormycosis with orosinusal involvement: Diagnostic and surgical treatment guidelines. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(4), 264-269.
[http://dx.doi.org/10.2174/1871530316666161223145055] [PMID: 28017141]
[4]
Man, A.; Ciurea, C.N.; Pasaroiu, D.; Savin, A.I.; Toma, F.; Sular, F.; Santacroce, L.; Mare, A. New perspectives on the nutritional factors influencing growth rate of Candida albicans in diabetics. An in vitro study. Mem. Inst. Oswaldo Cruz, 2017, 112(9), 587-592.
[http://dx.doi.org/10.1590/0074-02760170098] [PMID: 28902283]
[5]
Bottalico, L.; Tatullo, M.; Marrelli, M.; Santacroce, L. Lights and shadows of dental implants: Focus on mucositis and perimplantitis and their biological markers. J. Biol. Regul. Homeost. Agents, 2016, 30(3), 859-861.
[PMID: 27655511]
[6]
Weyrich, L.S.; Dixit, S.; Farrer, A.G.; Cooper, A.J.; Cooper, A.J. The skin microbiome: Associations between altered microbial communi-ties and disease. Australas. J. Dermatol., 2015, 56(4), 268-274.
[http://dx.doi.org/10.1111/ajd.12253] [PMID: 25715969]
[7]
Atarashi, K.; Umesaki, Y.; Honda, K. Microbiotal influence on T cell subset development. Semin. Immunol., 2011, 23(2), 146-153.
[http://dx.doi.org/10.1016/j.smim.2011.01.010] [PMID: 21292500]
[8]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[9]
Hevia, A.; Delgado, S.; Sánchez, B.; Margolles, A. Molecular players involved in the interaction between beneficial bacteria and the im-mune system. Front. Microbiol., 2015, 6, 1285.
[http://dx.doi.org/10.3389/fmicb.2015.01285] [PMID: 26635753]
[10]
Natividad, J.M.; Verdu, E.F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol. Res., 2013, 69(1), 42-51.
[http://dx.doi.org/10.1016/j.phrs.2012.10.007] [PMID: 23089410]
[11]
Bäumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535(7610), 85-93.
[http://dx.doi.org/10.1038/nature18849] [PMID: 27383983]
[12]
Theriot, C.M.; Koenigsknecht, M.J.; Carlson, P.E., Jr; Hatton, G.E.; Nelson, A.M.; Li, B.; Huffnagle, G.B.; Z., Li J.; Young, V.B. Antibi-otic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun., 2014, 5, 3114.
[http://dx.doi.org/10.1038/ncomms4114] [PMID: 24445449]
[13]
Polimeno, L.; Barone, M.; Mosca, A.; Viggiani, M.T.; Di Leo, A.; Debellis, L.; Troisi, M.; Daniele, A.; Santacroce, L. Gut microbiota im-balance is related to sporadic colorectal neoplasms: A pilot study. Appl. Sci. (Basel), 2019, 9(24), 5491.
[http://dx.doi.org/10.3390/app9245491]
[14]
Sekirov, I.; Tam, N.M.; Jogova, M.; Robertson, M.L.; Li, Y.; Lupp, C.; Finlay, B.B. Antibiotic-induced perturbations of the intestinal mi-crobiota alter host susceptibility to enteric infection. Infect. Immun., 2008, 76(10), 4726-4736.
[http://dx.doi.org/10.1128/IAI.00319-08] [PMID: 18678663]
[15]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[16]
Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[17]
Neish, A.S. Microbes in gastrointestinal health and disease. Gastroenterology, 2009, 136(1), 65-80.
[http://dx.doi.org/10.1053/j.gastro.2008.10.080] [PMID: 19026645]
[18]
Polimeno, L.; Barone, M.; Mosca, A.; Viggiani, M.T.; Joukar, F.; Mansour-Ghanaei, F.; Mavaddati, S.; Daniele, A.; Debellis, L.; Bilancia, M.; Santacroce, L.; Di Leo, A. Soy metabolism by gut microbiota from patients with precancerous intestinal lesions. Microorganisms, 2020, 8(4), 469.
[http://dx.doi.org/10.3390/microorganisms8040469] [PMID: 32218321]
[19]
Chang, C.; Lin, H. Dysbiosis in gastrointestinal disorders. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 3-15.
[http://dx.doi.org/10.1016/j.bpg.2016.02.001] [PMID: 27048892]
[20]
Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therap. Adv. Gastroenterol., 2013, 6(4), 295-308.
[http://dx.doi.org/10.1177/1756283X13482996] [PMID: 23814609]
[21]
Walker, A.W.; Sanderson, J.D.; Churcher, C.; Parkes, G.C.; Hudspith, B.N.; Rayment, N.; Brostoff, J.; Parkhill, J.; Dougan, G.; Petrovska, L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol., 2011, 11(1), 7.
[http://dx.doi.org/10.1186/1471-2180-11-7] [PMID: 21219646]
[22]
Yang, M.; Gu, Y.; Li, L.; Liu, T.; Song, X.; Sun, Y.; Cao, X.; Wang, B.; Jiang, K.; Cao, H. Bile acid-gut microbiota axis in inflammatory bowel disease: From bench to bedside. Nutrients, 2021, 13(9), 3143.
