Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Liposome Nanoparticles as a Novel Drug Delivery System for Therapeutic and Diagnostic Applications

Author(s): Yanan Meng, Xia Niu and Guiling Li*

Volume 20, Issue 1, 2023

Published on: 10 June, 2022

Page: [41 - 56] Pages: 16

DOI: 10.2174/1567201819666220324093821

Price: $65

Abstract

Liposome nanoparticles (LNPs), as a promising platform in drug delivery, combine the advantages of both liposomes and inorganic/organic nanoparticles into a single system. Both liposomes and nanoparticles have demonstrated optimized drug efficacy in the clinic. LNPs are proven to be multifunctional systems and thus utilized in various research applications (e.g., spatiotemporal control of drug release, hyperthermia, photothermal therapy, and biological imaging). The type of nanoparticles involved in LNPs largely affects the features of LNPs. Besides, diverse nanoparticles enable liposomes to overcome the defects such as poor stability, few functions, and rapid elimination from blood circulation. In this review, multiple nanoparticles materials and further prepared LNPs as well as their structure, physicochemical properties, manipulation and the latest applications in biomedical field are introduced. Future directions in advancing of LNPs are also discussed in the end.

Keywords: Liposome nanoparticles, nanostructure, drug delivery system, controlled drug release, combination therapy, imaging.

Graphical Abstract
[1]
Mabrouk, M.; Das, D.B.; Salem, Z.A.; Beherei, H.H. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties. Molecules, 2021, 26(4), 26.
[http://dx.doi.org/10.3390/molecules26041077] [PMID: 33670668]
[2]
Qu, Y.; He, F.; Yu, C.; Liang, X.; Liang, D.; Ma, L.; Zhang, Q.; Lv, J.; Wu, J. Advances on graphene-based nanomaterials for biomedical applications. Mater. Sci. Eng. C, 2018, 90, 764-780.
[http://dx.doi.org/10.1016/j.msec.2018.05.018] [PMID: 29853147]
[3]
Oksel Karakus, C.; Bilgi, E.; Winkler, D.A. Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs. Nanotoxicology, 2021, 15(3), 331-351.
[http://dx.doi.org/10.1080/17435390.2020.1860265] [PMID: 33337941]
[4]
Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater., 2020, 32(13), e1902333.
[http://dx.doi.org/10.1002/adma.201902333] [PMID: 31353752]
[5]
Sullivan, M. P.; McHale, K. J.; Parvizi, J.; Mehta, S. Nanotechnology: current concepts in orthopaedic surgery and future directions. Bone Joint J., 2014, 96-b, 569-573.
[http://dx.doi.org/10.1302/0301-620X.96B5.33606]
[6]
Cajigas, S.; Orozco, J. Nanobioconjugates for signal amplification in electrochemical biosensing. Molecules, 2020, 25(15), 25.
[http://dx.doi.org/10.3390/molecules25153542] [PMID: 32756410]
[7]
Wang, W.; Lu, K.J.; Yu, C.H.; Huang, Q.L.; Du, Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology, 2019, 17(1), 82.
[http://dx.doi.org/10.1186/s12951-019-0514-y] [PMID: 31291960]
[8]
Saeedi, M.; Eslamifar, M.; Khezri, K.; Dizaj, S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, 111, 666-675.
[PMID: 30611991]
[9]
Unsoy, G.; Gunduz, U. Smart drug delivery systems in cancer therapy. Curr. Drug Targets, 2018, 19(3), 202-212.
[http://dx.doi.org/10.2174/1389450117666160401124624] [PMID: 27033191]
[10]
Mu, H.; Holm, R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin. Drug Deliv., 2018, 15(8), 771-785.
[http://dx.doi.org/10.1080/17425247.2018.1504018] [PMID: 30064267]
[11]
Rashki, S.; Asgarpour, K.; Tarrahimofrad, H.; Hashemipour, M.; Ebrahimi, M.S.; Fathizadeh, H.; Khorshidi, A.; Khan, H.; Marzhoseyni, Z.; Salavati-Niasari, M.; Mirzaei, H. Chitosan-based nanoparticles against bacterial infections. Carbohydr. Polym., 2021, 251, 117108.
[http://dx.doi.org/10.1016/j.carbpol.2020.117108] [PMID: 33142645]
[12]
Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.X. Development of high-drug-loading nanoparticles. ChemPlusChem, 2020, 85(9), 2143-2157.
[http://dx.doi.org/10.1002/cplu.202000496] [PMID: 32864902]
[13]
Montané, X.; Bajek, A.; Roszkowski, K.; Montornés, J.M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for cancer therapy. Molecules, 2020, 25(7), 25.
[http://dx.doi.org/10.3390/molecules25071605] [PMID: 32244513]
[14]
Drbohlavova, J.; Chomoucka, J.; Adam, V.; Ryvolova, M.; Eckschlager, T.; Hubalek, J.; Kizek, R. Nanocarriers for anticancer drugs--new trends in nanomedicine. Curr. Drug Metab., 2013, 14(5), 547-564.
[http://dx.doi.org/10.2174/1389200211314050005] [PMID: 23687925]
[15]
Jain, A.; Jain, A.; Gulbake, A.; Shilpi, S.; Hurkat, P.; Jain, S.K. Peptide and protein delivery using new drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(4), 293-329.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013006955] [PMID: 23662604]
[16]
Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), 9.
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[17]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory land-scape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[18]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[19]
Kurakula, M.; Ahmed, O.A.; Fahmy, U.A.; Ahmed, T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res., 2016, 26(4), 288-296.
[http://dx.doi.org/10.3109/08982104.2015.1117490] [PMID: 26784833]
[20]
Al-Jamal, W.T.; Kostarelos, K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 2011, 44(10), 1094-1104.
[http://dx.doi.org/10.1021/ar200105p] [PMID: 21812415]
[21]
Franzé, S.; Selmin, F.; Samaritani, E.; Minghetti, P.; Cilurzo, F. Lyophilization of liposomal formulations: Still necessary, still challenging. Pharmaceutics, 2018, 10(3), 10.
[http://dx.doi.org/10.3390/pharmaceutics10030139] [PMID: 30154315]
[22]
Misra, A.; Jinturkar, K.; Patel, D.; Lalani, J.; Chougule, M. Recent advances in liposomal dry powder formulations: preparation and evaluation. Expert Opin. Drug Deliv., 2009, 6(1), 71-89.
[http://dx.doi.org/10.1517/17425240802652309] [PMID: 19236209]
[23]
D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv., 2016, 13(9), 1257-1275.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[24]
Ickenstein, L.M.; Garidel, P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv., 2019, 16(11), 1205-1226.
[http://dx.doi.org/10.1080/17425247.2019.1669558] [PMID: 31530041]
[25]
Vargas, K.M.; Shon, Y.S. Hybrid lipid-nanoparticle complexes for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(5), 695-708.
[http://dx.doi.org/10.1039/C8TB03084G] [PMID: 30740226]
[26]
Hadinoto, K.; Sundaresan, A.; Cheow, W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur. J. Pharm., 2013, 85(3 Pt A), 427-443.