[http://dx.doi.org/10.3390/nu13093143] [PMID: 34579027]
[23]
Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; Morgan, X.C.; Kostic, A.D.; Luo, C.; González, A.; McDonald, D.; Haberman, Y.; Walters, T.; Baker, S.; Rosh, J.; Stephens, M.; Heyman, M.; Markowitz, J.; Baldassano, R.; Griffiths, A.; Sylvester, F.; Mack, D.; Kim, S.; Crandall, W.; Hyams, J.; Huttenhower, C.; Knight, R.; Xavier, R.J. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe, 2014, 15(3), 382-392.
[http://dx.doi.org/10.1016/j.chom.2014.02.005] [PMID: 24629344]
[24]
Shan, Y.; Lee, M.; Chang, E.B. The gut microbiome and inflammatory bowel diseases. Annu. Rev. Med., 2022, 73, 455-468.
[http://dx.doi.org/10.1146/annurev-med-042320-021020] [PMID: 34555295]
[25]
Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbi-al community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13780-13785.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[26]
Li, G.; Lin, J.; Zhang, C.; Gao, H.; Lu, H.; Gao, X.; Zhu, R.; Li, Z.; Li, M.; Liu, Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes, 2021, 13(1), 1968257.
[http://dx.doi.org/10.1080/19490976.2021.1968257] [PMID: 34494943]
[27]
Lupp, C.; Robertson, M.L.; Wickham, M.E.; Sekirov, I.; Champion, O.L.; Gaynor, E.C.; Finlay, B.B. Host-mediated inflammation dis-rupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe, 2007, 2(2), 119-129.
[http://dx.doi.org/10.1016/j.chom.2007.06.010] [PMID: 18005726]
[28]
Garrett, W.S.; Gallini, C.A.; Yatsunenko, T.; Michaud, M.; DuBois, A.; Delaney, M.L.; Punit, S.; Karlsson, M.; Bry, L.; Glickman, J.N.; Gordon, J.I.; Onderdonk, A.B.; Glimcher, L.H. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and ma-ternally transmitted colitis. Cell Host Microbe, 2010, 8(3), 292-300.
[http://dx.doi.org/10.1016/j.chom.2010.08.004] [PMID: 20833380]
[29]
Charitos, I.A.; D’Agostino, D.; Topi, S.; Bottalico, L. 40 years of Helicobacter pylori: A revolution in biomedical thought. Gastroenterol. Insights, 2021, 12(2), 111-135.
[http://dx.doi.org/10.3390/gastroent12020011]
[30]
Santacroce, L.; Bufo, P.; Latorre, V.; Losacco, T. Ruolo dei mastociti nella fisiopatologia delle lesioni gastriche indotte da Helicobacter pylori. Chir. Ital., 2000, 52(5), 527-531.
[PMID: 11190545]
[31]
Topi, S.; Santacroce, L.; Bottalico, L.; Ballini, A.; Inchingolo, A.D.; Dipalma, G.; Charitos, I.A.; Inchingolo, F. Gastric cancer in history: A perspective interdisciplinary study. Cancers (Basel), 2020, 12(2), 264.
[http://dx.doi.org/10.3390/cancers12020264] [PMID: 31978985]
[32]
Santacroce, L.; Cagiano, R.; Del Prete, R.; Bottalico, L.; Sabatini, R.; Carlaio, R.G.; Prejbeanu, R.; Vermesan, H.; Dragulescu, S.I.; Ver-mesan, D.; Motoc, A.; Losacco, T. Helicobacter pylori infection and gastric MALTomas: An up-to-date and therapy highlight. Clin. Ter., 2008, 159(6), 457-462.
[PMID: 19169609]
[33]
Karlsson, F.H.; Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 2012, 3(1), 1245.
[http://dx.doi.org/10.1038/ncomms2266] [PMID: 23212374]
[34]
Kamada, N.; Seo, S.U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol., 2013, 13(5), 321-335.
[http://dx.doi.org/10.1038/nri3430] [PMID: 23618829]
[35]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with in-creased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[36]
Bindhumol, V.; Chitra, K.C.; Mathur, P.P. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 2003, 188(2-3), 117-124.
[http://dx.doi.org/10.1016/S0300-483X(03)00056-8] [PMID: 12767684]
[37]
Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.; Dallinga-Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R.; Derrien, M.; Druesne, A.; Van Hylckama Vlieg, J.E.; Bloks, V.W.; Groen, A.K.; Heilig, H.G.; Zoetendal, E.G.; Stroes, E.S.; de Vos, W.M.; Hoekstra, J.B.; Nieuwdorp, M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 2012, 143(4), 913-6.e7.
[http://dx.doi.org/10.1053/j.gastro.2012.06.031] [PMID: 22728514]
[38]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[39]
Zhang, Y.J.; Li, S.; Gan, R.Y.; Zhou, T.; Xu, D.P.; Li, H.B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci., 2015, 16(4), 7493-7519.
[http://dx.doi.org/10.3390/ijms16047493] [PMID: 25849657]
[40]
Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.; Rawls, J.F.; David, L.A.; Hu-nault, G.; Oberti, F.; Calès, P.; Diehl, A.M. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 2016, 63(3), 764-775.
[http://dx.doi.org/10.1002/hep.28356] [PMID: 26600078]
[41]
Lippolis, R.; Gnocchi, D.; Santacroce, L.; Siciliano, R.A.; Mazzeo, M.F.; Scacco, S.; Sabbà, C.; Mazzocca, A. A distinctive protein signa-ture induced by lysophosphatidic acid receptor 6 (LPAR6) expression in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2020, 526(4), 1150-1156.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.036] [PMID: 32321639]
[42]
Zou, S.; Fang, L.; Lee, M.H. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol. Rep. (Oxf.), 2018, 6(1), 1-12.
[http://dx.doi.org/10.1093/gastro/gox031] [PMID: 29479437]
[43]
Perry, R.J.; Peng, L.; Barry, N.A.; Cline, G.W.; Zhang, D.; Cardone, R.L.; Petersen, K.F.; Kibbey, R.G.; Goodman, A.L.; Shulman, G.I. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 2016, 534(7606), 213-217.
[http://dx.doi.org/10.1038/nature18309] [PMID: 27279214]
[44]
Dabke, K.; Hendrick, G.; Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Invest., 2019, 129(10), 4050-4057.
[http://dx.doi.org/10.1172/JCI129194] [PMID: 31573550]
[45]
Novakovic, M.; Rout, A.; Kingsley, T.; Kirchoff, R.; Singh, A.; Verma, V.; Kant, R.; Chaudhary, R. Role of gut microbiota in cardiovas-cular diseases. World J. Cardiol., 2020, 12(4), 110-122.
[http://dx.doi.org/10.4330/wjc.v12.i4.110] [PMID: 32431782]
[46]
Bach Knudsen, K.E. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv. Nutr., 2015, 6(2), 206-213.
[http://dx.doi.org/10.3945/an.114.007450] [PMID: 25770259]
[47]
Sayin, S.I.; Wahlström, A.; Felin, J.; Jäntti, S.; Marschall, H.U.; Bamberg, K.; Angelin, B.; Hyötyläinen, T. Orešič M.; Bäckhed, F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab., 2013, 17(2), 225-235.
[http://dx.doi.org/10.1016/j.cmet.2013.01.003] [PMID: 23395169]
[48]
Alonso-Magdalena, P.; Quesada, I.; Nadal, A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2011, 7(6), 346-353.
[http://dx.doi.org/10.1038/nrendo.2011.56] [PMID: 21467970]
[49]
Isacco, C.G.; Ballini, A.; De Vito, D.; Nguyen, K.C.D.; Cantore, S.; Bottalico, L.; Quagliuolo, L.; Boccellino, M.; Di Domenico, M.; San-tacroce, L.; Arrigoni, R.; Dipalma, G.; Inchingolo, F. Rebalancing the oral microbiota as an efficient tool in endocrine, metabolic and im-mune disorders. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(5), 777-784.
[http://dx.doi.org/10.2174/1871530320666200729142504] [PMID: 32727337]
[50]
Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society Scientific Statement. Endocr. Rev., 2009, 30(4), 293-342.
[http://dx.doi.org/10.1210/er.2009-0002] [PMID: 19502515]
[51]
Rutkowska, A. Rachoń D.; Milewicz, A.; Ruchała, M.; Bolanowski, M.; Jędrzejuk, D.; Bednarczuk, T.; Górska, M.; Hubalewska-Dydejczyk, A.; Kos-Kudła, B.; Lewiński, A.; Zgliczyński, W. Polish society of endocrinology position statement on Endocrine Disrupt-ing Chemicals (EDCs). Endokrynol. Pol., 2015, 66(3), 276-281.
[http://dx.doi.org/10.5603/EP.2015.0035] [PMID: 26136137]
[52]
European Chemical Agency (ECHA). MSC unanimously agrees that Bisphenol A is an endocrine disruptor. Helsinki, 2017. Available from: https://echa.europa.eu/it/-/msc-unanimously-agrees-that-bisphenol-a-is-an-endocrine-disruptor
[53]
Man, A.; Mare, A.; Toma, F. Curticăpean, A.; Santacroce, L. Health threats from contamination of spices commercialized in Romania: Risks of fungal and bacterial infections. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(3), 197-204.
[http://dx.doi.org/10.2174/1871530316666160823145817] [PMID: 27552982]
[54]
Villemur, R.; Dos Santos, S.C.; Ouellette, J.; Juteau, P.; Lépine, F.; Déziel, E. Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl. Environ. Microbiol., 2013, 79(15), 4701-4711.
[http://dx.doi.org/10.1128/AEM.01239-13] [PMID: 23728808]
[55]
Bolívar-Subirats, G.; Cortina-Puig, M.; Lacorte, S. Multiresidue method for the determination of high production volume plastic additives in river waters. Environ. Sci. Pollut. Res. Int., 2020, 27(33), 41314-41325.
[http://dx.doi.org/10.1007/s11356-020-10118-2] [PMID: 32677016]
[56]
Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global assessment of Bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose Response, 2015, 13(3), 1559325815598308.
[http://dx.doi.org/10.1177/1559325815598308] [PMID: 26674671]
[57]
Fromme, H.; Küchler, T.; Otto, T.; Pilz, K.; Müller, J.; Wenzel, A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res., 2002, 36(6), 1429-1438.
[http://dx.doi.org/10.1016/S0043-1354(01)00367-0] [PMID: 11996333]
[58]
Erler, C.; Novak, J. Bisphenol a exposure: Human risk and health policy. J. Pediatr. Nurs., 2010, 25(5), 400-407.
[http://dx.doi.org/10.1016/j.pedn.2009.05.006] [PMID: 20816563]
[59]
Chen, L.; Guo, Y.; Hu, C.; Lam, P.K.S.; Lam, J.C.W.; Zhou, B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environ. Pollut., 2018, 234, 307-317.