[PMID: 23872180]
[27]
Al-Jamal, W.T.; Kostarelos, K. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine (Lond.), 2007, 2(1), 85-98.
[http://dx.doi.org/10.2217/17435889.2.1.85] [PMID: 17716195]
[28]
Raemdonck, K.; Braeckmans, K.; Demeester, J.; De Smedt, S.C. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem. Soc. Rev., 2014, 43(1), 444-472.
[http://dx.doi.org/10.1039/C3CS60299K] [PMID: 24100581]
[29]
Hoang Thi, T.T.; Cao, V.D.; Nguyen, T.N.Q.; Hoang, D.T.; Ngo, V.C.; Nguyen, D.H. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater. Sci. Eng. C, 2019, 99, 631-656.
[http://dx.doi.org/10.1016/j.msec.2019.01.129] [PMID: 30889738]
[30]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 25.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[31]
Farzin, A.; Etesami, S.A.; Quint, J.; Memic, A.; Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater., 2020, 9(9), e1901058.
[http://dx.doi.org/10.1002/adhm.201901058] [PMID: 32196144]
[32]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 19.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[33]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[34]
Namdari, P.; Negahdari, B.; Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother., 2017, 87, 209-222.
[PMID: 28061404]
[35]
Nair, A.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Bio. Pharmacother., 2020, 132, 110834.
[PMID: 33035830]
[36]
Kazemzadeh, H.; Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today, 2019, 24(3), 898-905.
[http://dx.doi.org/10.1016/j.drudis.2019.01.013] [PMID: 30703542]
[37]
Liao, C.; Li, Y.; Tjong, S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci., 2018, 19(11), 19.
[http://dx.doi.org/10.3390/ijms19113564] [PMID: 30424535]
[38]
Mousavi, S.M.; Low, F.W.; Hashemi, S.A.; Lai, C.W.; Ghasemi, Y.; Soroshnia, S.; Savardashtaki, A.; Babapoor, A.; Pynadathu Rumjit, N.; Goh, S.M.; Amin, N.; Tiong, S.K. Development of graphene based nanocomposites towards medical and biological applications. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1189-1205.
[http://dx.doi.org/10.1080/21691401.2020.1817052] [PMID: 32930615]
[39]
Deshmukh, M.A.; Jeon, J.Y.; Ha, T.J. Carbon nanotubes: An effective platform for biomedical electronics. Biosens. Bioelectron., 2020, 150, 111919.
[http://dx.doi.org/10.1016/j.bios.2019.111919] [PMID: 31787449]
[40]
Van den Bossche, J.; Al-Jamal, W.T.; Yilmazer, A.; Bizzarri, E.; Tian, B.; Kostarelos, K. Intracellular trafficking and gene expression of pH-sensitive, artificially enveloped adenoviruses in vitro and in vivo. Biomaterials, 2011, 32(11), 3085-3093.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.043] [PMID: 21269689]
[41]
Molino, G.; Palmieri, M.C.; Montalbano, G.; Fiorilli, S.; Vitale-Brovarone, C. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review. Biomed. Mater., 2020, 15(2), 022001.
[http://dx.doi.org/10.1088/1748-605X/ab5f1a] [PMID: 31805539]
[42]
Wu, M.X.; Yang, Y.W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy.Adv. Mater; , 2017, 29, p. (23)201606134.
[PMID: 28370555]
[43]
Li, S.; Wei, X.; Li, S.; Zhu, C.; Wu, C. Up-conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment. Int. J. Nanomedicine, 2020, 15, 9431-9445.
[http://dx.doi.org/10.2147/IJN.S266006] [PMID: 33268986]
[44]
Li, Z.; Zhang, Y.; Feng, N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin. Drug Deliv., 2019, 16(3), 219-237.
[http://dx.doi.org/10.1080/17425247.2019.1575806] [PMID: 30686075]
[45]
Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics, 2018, 10(3), 10.
[http://dx.doi.org/10.3390/pharmaceutics10030118] [PMID: 30082647]
[46]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine, 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[47]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[48]
Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B, 2018, 8(2), 165-177.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
[49]
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed., 2007, 46(40), 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[50]
Murugan, B.; Krishnan, U.M. Chemoresponsive smart mesoporous silica systems - An emerging paradigm for cancer therapy. Int. J. Pharm., 2018, 553(1-2), 310-326.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.026] [PMID: 30316004]
[51]
Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev., 2012, 41(9), 3679-3698.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[52]
Wang, L.S.; Wu, L.C.; Lu, S.Y.; Chang, L.L.; Teng, I.T.; Yang, C.M.; Ho, J.A. Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano, 2010, 4(8), 4371-4379.
[http://dx.doi.org/10.1021/nn901376h] [PMID: 20731423]
[53]
Amin, M.U.; Ali, S.; Ali, M.Y.; Tariq, I.; Nasrullah, U.; Pinnapreddy, S.R.; Wölk, C.; Bakowsky, U.; Brüßler, J. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. Eur. J. Pharm., 2021, 165, 31-40.
[PMID: 33962002]
[54]
Ashley, C.E.; Carnes, E.C.; Epler, K.E.; Padilla, D.P.; Phillips, G.K.; Castillo, R.E.; Wilkinson, D.C.; Wilkinson, B.S.; Burgard, C.A.; Kalinich, R.M.; Townson, J.L.; Chackerian, B.; Willman, C.L.; Peabody, D.S.; Wharton, W.; Brinker, C.J. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano, 2012, 6(3), 2174-2188.
[http://dx.doi.org/10.1021/nn204102q] [PMID: 22309035]
[55]
Dengler, E.C.; Liu, J.; Kerwin, A.; Torres, S.; Olcott, C.M.; Bowman, B.N.; Armijo, L.; Gentry, K.; Wilkerson, J.; Wallace, J.; Jiang, X.; Carnes, E.C.; Brinker, C.J.; Milligan, E.D. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J. Control. Release, 2013, 168(2), 209-224.
[PMID: 23517784]
[56]
Durfee, P.N.; Lin, Y.S.; Dunphy, D.R.; Muñiz, A.J.; Butler, K.S.; Humphrey, K.R.; Lokke, A.J.; Agola, J.O.; Chou, S.S.; Chen, I.M.; Wharton, W.; Townson, J.L.; Willman, C.L.; Brinker, C.J. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano, 2016, 10(9), 8325-8345.
[http://dx.doi.org/10.1021/acsnano.6b02819] [PMID: 27419663]
[57]
Liu, J.; Stace-Naughton, A.; Jiang, X.; Brinker, C.J. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J. Am. Chem. Soc., 2009, 131(4), 1354-1355.
[http://dx.doi.org/10.1021/ja808018y] [PMID: 19173660]
[58]
Singh, K.P.; Panwar, P.; Kohli, P. Sanjesh, Liposome-mesoporous silica nanoparticles fused cores: a safer mode of drug carrier. J. Biomed. Nanotechnol., 2011, 7(1), 60-62.