[http://dx.doi.org/10.1016/j.envpol.2017.11.074] [PMID: 29190539]
[60]
Catron, T.R.; Keely, S.P.; Brinkman, N.E.; Zurlinden, T.J.; Wood, C.E.; Wright, J.R.; Phelps, D.; Wheaton, E.; Kvasnicka, A.; Gaballah, S.; Lamendella, R.; Tal, T. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish. Toxicol. Sci., 2019, 167(2), 468-483.
[http://dx.doi.org/10.1093/toxsci/kfy261] [PMID: 30321396]
[61]
Bhandari, R.K.; Deem, S.L.; Holliday, D.K.; Jandegian, C.M.; Kassotis, C.D.; Nagel, S.C.; Tillitt, D.E.; Vom Saal, F.S.; Rosenfeld, C.S. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen. Comp. Endocrinol., 2015, 214, 195-219.
[http://dx.doi.org/10.1016/j.ygcen.2014.09.014] [PMID: 25277515]
[62]
Liu, Y.; Yao, Y.; Li, H.; Qiao, F.; Wu, J.; Du, Z.Y.; Zhang, M. Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish. PLoS One, 2016, 11(10), e0163895.
[http://dx.doi.org/10.1371/journal.pone.0163895] [PMID: 27701432]
[63]
Oehlmann, J.; Schulte-Oehlmann, U.; Kloas, W.; Jagnytsch, O.; Lutz, I.; Kusk, K.O.; Wollenberger, L.; Santos, E.M.; Paull, G.C.; Van Look, K.J.; Tyler, C.R. A critical analysis of the biological impacts of plasticizers on wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 2047-2062.
[http://dx.doi.org/10.1098/rstb.2008.0242] [PMID: 19528055]
[64]
Wang, Y.; Rui, M.; Nie, Y.; Lu, G. Influence of gastrointestinal tract on metabolism of bisphenol A as determined by in vitro simulated system. J. Hazard. Mater., 2018, 355, 111-118.
[http://dx.doi.org/10.1016/j.jhazmat.2018.05.011] [PMID: 29778027]
[65]
Chen, L.; Wang, Z.; Gu, W.; Zhang, X.X.; Ren, H.; Wu, B. Single-cell sequencing reveals heterogeneity effects of bisphenol A on zebrafish embryonic development. Environ. Sci. Technol., 2020, 54(15), 9537-9546.
[http://dx.doi.org/10.1021/acs.est.0c02428] [PMID: 32644799]
[66]
Nelson, W.; Adu-Gyamfi, E.A.; Czika, A.; Wang, Y.X.; Ding, Y.B. Bisphenol A-induced mechanistic impairment of decidualization. Mol. Reprod. Dev., 2020, 87(8), 837-842.
[http://dx.doi.org/10.1002/mrd.23400] [PMID: 32691498]
[67]
Escarda-Castro, E.; Herráez, M.P.; Lombó, M. Effects of bisphenol A exposure during cardiac cell differentiation. Environ. Pollut., 2021, 286, 117567.
[http://dx.doi.org/10.1016/j.envpol.2021.117567] [PMID: 34126515]
[68]
Gilbert, N. Drug-pollution law all washed up. Nature, 2012, 491(7425), 503-504.
[http://dx.doi.org/10.1038/491503a] [PMID: 23172189]
[69]
Krishnan, A.V.; Stathis, P.; Permuth, S.F.; Tokes, L.; Feldman, D. Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 1993, 132(6), 2279-2286.
[http://dx.doi.org/10.1210/endo.132.6.8504731] [PMID: 8504731]
[70]
Matsushima, A.; Kakuta, Y.; Teramoto, T.; Koshiba, T.; Liu, X.; Okada, H.; Tokunaga, T.; Kawabata, S.; Kimura, M.; Shimohigashi, Y. Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma. J. Biochem., 2007, 142(4), 517-524.
[http://dx.doi.org/10.1093/jb/mvm158] [PMID: 17761695]
[71]
Bjerregaard, L.B.; Lindholst, C.; Korsgaard, B.; Bjerregaard, P. Sex hormone concentrations and gonad histology in brown trout (Salmo trutta) exposed to 17beta-estradiol and bisphenol A. Ecotoxicology, 2008, 17(4), 252-263.
[http://dx.doi.org/10.1007/s10646-008-0192-2] [PMID: 18320304]
[72]
Pupo, M.; Vivacqua, A.; Perrotta, I.; Pisano, A.; Aquila, S.; Abonante, S.; Gasperi-Campani, A.; Pezzi, V.; Maggiolini, M. The nuclear localization signal is required for nuclear GPER translocation and function in breast Cancer-Associated Fibroblasts (CAFs). Mol. Cell. Endocrinol., 2013, 376(1-2), 23-32.
[http://dx.doi.org/10.1016/j.mce.2013.05.023] [PMID: 23748028]
[73]
Chevalier, N.; Vega, A.; Bouskine, A.; Siddeek, B.; Michiels, J.F.; Chevallier, D.; Fénichel, P. GPR30, the non-classical membrane G pro-tein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation. PLoS One, 2012, 7(4), e34672.
[http://dx.doi.org/10.1371/journal.pone.0034672] [PMID: 22496838]
[74]
Sheng, Z.; Wang, C.; Ren, F.; Liu, Y.; Zhu, B. Molecular mechanism of endocrine-disruptive effects induced by Bisphenol A: The role of transmembrane G-protein estrogen receptor 1 and integrin αvβ3. J. Environ. Sci. (China), 2019, 75, 1-13.