[http://dx.doi.org/10.1166/jbn.2011.1201] [PMID: 21485803]
[59]
Liu, X.; Situ, A.; Kang, Y.; Villabroza, K.R.; Liao, Y.; Chang, C.H.; Donahue, T.; Nel, A.E.; Meng, H. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano, 2016, 10(2), 2702-2715.
[http://dx.doi.org/10.1021/acsnano.5b07781] [PMID: 26835979]
[60]
Ahmed, O.A.A.; Kurakula, M.; Banjar, Z.M.; Afouna, M.I.; Zidan, A.S. Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films. J. Pharm. Sci., 2015, 104(6), 2062-2075.
[http://dx.doi.org/10.1002/jps.24448] [PMID: 25873019]
[61]
Jing, H.; Das, S. Electric double layer electrostatics of lipid-bilayer-encapsulated nanoparticles: Toward a better understanding of protocell electrostatics. Electrophoresis, 2018, 39(5-6), 752-759.
[http://dx.doi.org/10.1002/elps.201700286] [PMID: 29235657]
[62]
Butler, K.S. Protocells: Modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small, 2016, 12(16), 2173-2185.
[PMID: 26780591]
[63]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Padilla, D.; Durfee, P.N.; Brown, P.A.; Hanna, T.N.; Liu, J.; Phillips, B.; Carter, M.B.; Carroll, N.J.; Jiang, X.; Dunphy, D.R.; Willman, C.L.; Petsev, D.N.; Evans, D.G.; Parikh, A.N.; Chackerian, B.; Wharton, W.; Peabody, D.S.; Brinker, C.J. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater., 2011, 10(5), 389-397.
[http://dx.doi.org/10.1038/nmat2992] [PMID: 21499315]
[64]
Shi, H.; Liu, S.; Cheng, J.; Yuan, S.; Yang, Y.; Fang, T.; Cao, K.; Wei, K.; Zhang, Q.; Liu, Y. Charge-selective delivery of proteins using mesoporous silica nanoparticles fused with lipid bilayers. ACS Appl. Mater. Interfaces, 2019, 11(4), 3645-3653.
[http://dx.doi.org/10.1021/acsami.8b15390] [PMID: 30609348]
[65]
Liu, M.; Tu, J.; Feng, Y.; Zhang, J.; Wu, J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma. J. Nanobiotechnology, 2020, 18(1), 114.
[http://dx.doi.org/10.1186/s12951-020-00677-4] [PMID: 32811502]
[66]
Li, Z.; Zhang, Y.; Zhu, C.; Guo, T.; Xia, Q.; Hou, X.; Liu, W.; Feng, N. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int. J. Pharm., 2020, 586, 119576.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119576] [PMID: 32603839]
[67]
Gao, J.; Fan, K.; Jin, Y.; Zhao, L.; Wang, Q.; Tang, Y.; Xu, H.; Liu, Z.; Wang, S.; Lin, J.; Lin, D. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur. J. Pharm. Sci., 2019, 140, 105070.
[PMID: 31518679]
[68]
Feng, Y.; Li, N.X.; Yin, H.L.; Chen, T.Y.; Yang, Q.; Wu, M. Thermo- and pH-responsive, lipid-coated, mesoporous silica nanoparticle-based dual drug delivery system to improve the antitumor effect of hydrophobic drugs. Mol. Pharm., 2019, 16(1), 422-436.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01073] [PMID: 30525641]
[69]
Erkan, M.; Hausmann, S.; Michalski, C.W.; Fingerle, A.A.; Dobritz, M.; Kleeff, J.; Friess, H. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(8), 454-467.
[http://dx.doi.org/10.1038/nrgastro.2012.115] [PMID: 22710569]
[70]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[71]
Meng, H.; Wang, M.; Liu, H.; Liu, X.; Situ, A.; Wu, B.; Ji, Z.; Chang, C.H.; Nel, A.E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano, 2015, 9(4), 3540-3557.
[http://dx.doi.org/10.1021/acsnano.5b00510] [PMID: 25776964]
[72]
Desai, D.; Zhang, J.; Sandholm, J.; Lehtimäki, J.; Grönroos, T.; Tuomela, J.; Rosenholm, J.M. Lipid bilayer-gated mesoporous silica nanocarriers for tumor-targeted delivery of zoledronic acid in vivo. Mol. Pharm., 2017, 14(9), 3218-3227.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00519] [PMID: 28737925]
[73]
Sun, Q.; You, Q.; Wang, J.; Liu, L.; Wang, Y.; Song, Y.; Cheng, Y.; Wang, S.; Tan, F.; Li, N. Theranostic nanoplatform: Triple-modal imag-ing-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(2), 1963-1975.
[http://dx.doi.org/10.1021/acsami.7b13651] [PMID: 29276824]
[74]
Patil, S.; Vhora, I.; Amrutiya, J.; Lalani, R.; Misra, A. Role of nanotechnology in delivery of protein and peptide drugs. Curr. Pharm. Des., 2015, 21(29), 4155-4173.
[http://dx.doi.org/10.2174/1381612821666150901095722] [PMID: 26323432]
[75]
Zaman, R.; Othman, I.; Chowdhury, E.H. Carrier mediated systemic delivery of protein and peptide therapeutics. Curr. Pharm. Des., 2016, 22(40), 6167-6191.
[http://dx.doi.org/10.2174/1381612822666160720145328] [PMID: 27510479]
[76]
Yang, J.; Bahreman, A.; Daudey, G.; Bussmann, J.; Olsthoorn, R.C.; Kros, A. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent. Sci., 2016, 2(9), 621-630.
[http://dx.doi.org/10.1021/acscentsci.6b00172] [PMID: 27725960]
[77]
Yang, J.; Tu, J.; Lamers, G.E.M.; Olsthoorn, R.C.L.; Kros, A. Membrane fusion mediated intracellular delivery of lipid bilayer coated mesoporous silica nanoparticles. Adv. Healthc. Mater., 2017, 6(20), 6.
[http://dx.doi.org/10.1002/adhm.201700759] [PMID: 28945015]
[78]
Pavel, I.A.; Girardon, M.; El Hajj, S.; Parant, S.; Amadei, F.; Kaufmann, S.; Tanaka, M.; Fierro, V.; Celzard, A.; Canilho, N.; Pasc, A. Lipid-coated mesoporous silica microparticles for the controlled delivery of β-galactosidase into intestines. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(35), 5633-5639.
[http://dx.doi.org/10.1039/C8TB01114A] [PMID: 32254972]
[79]
Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int. J. Nanomedicine, 2019, 14, 1937-1952.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[80]
Sivadasan, D.; Sultan, M.H.; Madkhali, O.; Almoshari, Y.; Thangavel, N. Polymeric lipid hybrid nanoparticles (PLNs) as emerging drug delivery platform-a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics, 2021, 13(8), 13.
[http://dx.doi.org/10.3390/pharmaceutics13081291] [PMID: 34452251]
[81]
Kurakula, M.; Naveen, N.R. in situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. Mar. Drugs, 2020, 18(4), 18.