[http://dx.doi.org/10.1016/j.jes.2018.05.002] [PMID: 30473274]
[75]
Prossnitz, E.R.; Barton, M. Estrogen biology: New insights into GPER function and clinical opportunities. Mol. Cell. Endocrinol., 2014, 389(1-2), 71-83.
[http://dx.doi.org/10.1016/j.mce.2014.02.002] [PMID: 24530924]
[76]
Akingbemi, B.T.; Ge, R.; Rosenfeld, C.S.; Newton, L.G.; Hardy, D.O.; Catterall, J.F.; Lubahn, D.B.; Korach, K.S.; Hardy, M.P. Estrogen receptor-alpha gene deficiency enhances androgen biosynthesis in the mouse Leydig cell. Endocrinology, 2003, 144(1), 84-93.
[http://dx.doi.org/10.1210/en.2002-220292] [PMID: 12488333]
[77]
Akingbemi, B.T.; Sottas, C.M.; Koulova, A.I.; Klinefelter, G.R.; Hardy, M.P. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology, 2004, 145(2), 592-603.
[http://dx.doi.org/10.1210/en.2003-1174] [PMID: 14605012]
[78]
Kim, J.Y.; Han, E.H.; Kim, H.G.; Oh, K.N.; Kim, S.K.; Lee, K.Y.; Jeong, H.G. Bisphenol A-induced aromatase activation is mediated by cyclooxygenase-2 up-regulation in rat testicular Leydig cells. Toxicol. Lett., 2010, 193(2), 200-208.
[http://dx.doi.org/10.1016/j.toxlet.2010.01.011] [PMID: 20096755]
[79]
Segovia-Mendoza, M.; Gómez de León, C.T.; García-Becerra, R.; Ambrosio, J.; Nava-Castro, K.E.; Morales-Montor, J. The chemical en-vironmental pollutants BPA and BPS induce alterations of the proteomic profile of different phenotypes of human breast cancer cells: A proposed interactome. Environ. Res., 2020, 191, 109960.
[http://dx.doi.org/10.1016/j.envres.2020.109960] [PMID: 33181973]
[80]
Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A con-centration with medical disorders and laboratory abnormalities in adults. JAMA, 2008, 300(11), 1303-1310.
[http://dx.doi.org/10.1001/jama.300.11.1303] [PMID: 18799442]
[81]
Guan, Y.; Gao, J.; Zhang, Y.; Chen, S.; Yuan, C.; Wang, Z. Effects of bisphenol A on lipid metabolism in rare minnow Gobiocypris rarus. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2016, 179, 144-149.
[http://dx.doi.org/10.1016/j.cbpc.2015.10.006] [PMID: 26494506]
[82]
Williams, M.J.; Wang, Y.; Klockars, A.; Monica Lind, P.; Fredriksson, R.; Schiöth, H.B. Exposure to bisphenol A affects lipid metabo-lism in Drosophila melanogaster. Basic Clin. Pharmacol. Toxicol., 2014, 114(5), 414-420.
[http://dx.doi.org/10.1111/bcpt.12170] [PMID: 24215246]
[83]
Trasande, L.; Attina, T.M.; Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA, 2012, 308(11), 1113-1121.
[http://dx.doi.org/10.1001/2012.jama.11461] [PMID: 22990270]
[84]
Ballini, A.; Scacco, S.; Boccellino, M.; Santacroce, L.; Arrigoni, R. Microbiota and obesity: Where are we now? Biology (Basel), 2020, 9(12), 415.
[http://dx.doi.org/10.3390/biology9120415] [PMID: 33255588]
[85]
Kim, Y.H.; Kim, C.S.; Park, S.; Han, S.Y.; Pyo, M.Y.; Yang, M. Gender differences in the levels of bisphenol A metabolites in urine. Biochem. Biophys. Res. Commun., 2003, 312(2), 441-448.
[http://dx.doi.org/10.1016/j.bbrc.2003.10.135] [PMID: 14637157]
[86]
Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; Caudill, S.P.; Ekong, J.; Needham, L.L. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ. Health Perspect., 2005, 113(4), 391-395.
[http://dx.doi.org/10.1289/ehp.7534] [PMID: 15811827]
[87]
Vandenberg, L.N.; Chahoud, I.; Heindel, J.J.; Padmanabhan, V.; Paumgartten, F.J.; Schoenfelder, G. Urinary, circulating, and tissue bio-monitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect., 2010, 118(8), 1055-1070.
[http://dx.doi.org/10.1289/ehp.0901716] [PMID: 20338858]
[88]
Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol., 2013, 42, 132-155.
[http://dx.doi.org/10.1016/j.reprotox.2013.08.008] [PMID: 23994667]
[89]
Darbre, P.D. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res., 2020, 112(17), 1300-1307.
[http://dx.doi.org/10.1002/bdr2.1778] [PMID: 32720473]
[90]
Kechagias, K.S.; Semertzidou, A.; Athanasiou, A.; Paraskevaidi, M.; Kyrgiou, M. Bisphenol-A and polycystic ovary syndrome: A review of the literature. Rev. Environ. Health, 2020, 35(4), 323-331.
[http://dx.doi.org/10.1515/reveh-2020-0032] [PMID: 32663175]
[91]
Gao, H.; Yang, B.J.; Li, N.; Feng, L.M.; Shi, X.Y.; Zhao, W.H.; Liu, S.J. Bisphenol A and hormone-associated cancers: Current progress and perspectives. Medicine (Baltimore), 2015, 94(1), e211.
[http://dx.doi.org/10.1097/MD.0000000000000211] [PMID: 25569640]
[92]
Cariati, F.; D’Uonno, N.; Borrillo, F.; Iervolino, S.; Galdiero, G.; Tomaiuolo, R. Bisphenol a: An emerging threat to male fertility. Reprod. Biol. Endocrinol., 2019, 17(1), 6.
[http://dx.doi.org/10.1186/s12958-018-0447-6] [PMID: 30660193]
[93]
Castellini, C.; Totaro, M.; Parisi, A.; D’Andrea, S.; Lucente, L.; Cordeschi, G.; Francavilla, S.; Francavilla, F.; Barbonetti, A. Bisphenol A and male fertility: Myths and realities. Front. Endocrinol. (Lausanne), 2020, 11, 353.
[http://dx.doi.org/10.3389/fendo.2020.00353] [PMID: 32595601]
[94]
Santiago, J.; Silva, J.V.; Santos, M.A.S.; Fardilha, M. Fighting bisphenol A-induced male infertility: The power of antioxidants. Antioxidants, 2021, 10(2), 289.
[http://dx.doi.org/10.3390/antiox10020289] [PMID: 33671960]
[95]
Manfo, F.P.; Jubendradass, R.; Nantia, E.A.; Moundipa, P.F.; Mathur, P.P. Adverse effects of bisphenol A on male reproductive func-tion. Rev. Environ. Contam. Toxicol., 2014, 228, 57-82.
[http://dx.doi.org/10.1007/978-3-319-01619-1_3] [PMID: 24162092]
[96]
Lee, I.; Kim, S.; Kim, K.T.; Kim, S.; Park, S.; Lee, H.; Jeong, Y.; Lim, J.E.; Moon, H.B.; Choi, K. Bisphenol A exposure through receipt handling and its association with insulin resistance among female cashiers. Environ. Int., 2018, 117, 268-275.
[http://dx.doi.org/10.1016/j.envint.2018.05.013] [PMID: 29778011]
[97]
Stahlhut, R.W.; Myers, J.P.; Taylor, J.A.; Nadal, A.; Dyer, J.A.; Vom Saal, F.S. Experimental BPA exposure and glucose-stimulated insu-lin response in adult men and women. J. Endocr. Soc., 2018, 2(10), 1173-1187.
[http://dx.doi.org/10.1210/js.2018-00151] [PMID: 30302422]
[98]
Melzer, D.; Rice, N.E.; Lewis, C.; Henley, W.E.; Galloway, T.S. Association of urinary bisphenol a concentration with heart disease: Evi-dence from NHANES 2003/06. PLoS One, 2010, 5(1), e8673.
[http://dx.doi.org/10.1371/journal.pone.0008673] [PMID: 20084273]
[99]
Mills, N.L.; Törnqvist, H.; Robinson, S.D.; Gonzalez, M.; Darnley, K.; MacNee, W.; Boon, N.A.; Donaldson, K.; Blomberg, A.; Sand-strom, T.; Newby, D.E. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation, 2005, 112(25), 3930-3936.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.588962] [PMID: 16365212]
[100]
Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environ-mental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15718-15723.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[101]
Santacroce, L.; Man, A.; Charitos, I.A.; Haxhirexha, K.; Topi, S. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review. Front. Biosci., 2021, 26(6), 135-148.
[http://dx.doi.org/10.52586/4930] [PMID: 34162042]
[102]
Lai, K.P.; Chung, Y.T.; Li, R.; Wan, H.T.; Wong, C.K. Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environ. Pollut., 2016, 218, 923-930.
[http://dx.doi.org/10.1016/j.envpol.2016.08.039] [PMID: 27554980]
[103]
Zhang, X.; Zhao, Y.; Cheng, C.; Li, L.; Xiao, M.; Zhang, G.; Lu, X. Combined effects of di (2-ethylhexyl) phthalate and bisphenol A on thyroid hormone homeostasis in adolescent female rats. Environ. Sci. Pollut. Res. Int., 2020, 27(32), 40882-40892.
[http://dx.doi.org/10.1007/s11356-020-09949-w] [PMID: 32681327]
[104]
Chiu, Y.F.; Hsu, C.C.; Chiu, T.H.; Lee, C.Y.; Liu, T.T.; Tsao, C.K.; Chuang, S.C.; Hsiung, C.A. Cross-sectional and longitudinal compari-sons of metabolic profiles between vegetarian and non-vegetarian subjects: A matched cohort study. Br. J. Nutr., 2015, 114(8), 1313-1320.
[http://dx.doi.org/10.1017/S0007114515002937] [PMID: 26355190]
[105]
Ojeda, P.; Bobe, A.; Dolan, K.; Leone, V.; Martinez, K. Nutritional modulation of gut microbiota - the impact on metabolic disease path-ophysiology. J. Nutr. Biochem., 2016, 28, 191-200.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.013] [PMID: 26372091]
[106]
Feng, D; Zhang, H; Jiang, X; Zou, J; Li, Q; Mai, H; Su, D; Ling, W; Feng, X. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ Pollut., 2020, 265(Pt A), 114880.