[http://dx.doi.org/10.3390/md18040201] [PMID: 32283782]
[82]
Dong, W.; Ye, J.; Zhou, J.; Wang, W.; Wang, H.; Zheng, X.; Yang, Y.; Xia, X.; Liu, Y. Comparative study of mucoadhesive and mucus-penetrative nanoparticles based on phospholipid complex to overcome the mucus barrier for inhaled delivery of baicalein. Acta Pharm. Sin. B, 2020, 10(8), 1576-1585.
[http://dx.doi.org/10.1016/j.apsb.2019.10.002] [PMID: 32963951]
[83]
Li, M.; Feng, S.; Xing, H.; Sun, Y. Dexmedetomidine and levobupivacaine co-loaded, transcriptional transactivator peptide modified nanostructured lipid carriers or lipid-polymer hybrid nanoparticles, which performed better for local anesthetic therapy? Drug Deliv., 2020, 27(1), 1452-1460.
[http://dx.doi.org/10.1080/10717544.2020.1831105] [PMID: 33100057]
[84]
Thakur, K.; Sharma, G.; Singh, B.; Chhibber, S.; Katare, O.P. Nano-engineered lipid-polymer hybrid nanoparticles of fusidic acid: an investigative study on dermatokinetics profile and MRSA-infected burn wound model. Drug Deliv. Transl. Res., 2019, 9(4), 748-763.
[http://dx.doi.org/10.1007/s13346-019-00616-3] [PMID: 30652257]
[85]
Hauss, D.J. Oral lipid-based formulations. Adv. Drug Deliv. Rev., 2007, 59(7), 667-676.
[http://dx.doi.org/10.1016/j.addr.2007.05.006] [PMID: 17618704]
[86]
Zhou, Y.; Dong, W.; Ye, J.; Hao, H.; Zhou, J.; Wang, R.; Liu, Y. A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations. Drug Deliv., 2017, 24(1), 720-728.
[http://dx.doi.org/10.1080/10717544.2017.1311968] [PMID: 28436702]
[87]
Tang, B.; Qian, Y.; Fang, G. Development of lipid-polymer hybrid nanoparticles for improving oral absorption of enoxaparin. Pharmaceutics, 2020, 12(7), 12.
[http://dx.doi.org/10.3390/pharmaceutics12070607] [PMID: 32629827]
[88]
Yalcin, T.E.; Ilbasmis-Tamer, S.; Takka, S. Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): in vitro and in vivo. Int. J. Pharm., 2020, 580, 119246.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119246] [PMID: 32205141]
[89]
Fu, Q.; Wang, J.; Liu, H. Chemo-immune synergetic therapy of esophageal carcinoma: trastuzumab modified, cisplatin and fluorouracil co-delivered lipid-polymer hybrid nanoparticles. Drug Deliv., 2020, 27(1), 1535-1543.
[http://dx.doi.org/10.1080/10717544.2020.1837294] [PMID: 33118428]
[90]
Wu, K.; Su, D.; Liu, J.; Saha, R.; Wang, J.P. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology, 2019, 30(50), 502003.
[http://dx.doi.org/10.1088/1361-6528/ab4241] [PMID: 31491782]
[91]
Zhu, L.; Zhou, Z.; Mao, H.; Yang, L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond.), 2017, 12(1), 73-87.
[http://dx.doi.org/10.2217/nnm-2016-0316] [PMID: 27876448]
[92]
Pastucha, M.; Farka, Z.; Lacina, K.; Mikušová, Z.; Skládal, P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim. Acta, 2019, 186(5), 312.
[http://dx.doi.org/10.1007/s00604-019-3410-0] [PMID: 31037494]
[93]
Yoo, D.; Lee, J.H.; Shin, T.H.; Cheon, J. Theranostic magnetic nanoparticles. Acc. Chem. Res., 2011, 44(10), 863-874.
[http://dx.doi.org/10.1021/ar200085c] [PMID: 21823593]
[94]
Fortes Brollo, M.E.; Hernández Flores, P.; Gutiérrez, L.; Johansson, C.; Barber, D.F.; Morales, M.D.P. Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells. Phys. Chem. Chem. Phys., 2018, 20(26), 17829-17838.
[http://dx.doi.org/10.1039/C8CP03016B] [PMID: 29923574]
[95]
Kiwada, H.; Sato, J.; Yamada, S.; Kato, Y. Feasibility of magnetic liposomes as a targeting device for drugs. Chem. Pharm. Bull. (Tokyo), 1986, 34(10), 4253-4258.
[http://dx.doi.org/10.1248/cpb.34.4253] [PMID: 3829157]
[96]
Caselli, L.; Mendozza, M.; Muzzi, B.; Toti, A.; Montis, C.; Mello, T.; Di Cesare Mannelli, L.; Ghelardini, C.; Sangregorio, C.; Berti, D. Lipid cubic mesophases combined with superparamagnetic iron oxide nanoparticles: A hybrid multifunctional platform with tunable magnetic properties for nanomedical applications. Int. J. Mol. Sci., 2021, 22(17), 22.
[http://dx.doi.org/10.3390/ijms22179268] [PMID: 34502176]
[97]
Khaleghi, S.; Rahbarizadeh, F.; Ahmadvand, D.; Malek, M.; Madaah Hosseini, H.R. The effect of superparamagnetic iron oxide nanoparticles surface engineering on relaxivity of magnetoliposome. Contrast Media Mol. Imaging, 2016, 11(5), 340-349.
[http://dx.doi.org/10.1002/cmmi.1697] [PMID: 27307214]
[98]
Yang, Y.; Xie, X.; Xu, X.; Xia, X.; Wang, H.; Li, L.; Dong, W.; Ma, P.; Yang, Y.; Liu, Y.; Mei, X. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids Surf. B Biointerfaces, 2016, 146, 607-615.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.002] [PMID: 27429294]
[99]
Wang, M.; Li, J.; Li, X.; Mu, H.; Zhang, X.; Shi, Y.; Chu, Y.; Wang, A.; Wu, Z.; Sun, K. Magnetically and pH dual responsive dendrosomes for tumor accumulation enhanced folate-targeted hybrid drug delivery. JCR, 2016, 232, 161-174.
[PMID: 27090165]
[100]
Zheng, X.C.; Ren, W.; Zhang, S.; Zhong, T.; Duan, X.C.; Yin, Y.F.; Xu, M.Q.; Hao, Y.L.; Li, Z.T.; Li, H.; Liu, M.; Li, Z.Y.; Zhang, X. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine, 2018, 13, 1495-1504.
[http://dx.doi.org/10.2147/IJN.S157082] [PMID: 29559778]
[101]
Alawak, M.; Mahmoud, G.; Dayyih, A.A.; Duse, L.; Pinnapireddy, S.R.; Engelhardt, K.; Awak, I.; Wölk, C.; König, A.M.; Brüßler, J.; Bakowsky, U. Magnetic resonance activatable thermosensitive liposomes for controlled doxorubicin delivery. Mater. Sci. Eng. C, 2020, 115, 111116.