[http://dx.doi.org/10.1016/j.envpol.2020.114880]
[107]
Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; Bousvaros, A.; Korzenik, J.; Sands, B.E.; Xavier, R.J.; Huttenhower, C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol., 2012, 13(9), R79.
[http://dx.doi.org/10.1186/gb-2012-13-9-r79] [PMID: 23013615]
[108]
Furet, J.P.; Kong, L.C.; Tap, J.; Poitou, C.; Basdevant, A.; Bouillot, J.L.; Mariat, D.; Corthier, G.; Doré, J.; Henegar, C.; Rizkalla, S.; Clément, K. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes, 2010, 59(12), 3049-3057.
[http://dx.doi.org/10.2337/db10-0253] [PMID: 20876719]
[109]
Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010, 5(2), e9085.
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[110]
Snedeker, S.M.; Hay, A.G. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ. Health Perspect., 2012, 120(3), 332-339.
[http://dx.doi.org/10.1289/ehp.1104204] [PMID: 22042266]
[111]
Shankar, A.; Teppala, S. Relationship between urinary bisphenol A levels and diabetes mellitus. J. Clin. Endocrinol. Metab., 2011, 96(12), 3822-3826.
[http://dx.doi.org/10.1210/jc.2011-1682] [PMID: 21956417]
[112]
Silver, M.K.; O’Neill, M.S.; Sowers, M.R.; Park, S.K. Urinary bisphenol A and type-2 diabetes in U.S. adults: Data from NHANES 2003-2008. PLoS One, 2011, 6(10), e26868.
[http://dx.doi.org/10.1371/journal.pone.0026868] [PMID: 22046388]
[113]
Menard, S.; Guzylack-Piriou, L.; Leveque, M.; Braniste, V.; Lencina, C.; Naturel, M.; Moussa, L.; Sekkal, S.; Harkat, C.; Gaultier, E.; Theodorou, V.; Houdeau, E. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A. FASEB J., 2014, 28(11), 4893-4900.
[http://dx.doi.org/10.1096/fj.14-255380] [PMID: 25085925]
[114]
Ménard, S.; Guzylack-Piriou, L.; Lencina, C.; Leveque, M.; Naturel, M.; Sekkal, S.; Harkat, C.; Gaultier, E.; Olier, M.; Garcia-Villar, R.; Theodorou, V.; Houdeau, E. Perinatal exposure to a low dose of bisphenol A impaired systemic cellular immune response and predis-poses young rats to intestinal parasitic infection. PLoS One, 2014, 9(11), e112752.
[http://dx.doi.org/10.1371/journal.pone.0112752] [PMID: 25415191]
[115]
Braniste, V.; Jouault, A.; Gaultier, E.; Polizzi, A.; Buisson-Brenac, C.; Leveque, M.; Martin, P.G.; Theodorou, V.; Fioramonti, J.; Houdeau, E. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 448-453.
[http://dx.doi.org/10.1073/pnas.0907697107] [PMID: 20018722]
[116]
Reddivari, L.; Veeramachaneni, D.N.R.; Walters, W.A.; Lozupone, C.; Palmer, J.; Hewage, M.K.K.; Bhatnagar, R.; Amir, A.; Kennett, M.J.; Knight, R.; Vanamala, J.K.P. Perinatal bisphenol A exposure induces chronic inflammation in rabbit offspring via modulation of gut bacteria and their metabolites. mSystems, 2017, 2(5), e00093-e17.
[http://dx.doi.org/10.1128/mSystems.00093-17] [PMID: 29034330]
[117]
Javurek, A.B.; Spollen, W.G.; Johnson, S.A.; Bivens, N.J.; Bromert, K.H.; Givan, S.A.; Rosenfeld, C.S. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes, 2016, 7(6), 471-485.
[http://dx.doi.org/10.1080/19490976.2016.1234657] [PMID: 27624382]
[118]
Angle, B.M.; Do, R.P.; Ponzi, D.; Stahlhut, R.W.; Drury, B.E.; Nagel, S.C.; Welshons, W.V.; Besch-Williford, C.L.; Palanza, P.; Parmigia-ni, S.; vom Saal, F.S.; Taylor, J.A. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol., 2013, 42, 256-268.
[http://dx.doi.org/10.1016/j.reprotox.2013.07.017] [PMID: 23892310]
[119]
van Esterik, J.C.; Bastos Sales, L.; Dollé, M.E.; Håkansson, H.; Herlin, M.; Legler, J.; van der Ven, L.T. Programming of metabolic ef-fects in C57BL/6JxFVB mice by in utero and lactational exposure to perfluorooctanoic acid. Arch. Toxicol., 2016, 90(3), 701-715.
[http://dx.doi.org/10.1007/s00204-015-1488-7] [PMID: 25827101]
[120]
Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; Mar-chesi, J.R.; Collado, M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis., 2015, 26(0), 26050.
[http://dx.doi.org/10.3402/mehd.v26.26050] [PMID: 25651996]
[121]
Malaisé, Y.; Menard, S.; Cartier, C. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bi-sphenol A precede obese phenotype development. Sci. Rep., 2017, 7(1), 14472.
[http://dx.doi.org/10.1038/s41598-017-15196-w]
[122]
Aydemir, I.; Özbey, C.; Özkan, O. Kum, Ş Tuğlu, M.İ Investigation of the effects of bisphenol-A exposure on lymphoid system in prenatal stage. Toxicol. Ind. Health, 2020, 36(7), 502-513.