[http://dx.doi.org/10.1016/j.msec.2020.111116] [PMID: 32600717]
[102]
Daniels, D.A.; Chen, H.; Hicke, B.J.; Swiderek, K.M.; Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15416-15421.
[http://dx.doi.org/10.1073/pnas.2136683100] [PMID: 14676325]
[103]
Li, L.; Wang, Q.; Zhang, X.; Luo, L.; He, Y.; Zhu, R.; Gao, D. Dual-targeting liposomes for enhanced anticancer effect in somatostatin receptor II-positive tumor model. Nanomedicine (Lond.), 2018, 13(17), 2155-2169.
[http://dx.doi.org/10.2217/nnm-2018-0115] [PMID: 30265184]
[104]
Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 2010, 142(1), 108-121.
[PMID: 19819275]
[105]
Pradhan, P.; Banerjee, R.; Bahadur, D.; Koch, C.; Mykhaylyk, O.; Plank, C. Targeted magnetic liposomes loaded with doxorubicin. Methods Mol. Biol., 2010, 605, 279-293.
[http://dx.doi.org/10.1007/978-1-60327-360-2_19] [PMID: 20072888]
[106]
Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 154, 104-114.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.008] [PMID: 28329728]
[107]
Kono, Y.; Jinzai, H.; Kotera, Y.; Fujita, T. Influence of physicochemical properties and PEG modification of magnetic liposomes on their interaction with intestinal epithelial Caco-2 Cells. Biol. Pharm. Bull., 2017, 40(12), 2166-2174.
[http://dx.doi.org/10.1248/bpb.b17-00563] [PMID: 28966298]
[108]
Toro-Cordova, A.; Flores-Cruz, M.; Santoyo-Salazar, J. Liposomes loaded with cisplatin and magnetic nanoparticles: Physicochemical characterization, pharmacokinetics, and in-vitro efficacy. Molecules, 2018, 23(9), 2272.
[PMID: 30200551]
[109]
Shirmardi Shaghasemi, B.; Virk, M.M.; Reimhult, E. Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure. Sci. Rep., 2017, 7(1), 7474.
[PMID: 28784989]
[110]
Ferreira, R.V.; Martins, T.M.; Goes, A.M.; Fabris, J.D.; Cavalcante, L.C.; Outon, L.E.; Domingues, R.Z. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. Nanotechnology, 2016, 27(8), 085105.
[http://dx.doi.org/10.1088/0957-4484/27/8/085105] [PMID: 26820520]
[111]
Babincová, N.; Sourivong, P.; Babinec, P.; Bergemann, C.; Babincová, M.; Durdík, Š. Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma. Z. Naturforsch. C J. Biosci., 2018, 73(7-8), 265-271.
[http://dx.doi.org/10.1515/znc-2017-0110] [PMID: 29894307]
[112]
Kulshrestha, P.; Gogoi, M.; Bahadur, D.; Banerjee, R. In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids Surf. B Biointerfaces, 2012, 96, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.029] [PMID: 22521681]
[113]
Yoshida, M.; Watanabe, Y.; Sato, M.; Maehara, T.; Aono, H.; Naohara, T.; Hirazawa, H.; Horiuchi, A.; Yukumi, S.; Sato, K.; Nakagawa, H.; Yamamoto, Y.; Sugishita, H.; Kawachi, K. Feasibility of chemohyperthermia with docetaxel-embedded magnetoliposomes as minimally invasive local treatment for cancer. Int. J. Cancer, 2010, 126(8), 1955-1965.
[http://dx.doi.org/10.1002/ijc.24864] [PMID: 19711342]
[114]
Di Corato, R.; Béalle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clément, O.; Silva, A.K.; Ménager, C.; Wilhelm, C. Combining magnetic hyper-thermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano, 2015, 9(3), 2904-2916.
[http://dx.doi.org/10.1021/nn506949t] [PMID: 25695371]
[115]
Bolfarini, G.C.; Siqueira-Moura, M.P.; Demets, G.J.; Morais, P.C.; Tedesco, A.C. in vitro evaluation of combined hyperthermia and photo-dynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J. Photochem. Photobiol. B, 2012, 115, 1-4.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.05.009] [PMID: 22854225]
[116]
AnilKumar, T.S.; Lu, Y.J.; Chen, J.P. Optimization of the preparation of magnetic liposomes for the combined use of magnetic hyperthermia and photothermia in dual magneto-photothermal cancer therapy. Int. J. Mol. Sci., 2020, 21(15), 5187.
[PMID: 32707876]
[117]
Shen, S.; Huang, D.; Cao, J.; Chen, Y.; Zhang, X.; Guo, S.; Ma, W.; Qi, X.; Ge, Y.; Wu, L. Magnetic liposomes for light-sensitive drug delivery and combined photothermal-chemotherapy of tumors. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(7), 1096-1106.
[http://dx.doi.org/10.1039/C8TB02684J] [PMID: 32254777]
[118]
Chen, J.; Ye, Z.; Yang, F.; Yin, Y. Plasmonic nanostructures for photothermal conversion. Small Sci., 2021, 1, 2000055.
[http://dx.doi.org/10.1002/smsc.202000055]
[119]
Li, W.; Chen, X. Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond.), 2015, 10(2), 299-320.
[http://dx.doi.org/10.2217/nnm.14.169] [PMID: 25600972]
[120]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[121]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7, 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[122]
Loo, C.; Lin, A.; Hirsch, L.; Lee, M.H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat., 2004, 3(1), 33-40.
[http://dx.doi.org/10.1177/153303460400300104] [PMID: 14750891]
[123]
Xu, N.; Li, J.; Gao, Y.; Zhou, N.; Ma, Q.; Wu, M.; Zhang, Y.; Sun, X.; Xie, J.; Shen, G.; Yang, M.; Tu, Q.; Xu, X.; Zhu, J.; Tao, J. Apoptotic cell-mimicking gold nanocages loaded with LXR agonist for attenuating the progression of murine systemic lupus erythematosus. Biomaterials, 2019, 197, 380-392.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.034] [PMID: 30703743]
[124]
Sugikawa, K.; Matsuo, K.; Ikeda, A. Suppression of gold nanoparticle aggregation on lipid membranes using nanosized liposomes to increase steric hindrance. Langmuir, 2019, 35(1), 229-236.
[http://dx.doi.org/10.1021/acs.langmuir.8b03550] [PMID: 30517012]
[125]
Chithrani, D.B.; Dunne, M.; Stewart, J.; Allen, C.; Jaffray, D.A. Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. Nanomedicine, 2010, 6(1), 161-169.
[http://dx.doi.org/10.1016/j.nano.2009.04.009] [PMID: 19447206]
[126]
Rengan, A.K.; Bukhari, A.B.; Pradhan, A.; Malhotra, R.; Banerjee, R.; Srivastava, R.; De, A. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett., 2015, 15(2), 842-848.
[http://dx.doi.org/10.1021/nl5045378] [PMID: 25554860]
[127]
Shahabi, J.; Shahmabadi, H.E.; Alavi, S.E.; Movahedi, F.; Esfahani, M.K.; Mehrizi, T.Z.; Akbarzadeh, A. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: an in vitro study. Indian J. Clin. Biochem., 2014, 29(3), 315-320.
[http://dx.doi.org/10.1007/s12291-013-0355-7] [PMID: 24966479]
[128]
Liu, Y.; Zhang, X.; Liu, Z.; Wang, L.; Luo, L.; Wang, M.; Wang, Q.; Gao, D. Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomedicine, 2017, 13(6), 1891-1900.
[http://dx.doi.org/10.1016/j.nano.2017.03.012] [PMID: 28363771]
[129]
Chakraborty, S.; Abbasi, A.; Bothun, G.D.; Nagao, M.; Kitchens, C.L. Phospholipid bilayer softening due to hydrophobic gold nanoparticle inclusions. Langmuir, 2018, 34(44), 13416-13425.
[http://dx.doi.org/10.1021/acs.langmuir.8b02553] [PMID: 30350687]
[130]
Zhan, C.; Weiping, W.; Santamaria, C.; Wang, B.; Rwie, A.; Timko, B.P.; Kohane, D.S. Ultrasensitive phototriggered local anesthesia. Nano Lett., 2017, 17(2), 660-665.
[http://dx.doi.org/10.1021/acs.nanolett.6b03588]
[131]
Preiss, M.R.; Hart, A.; Kitchens, C.; Bothun, G.D. Hydrophobic nanoparticles modify the thermal release behavior of liposomes., 2017, 121(19), 5040-5047.
[http://dx.doi.org/10.1021/acs.jpcb.7b01702]
[132]
Wu, G.; Mikhailovsky, A.; Khant, H.A.; Fu, C.; Chiu, W.; Zasadzinski, J.A. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc., 2008, 130(26), 8175-8177.
[http://dx.doi.org/10.1021/ja802656d] [PMID: 18543914]
[133]
Kapadia, C.H.; Melamed, J.R.; Day, E.S. Spherical nucleic acid nanoparticles: Therapeutic potential. BioDrugs, 2018, 32, 297-309.
[http://dx.doi.org/10.1007/s40259-018-0290-5]
[134]
Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M.; Kogan, M.J.; Giralt, E. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials, 2012, 33(29), 7194-7205.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.063] [PMID: 22795856]
[135]
Cao, J.; Chen, Z.; Chi, J.; Sun, Y.; Sun, Y. Recent progress in synergistic chemotherapy and phototherapy by targeted drug delivery systems for cancer treatment. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 817-830.
[http://dx.doi.org/10.1080/21691401.2018.1436553] [PMID: 29405791]
[136]
Xing, S.; Zhang, X.; Luo, L.; Cao, W.; Li, L.; He, Y.; An, J.; Gao, D. Doxorubicin/gold nanoparticles coated with liposomes for chemo-photothermal synergetic antitumor therapy. Nanotechnology, 2018, 29(40), 405101.
[http://dx.doi.org/10.1088/1361-6528/aad358] [PMID: 30004030]
[137]
Matsuki, D.; Adewale, O.; Horie, S.; Okajima, J.; Komiya, A.; Oluwafemi, O.; Maruyama, S.; Mori, S.; Kodama, T. Treatment of tumor in lymph nodes using near-infrared laser light-activated thermosensitive liposome-encapsulated doxorubicin and gold nanorods. J. Biophotonics, 2017, 10(12), 1676-1682.
[http://dx.doi.org/10.1002/jbio.201600241] [PMID: 28417560]
[138]
Alvi, S.B.; Appidi, T.; Deepak, B.P.; Rajalakshmi, P.S.; Minhas, G.; Singh, S.P.; Begum, A.; Bantal, V.; Srivastava, R.; Khan, N.; Rengan, A.K. The “nano to micro” transition of hydrophobic curcumin crystals leading to in situ adjuvant depots for au-liposome nanoparticle mediated enhanced photothermal therapy. Biomater. Sci., 2019, 7(9), 3866-3875.
[http://dx.doi.org/10.1039/C9BM00932A] [PMID: 31309204]
[139]
Zhang, W.; Yu, W.; Ding, X.; Yin, C.; Yan, J.; Yang, E.; Guo, F.; Sun, D.; Wang, W. Self-assembled thermal gold nanorod-loaded thermo-sensitive liposome-encapsulated ganoderic acid for antibacterial and cancer photochemotherapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 406-419.
[http://dx.doi.org/10.1080/21691401.2018.1559177] [PMID: 30724609]
[140]
Wang, S.; Xin, J.; Zhang, L.; Zhou, Y.; Yao, C.; Wang, B.; Wang, J.; Zhang, Z. Cantharidin-encapsulated thermal-sensitive liposomes coated with gold nanoparticles for enhanced photothermal therapy on A431 cells. Int. J. Nanomedicine, 2018, 13, 2143-2160.
[http://dx.doi.org/10.2147/IJN.S156240] [PMID: 29692611]
[141]
Lajunen, T.; Viitala, L.; Kontturi, L.S.; Laaksonen, T.; Liang, H.; Vuorimaa-Laukkanen, E.; Viitala, T.; Le Guével, X.; Yliperttula, M.; Murtomäki, L.; Urtti, A. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. J. Control. Release, 2015, 203, 85-98.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.028] [PMID: 25701610]
[142]
Viitala, L.; Pajari, S.; Lajunen, T.; Kontturi, L.S.; Laaksonen, T.; Kuosmanen, P.; Viitala, T.; Urtti, A.; Murtomäki, L. Photothermally triggered lipid bilayer phase transition and drug release from gold nanorod and indocyanine green encapsulated liposomes. Langmuir, 2016, 32(18), 4554-4563.
[http://dx.doi.org/10.1021/acs.langmuir.6b00716] [PMID: 27089512]
[143]
Grafals-Ruiz, N.; Rios-Vicil, C.I.; Lozada-Delgado, E.L.; Quiñones-Díaz, B.I.; Noriega-Rivera, R.A.; Martínez-Zayas, G.; Santana-Rivera, Y.; Santiago-Sánchez, G.S.; Valiyeva, F.; Vivas-Mejía, P.E. Brain targeted gold liposomes improve RNAi delivery for glioblastoma. Int. J. Nanomedicine, 2020, 15, 2809-2828.
[http://dx.doi.org/10.2147/IJN.S241055] [PMID: 32368056]
[144]
Hill, T.K.; Abdulahad, A.; Kelkar, S.S.; Marini, F.C.; Long, T.E.; Provenzale, J.M.; Mohs, A.M. Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug. Chem., 2015, 26(2), 294-303.
[http://dx.doi.org/10.1021/bc5005679] [PMID: 25565445]
[145]
Guan, T.; Shang, W.; Li, H.; Yang, X.; Fang, C.; Tian, J.; Wang, K. From detection to resection: photoacoustic tomography and surgery guidance with indocyanine green loaded gold nanorod@liposome core-shell nanoparticles in liver cancer. Bioconjug. Chem., 2017, 28(4), 1221-1228.