[http://dx.doi.org/10.1177/0748233720941759] [PMID: 32696725]
[123]
Vogel, S.A. The politics of plastics: The making and unmaking of bisphenol a “safety”. Am. J. Public Health, 2009, 99(Suppl. 3), S559-S566.
[http://dx.doi.org/10.2105/AJPH.2008.159228]
[124]
Vrachnis, N.; Loukas, N.; Vrachnis, D.; Antonakopoulos, N.; Zygouris, D. Kοlialexi, A.; Pergaliotis, V.; Iavazzo, C.; Mastorakos, G.; Iliodromiti, Z. A systematic review of bisphenol A from dietary and non-dietary sources during pregnancy and its possible connection with fetal growth restriction: Investigating its potential effects and the window of fetal vulnerability. Nutrients, 2021, 13(7), 2426.
[http://dx.doi.org/10.3390/nu13072426] [PMID: 34371934]
[125]
Evans, S.F.; Kobrosly, R.W.; Barrett, E.S.; Thurston, S.W.; Calafat, A.M.; Weiss, B.; Stahlhut, R.; Yolton, K.; Swan, S.H. Prenatal bi-sphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology, 2014, 45, 91-99.
[http://dx.doi.org/10.1016/j.neuro.2014.10.003] [PMID: 25307304]
[126]
Churchwell, M.I.; Camacho, L.; Vanlandingham, M.M.; Twaddle, N.C.; Sepehr, E.; Delclos, K.B.; Fisher, J.W.; Doerge, D.R. Comparison of life-stage-dependent internal dosimetry for bisphenol A, ethinyl estradiol, a reference estrogen, and endogenous estradiol to test an es-trogenic mode of action in Sprague Dawley rats. Toxicol. Sci., 2014, 139(1), 4-20.
[http://dx.doi.org/10.1093/toxsci/kfu021] [PMID: 24496641]
[127]
Japanese National Institute of Advanced Industrial Science and Technology (AIST). Bisphenol A risk assessment document (AIST risk assessment document series No. 4). 2007. Available from: https://unit.aist.go.jp/riss/crm/mainmenu/BPA_Summary_English.pdf
[129]
Government of Canada. Survey of Bisphenol A in Canned Food Products from Canadian Markets – Summary. 2010. Available from: https://www.canada.ca/en/health-canada/services/food-nutri-tion/food-safety/packaging-materials/bisphenol/survey-bisphenol-canned-food-products-canadian-markets-summary.html
[130]
EFSA CEF Panel. (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Executive summary. EFSA J., 2015, 13(1), 3978.
[http://dx.doi.org/10.2903/j.efsa.2015.3978]
[131]
German Federal Institute for Risk Assessment. Facts about BPS., 2015. Available from: https://www.factsaboutbpa.org/safety-assessments/germany%e2%80%99s-federal-institute-risk-assessment
[132]
Park, J.H.; Hwang, M.S.; Ko, A.; Jeong, D.H.; Lee, J.M.; Moon, G.; Lee, K.S.; Kho, Y.H.; Shin, M.K.; Lee, H.S.; Kang, H.S.; Suh, J.H.; Hwang, I.G. Risk assessment based on urinary bisphenol A levels in the general Korean population. Environ. Res., 2016, 150, 606-615.
[http://dx.doi.org/10.1016/j.envres.2016.03.024] [PMID: 27016465]
[133]
Food Standards Australia New Zealand (FSANZ). Bisphenol A (BPA). 2018. Available from:https://www.foodstandards.gov.au/consumer/chemicals/bpa/Pages/default.aspx
[134]
Food and Drug Administration (FDA). Statement from Stephen Ostroff M.D., Deputy Commissioner for Foods and Veterinary Medicine, on National Toxicology Program draft report on Bisphenol A. 2018. Available from:https://www.fda.gov/news-events/press-announcements/statement-stephen-ostroff-md-deputy-commissioner-foods-and-veterinary-medicine-national-toxicology
[135]
Metz, C.M.; Bisphenol, A. Understanding the controversy. Workplace Health Saf., 2016, 64(1), 28-36.
[http://dx.doi.org/10.1177/2165079915623790] [PMID: 26800896]
[136]
Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive summary to EDC-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev., 2015, 36(6), 593-602.
[http://dx.doi.org/10.1210/er.2015-1093] [PMID: 26414233]
[137]
Giulivo, M.; Lopez de Alda, M.; Capri, E.; Barceló, D. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res. (Review), 2016, 151, 251-264.
[http://dx.doi.org/10.1016/j.envres.2016.07.011] [PMID: 27504873]
[138]
Commission Regulation (EU) 2016/1179 of 19 July 2016 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. 2016. Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv: OJ.L_.2016.195.01.0011.01.ENG&toc=OJ:L:2016:195:TOC
[140]
Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; D’Amore, E.; Rinaldo, D.; Matta, M.; Giorgini, E. Plasticenta: First evidence of microplastics in human placenta. Environ. Int., 2021, 146, 106274.
[http://dx.doi.org/10.1016/j.envint.2020.106274] [PMID: 33395930]
[141]
ChemSafetyPro. CMR Category 1A/1B Substances. Available from: https://www.chemsafetypro.com/Topics/Restriction/REACH _annex_xvii_restriction_CMR_substance_1A_1B.html (Accessed 05 October 2021).

© 2024 Bentham Science Publishers | Privacy Policy