[PMID: 28345887]
[146]
Samadikhah, H.R.; Nikkhah, M.; Hosseinkhani, S. Enhancement of cell internalization and photostability of red and green emitter quantum dots upon entrapment in novel cationic nanoliposomes. Luminescence, 2017, 32(4), 517-528.
[PMID: 27767252]
[147]
Zheng, W.; Liu, Y.; West, A.; Schuler, E.E.; Yehl, K.; Dyer, R.B.; Kindt, J.T.; Salaita, K. Quantum dots encapsulated within phospholipid membranes: phase-dependent structure, photostability, and site-selective functionalization. J. Am. Chem. Soc., 2014, 136(5), 1992-1999.
[http://dx.doi.org/10.1021/ja411339f] [PMID: 24417287]
[148]
Wlodek, M.; Kolasinska-Sojka, M.; Szuwarzynski, M.; Kereïche, S.; Kovacik, L.; Zhou, L.; Islas, L.; Warszynski, P.; Briscoe, W.H. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure. Nanoscale, 2018, 10(37), 17965-17974.
[http://dx.doi.org/10.1039/C8NR05877F] [PMID: 30226255]
[149]
Liang, X.F.; Wang, H.J.; Luo, H.; Tian, H.; Zhang, B.B.; Hao, L.J.; Teng, J.I.; Chang, J. Characterization of novel multifunctional cationic polymeric liposomes formed from octadecyl quaternized carboxymethyl chitosan/cholesterol and drug encapsulation. Langmuir, 2008, 24(14), 7147-7153.
[http://dx.doi.org/10.1021/la703775a] [PMID: 18564860]
[150]
Wen, C.J.; Zhang, L.W.; Al-Suwayeh, S.A.; Yen, T.C.; Fang, J.Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomedicine, 2012, 7, 1599-1611.
[PMID: 22619515]
[151]
Kim, H.; Park, Y.; Stevens, M.M.; Kwon, W.; Hahn, S.K. Multifunctional hyaluronate - nanoparticle hybrid systems for diagnostic, therapeutic and theranostic applications. J. Control. Release, 2019, 303, 55-66.
[PMID: 30954619]
[152]
Zhang, W.; Yu, M.; Xi, Z.; Nie, D.; Dai, Z.; Wang, J.; Qian, K.; Weng, H.; Gan, Y.; Xu, L. Cancer cell membrane-camouflaged nanorods with endoplasmic reticulum targeting for improved antitumor therapy. ACS Appl. Mater. Interfaces, 2019, 11(50), 46614-46625.
[http://dx.doi.org/10.1021/acsami.9b18388] [PMID: 31747243]
[153]
Fan, Z.; Xiao, K.; Lin, J.; Liao, Y. Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy. Nano Micro Small, 2019, 15, e1903761.
[154]
Wu, M.; Liu, X.; Bai, H.; Lai, L.; Chen, Q.; Huang, G.; Liu, B.; Tang, G. Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Appl. Mater. Interfaces, 2019, 11(10), 9850-9859.
[http://dx.doi.org/10.1021/acsami.9b00294] [PMID: 30788951]
[155]
Turley, S.J.; Cremasco, V.; Astarita, J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol., 2015, 15(11), 669-682.
[http://dx.doi.org/10.1038/nri3902] [PMID: 26471778]
[156]
Dong, X.; Chu, D.; Wang, Z. Leukocyte-mediated delivery of nanotherapeutics in inflammatory and tumor sites. Theranostics, 2017, 7(3), 751-763.
[http://dx.doi.org/10.7150/thno.18069] [PMID: 28255364]
[157]
Nie, D.; Dai, Z.; Li, J.; Yang, Y.; Xi, Z.; Wang, J.; Zhang, W.; Qian, K.; Guo, S.; Zhu, C.; Wang, R.; Li, Y.; Yu, M.; Zhang, X.; Shi, X.; Gan, Y. Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy. Nano Lett., 2020, 20(2), 936-946.
[http://dx.doi.org/10.1021/acs.nanolett.9b03817] [PMID: 31671946]
[158]
Kang, Z.; Lee, S.T. Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11(41), 19214-19224.
[http://dx.doi.org/10.1039/C9NR05647E] [PMID: 31513215]
[159]
Xue, X.; Fang, T.; Yin, L.; Jiang, J.; He, Y.; Dai, Y.; Wang, D. Multistage delivery of CDs-DOX/ICG-loaded liposome for highly penetration and effective chemo-photothermal combination therapy. Drug Deliv., 2018, 25(1), 1826-1839.
[PMID: 30458644]
[160]
Ren, W.; Chen, S.; Liao, Y.; Li, S.; Ge, J.; Tao, F.; Huo, Q.; Zhang, Y.; Zhao, Z. Near-infrared fluorescent carbon dots encapsulated lipo-somes as multifunctional nano-carrier and tracer of the anticancer agent cinobufagin in vivo and in vitro. Colloids Surf. B Biointerfaces, 2019, 174, 384-392.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.041] [PMID: 30476792]
[161]
Guan, C.; Zhao, Y.; Hou, Y.; Shan, G.; Yan, D.; Liu, Y. Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta, 2018, 182, 314-323.
[http://dx.doi.org/10.1016/j.talanta.2018.01.069] [PMID: 29501158]
[162]
Lens, M.; Medenica, L.; Citernesi, U. Antioxidative capacity of C(60) (buckminsterfullerene) and newly synthesized fulleropyrrolidine derivatives encapsulated in liposomes. Biotechnol. Appl. Biochem., 2008, 51(Pt 3), 135-140.
[http://dx.doi.org/10.1042/BA20080007] [PMID: 18257745]
[163]
Zakharian, T.Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B.E.; Knight, V.; Wilson, L.J. A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc., 2005, 127(36), 12508-12509.
[http://dx.doi.org/10.1021/ja0546525] [PMID: 16144396]
[164]
Antoku, D.; Satake, S.; Mae, T.; Sugikawa, K.; Funabashi, H.; Kuroda, A.; Ikeda, A. Improvement of photodynamic activity of lipid-membrane-incorporated fullerene derivative by combination with a photo-antenna molecule. Chemistry, 2018, 24(29), 7335-7339.
[http://dx.doi.org/10.1002/chem.201800674] [PMID: 29512833]
[165]
Joshi, K.; Mazumder, B.; Chattopadhyay, P.; Bora, N.S.; Goyary, D.; Karmakar, S. Graphene family of nanomaterials: Reviewing advanced applications in drug delivery and medicine. Curr. Drug Deliv., 2019, 16(3), 195-214.
[http://dx.doi.org/10.2174/1567201815666181031162208] [PMID: 30381073]
[166]
Hashemi, M.; Omidi, M.; Muralidharan, B.; Tayebi, L.; Herpin, M.J.; Mohagheghi, M.A.; Mohammadi, J.; Smyth, H.D.C.; Milner, T.E. Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomater., 2018, 65, 376-392.
[http://dx.doi.org/10.1016/j.actbio.2017.10.040] [PMID: 29109030]
[167]
Hashemi, M.; Mohammadi, J.; Omidi, M.; Smyth, H.D.C.; Muralidharan, B.; Milner, T.E.; Yadegari, A.; Ahmadvand, D.; Shalbaf, M.; Tayebi, L. Self-assembling of graphene oxide on carbon quantum dot loaded liposomes. Mater. Sci. Eng. C, 2019, 103, 109860.
[http://dx.doi.org/10.1016/j.msec.2019.109860] [PMID: 31349463]
[168]
Duan, G.; Zhang, Y.; Luan, B.; Weber, J.K.; Zhou, R.W.; Yang, Z.; Zhao, L.; Xu, J.; Luo, J.; Zhou, R. Graphene-induced pore formation on cell membranes. Sci. Rep., 2017, 7, 42767.
[http://dx.doi.org/10.1038/srep42767] [PMID: 28218295]
[169]
Negri, V.; Pacheco-Torres, J.; Calle, D.; López-Larrubia, P. Carbon nanotubes in biomedicine. Top. Curr. Chem. (Cham), 2020, 378(1), 15.
[http://dx.doi.org/10.1007/s41061-019-0278-8] [PMID: 31938922]
[170]
Kostarelos, K. The long and short of carbon nanotube toxicity. Nat. Biotechnol., 2008, 26(7), 774-776.
[http://dx.doi.org/10.1038/nbt0708-774] [PMID: 18612299]
[171]
Pippa, N.; Chronopoulos, D.D.; Stellas, D.; Fernández-Pacheco, R.; Arenal, R.; Demetzos, C.; Tagmatarchis, N. Design and development of multi-walled carbon nanotube-liposome drug delivery platforms. Int. J. Pharm., 2017, 528(1-2), 429-439.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.043] [PMID: 28627453]
[172]
Pereira, S.; Lee, J.; Rubio, N.; Hassan, H.A.; Suffian, I.B.; Wang, J.T.; Klippstein, R.; Ballesteros, B.; Al-Jamal, W.T.; Al-Jamal, K.T. Cationic liposome- multi-walled carbon nanotubes hybrids for dual siplk1 and doxorubicin delivery in vitro. Pharm. Res., 2015, 32(10), 3293-3308.
[http://dx.doi.org/10.1007/s11095-015-1707-1] [PMID: 26085038]
[173]
Zhu, X.; Xie, Y.; Zhang, Y.; Huang, H.; Huang, S.; Hou, L.; Zhang, H.; Li, Z.; Shi, J.; Zhang, Z. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system. J. Biomater. Appl., 2014, 29(5), 769-779.
[http://dx.doi.org/10.1177/0885328214543211] [PMID: 25033825]
[174]
Zhu, X.; Huang, S.; Huang, H.; Zhang, Y.; Xie, Y.; Hou, L.; Zhang, H.; Shi, J.; Zhang, Z. in vitro and in vivo anti-cancer effects of targeting and photothermal sensitive solid lipid nanoparticles. J. Drug Target., 2014, 22(9), 822-828.
[http://dx.doi.org/10.3109/1061186X.2014.931405] [PMID: 24964053]
[175]
Zhao, Y.; Zhao, T.; Cao, Y.; Sun, J.; Zhou, Q.; Chen, H.; Guo, S.; Wang, Y.; Zhen, Y.; Liang, X.J.; Zhang, S. Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano, 2021, 15(4), 6517-6529.
[http://dx.doi.org/10.1021/acsnano.0c08790] [PMID: 33749240]
[176]
Ivanovska, I.L.; de Pablo, P.J.; Ibarra, B.; Sgalari, G.; MacKintosh, F.C.; Carrascosa, J.L.; Schmidt, C.F.; Wuite, G.J. Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. USA, 2004, 101(20), 7600-7605.
[http://dx.doi.org/10.1073/pnas.0308198101] [PMID: 15133147]
[177]
Yilmazer, A.; Al-Jamal, W.T.; Van den Bossche, J.; Kostarelos, K. The effect of artificial lipid envelopment of adenovirus 5 (Ad5) on liver de-targeting and hepatotoxicity. Biomaterials, 2013, 34(4), 1354-1363.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.053] [PMID: 23146432]
[178]
Yilmazer, A.; Tian, B.; Kostarelos, K. Development of dual-activity vectors by co-envelopment of adenovirus and SiRNA in artificial lipid bilayers. PLoS One, 2014, 9(12), e114985.
[http://dx.doi.org/10.1371/journal.pone.0114985] [PMID: 25501573]
[179]
Placente, D.; Benedini, L.A.; Baldini, M.; Laiuppa, J.A.; Santillán, G.E.; Messina, P.V. Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations. Int. J. Pharm., 2018, 548(1), 559-570.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.036] [PMID: 30016671]
[180]
Hatakeyama, J.; Anan, H.; Hatakeyama, Y.; Matsumoto, N.; Takayama, F.; Wu, Z.; Matsuzaki, E.; Minakami, M.; Izumi, T.; Nakanishi, H. Induction of bone repair in rat calvarial defects using a combination of hydroxyapatite with phosphatidylserine liposomes. J. Oral Sci., 2019, 61(1), 111-118.
[http://dx.doi.org/10.2334/josnusd.17-0488] [PMID: 30918207]
[181]
Ma, T.; Shang, B.C.; Tang, H.; Zhou, T.H.; Xu, G.L.; Li, H.L.; Chen, Q.H.; Xu, Y.Q. Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J. Biomater. Sci. Polym. Ed., 2011, 22(12), 1669-1681.
[http://dx.doi.org/10.1163/092050611X570644] [PMID: 21605505]
[182]
Wang, G.; Babadağli, M.E.; Uludağ, H. Bisphosphonate-derivatized liposomes to control drug release from collagen/hydroxyapatite scaffolds. Mol. Pharm., 2011, 8(4), 1025-1034.
[http://dx.doi.org/10.1021/mp200028w] [PMID: 21557579]
[183]
Osterrieth, J.W.M.; Fairen-Jimenez, D. Metal-organic framework composites for theragnostics and drug delivery applications. Biotechnol. J., 2021, 16(2), e2000005.
[http://dx.doi.org/10.1002/biot.202000005] [PMID: 32330358]
[184]
Illes, B.; Wuttke, S.; Engelke, H. Liposome-coated iron fumarate metal-organic framework nanoparticles for combination therapy. Nanomaterials (Basel), 2017, 7(11), 351.
[http://dx.doi.org/10.3390/nano7110351] [PMID: 29072630]
[185]
Sun, L. Synergistic amplification of oxidative stress-mediated antitumor activity via liposomal dichloroacetic acid and MOF-Fe2+, 2019, 15(24), e1901156.
[PMID: 31074196]
[186]
Panikar, S.S.; Ramírez-García, G.; Vallejo-Cardona, A.A.; Banu, N.; Patrón-Soberano, O.A.; Cialla-May, D.; Camacho-Villegas, T.A.; de la Rosa, E. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF(4):Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale, 2019, 11(43), 20598-20613.
[PMID: 31641713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy