Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Polysaccharides: A Carrier for Gene Therapy

Author(s): Yalan Li, Rui Wang, Haotian Bai and Jing Yang*

Volume 20, Issue 1, 2023

Published on: 14 June, 2022

Page: [31 - 40] Pages: 10

DOI: 10.2174/1567201819666220404133452

Price: $65

Abstract

Recently, polysaccharides have been proved to be an interesting drug delivery system as gene carriers, and natural polysaccharides have attracted more attention in the field of biomaterials due to their unique non-toxicity, good biocompatibility, and biodegradability. Compared with other polysaccharides, chitosan and dextran have more extensive and profound applications and can directly or indirectly deliver therapeutic genes. Chinese medicinal polysaccharides often do not have cationic groups and cannot directly deliver therapeutic genes. They usually need certain chemical modifications. The operation process is difficult, but better therapeutic effects are achieved. In this paper, the classification of polysaccharides and the research progress in modified polysaccharides as novel gene carriers are reviewed to provide a reference for polysaccharides as novel gene carriers in gene therapy. Moreover, efficient transfection of DNA and RNA therapeutic genes requires the development of new efficient and low-toxic vectors as well as the optimization of existing delivery vectors. Therefore, the research on polysaccharide gene vector has a long way to go and has good prospects in scientific research and biomedicine.

Keywords: Gene therapy, gene carrier, gene vector, polysaccharide, chinese medicine, research progress.

Graphical Abstract
[1]
Zhang, B.; Yu, J. Advances in research on cationic polymer gene carriers. Shandong Med., 2019, 59(29), 85-88.
[2]
Choudhury, S.R.; Hudry, E.; Maguire, C.A.; Sena-Esteves, M.; Breakefield, X.O.; Grandi, P. Viral vectors for therapy of neurologic diseases. Neuropharmacology, 2017, 120, 63-80.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.013] [PMID: 26905292]
[3]
Shalaby, K.; Aouida, M.; El-Agnaf, O. Tissue-specific delivery of CRISPR therapeutics: Strategies and mechanisms of non-viral vectors. Int. J. Mol. Sci., 2020, 21(19), 7353.
[http://dx.doi.org/10.3390/ijms21197353] [PMID: 33027946]
[4]
Shi, X.; Yao, C.; Lin, X.; Shen, L.; Feng, Y. Advances in the application and research of polysaccharide. Zhongguo Xin Yao Zazhi, 2014, 23(09), 1057-1062.
[5]
Liu, J.; Niu, Y. Pharmaceutical; People’s Health Press: Beijing, 2008, pp. 8-30.
[6]
Yin, Y.; Han, Y.; Ding, H. Advances in research on animal polysaccharides. Shipin Kexue, 2006, 256-263.
[7]
He, Y.; Pan, X. Advances in studies on the structure and activity of plant polysaccharides. Shipin Kexue, 2010, 31(17), 493-496.
[8]
Kamiryo, Y.; Yajima, T.; Saito, K.; Nishimura, H.; Fushimi, T.; Ohshima, Y.; Tsukamoto, Y.; Naito, S.; Yoshikai, Y. Soluble branched (1,4)-beta-D-glucans from Acetobacter species enhance antitumor activities against MHC class I-negative and -positive malignant melanoma through augmented NK activity and cytotoxic T-cell response. Int. J. Cancer, 2005, 115(5), 769-776.
[http://dx.doi.org/10.1002/ijc.20934] [PMID: 15729692]
[9]
Zhang, W.; Xu, R. Advances in the study of fungal polysaccharides for food and drug use. Food Ind. Sci. Technol., 2014, 35(15), 395-399.
[10]
Du, Q. Advances in the study of fungal polysaccharides for food. Med. Food Nutr. China, 2011, 17(05), 75-77.
[11]
Yang, Y. Jiangnan, Luo, X.; Zheng, L.; Cao, D. Construction-activity relationship of polysaccharides from medicinal fungi against tumors. Shi Zhenguo Chin. Med., 2010, 21(03), 612-614.
[12]
Zhang, J.; Pan, Z.; Zhao, B. Advances in anti-tumor effects of fungal polysaccharides. Life Sci. Instrum., 2009, 7(04), 28-31.
[13]
Xiong, S.; Li, A. Advances in acidic polysaccharide. Res. Food Technol., 2010, 35(05), 80-83.
[14]
Wang, P.; Jiang, X.L.; Jiang, Y.; Guan, H.S. A study on the structure-activity relationship and characteristics of bacterial exopolysaccharide. Shipin Kexue, 2005, 32(11), 237-240.
[15]
Song, S.; Liao, W. Advances in the study of glucan. J. Sun Yat-sen Univ. (Natural Science Edition), 2005, (S2), 229-232.
[16]
He, L.; Min, J.; Zheng, R.; Su, H.; Jia, Q.; Shaanxi, S. Drug carrier based on pH sensitive dextran hydrogel microspheres. Fine Chem., 2020, 37(03), 494-499.
[17]
Wang, K.; Lu, C.; Fan, W. Bacterial capsular polysaccharide--a review. Wei Sheng Wu Hsueh Pao, 2011, 51(12), 1578-1584.
[PMID: 22379798]
[18]
Navarro, S.; Shkilnyy, A.; Tiersch, B.; Taubert, A.; Menzel, H. Preparation, characterization, and thermal gelation of amphiphilic alkyl-poly(ethyleneimine). Langmuir, 2009, 25(18), 10558-10566.
[http://dx.doi.org/10.1021/la9013569] [PMID: 19735131]
[19]
Zhang, C.; Ding, Y.; Yu, L.L.; Ping, Q. Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives. Colloids Surf. B Biointerfaces, 2007, 55(2), 192-199.
[http://dx.doi.org/10.1016/j.colsurfb.2006.11.031] [PMID: 17223019]
[20]
Li, H.; Liu, J.; Ding, S.; Zhang, C.; Shen, W.; You, Q. Synthesis of novel pH-sensitive chitosan graft copolymers and micellar solubilization of paclitaxel. Int. J. Biol. Macromol., 2009, 44(3), 249-256.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.12.011] [PMID: 19150369]
[21]
Luo, L.; Zhang, H.; Wang, Y.; Cao, J.; Zhou, Y.; Zhou, J. Preparation of chitosan nanoparticles coated with double-stranded RNA and preliminary anti-tick effect. Chinese J. Animal Infect. Dis., 2021, 1-14.
[22]
Zhang, W.; Fan, Y. Advances in the application of polysaccharides and their derivatives in drug delivery systems. Adv. Pharm., 2011, 35(11), 496-503.
[23]
Choi, J.H.; Jang, J.Y.; Joung, Y.K.; Kwon, M.H.; Park, K.D. Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A. J. Control. Release, 2010, 147(3), 420-427.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.118] [PMID: 20688114]
[24]
Lee, J.S.; Go, D.H.; Bae, J.W.; Lee, S.J.; Park, K.D. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor. J. Control. Release, 2007, 117(2), 204-209.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.004] [PMID: 17196698]
[25]
Zhang, W.; Huang, Y.; Zhi, X. Application of hyaluronic acid in clinical medicine. China Tissue Eng. Res. Clin. Rehabil., 2008, 23, 4515-4518.
[26]
Wang, M.; Hu, Y.; Qin, X.; Gong, T.; Zhang, Z.; Fu, Z. A hyaluronic acid nanogel for melanoma targeting delivery. Acta Pharmacol. Sin., 2020, 55(01), 146-151.
[27]
Tang, C.; Liu, J.; Jiang, G.E. Study on hyaluronic acid bonded branched low molecular weight polyethylene imine as a siRNA carrier. J. Chongqing Univ. Technol. (Natural Science), 2020, 34(04), 209-214.
[28]
Ma, Y.; Chen, S.; Zang, R. A survey of chondroitin sulfate. Xumu Shouyi Keji Xinxi, 2007, 12, 138-140.
[29]
Gu, W.; Huang, L.; Zhou, H.; Lin, L.; Lu, P. The construction and identification of Versican V2- small interference RNA expression vector of chondroitin sulfate protein polysaccharide. Shanghai Med. Sci, 2008, 02, 122-125+152.
[30]
Qu, J. Isolation, purification and structural analysis of astragalus polysaccharide with low molecular weight; Northeast Normal University, 2010.
[31]
Zhu, S.; Chen, R.; Liang, J.; Tang, Z.; Luo, Y.; Tian, W. Advances in experimental research of astragalus polysaccharide. J. Guiyang Inst. Traditional Chin. Med., 2018, 40(04), 63-66.
[32]
Ma, B.; Chen, X.; Deng, J. Advances in polysaccharide from traditional Chinese medicine. Zhongguo Yiyuan Yaoxue Zazhi, 2003, 06, 42-44.
[33]
Zhang, D.; Ren, X.; He, A.; Zhang, G.; Zhou, Y.; Zhang, Z. Preparation of polyethylenimine - Astragalus polysaccharide copolymer and its gene transfer performance. J. Zhengzhou Univ. (Medical Edition), 2014, 49(04), 457-460.
[34]
Liu, S.; Sheng, Y.C.; Wan, F.; Lu, R.; Yang, L. Preparation and performance evaluation of Radix astragali polyglycosides. Res. Pract. Mod. Chin. Med., 2018, 32(03), 54-57.
[35]
Huo, X.; Liang, Z.; Zhang, Y.; Fei, R.; Zhao, W.; Zhang, L. Studies on the structure of water-soluble polysaccharide CTP in safflower. J. Chem. Coll Univ., 2005, 56(09), 1656-1658.
[36]
Liu, N.; Zhu, L.; Li, N.; Zhang, X. Studies on the mechanism of safflower polysaccharide inducing apoptosis of human breast cancer MDA-MB-435 by blocking the PI3K/Akt/mTOR pathway. Chin. Herb. Med., 2018, 49(18), 4374-4379.
[37]
Peng, H. Effects of Rehmannia glutinosa polysaccharide on myocardial ischemia-reperfusion injury in rats. Liaoning Zhongyiyao Daxue Xuebao, 2016, 18(06), 39-42.
[38]
Wang, Z.; Wei, G.; Ma, S. Advances in studies on chemical and pharmacological effects of Rehmannia glutinosa polysaccharide. Chin. J. Exp. Prescriptions, 2015, 21(16), 231-235.
[39]
Huang, Y.; Wu, C.; Liu, Z.; Hu, Y.; Shi, C.; Yu, Y.; Zhao, X.; Liu, C.; Liu, J.; Wu, Y.; Wang, D. Optimization on preparation conditions of Rehmannia glutinosa polysaccharide liposome and its immunological activity. Carbohydr. Polym., 2014, 104, 118-126.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.022] [PMID: 24607168]
[40]
Ren, X.; Xue, X.; Zhou, Y.; Wang, X.; Zhang, Z. Cationic Rehmannia glutinosa polysaccharide: A novel non-viral gene delivery vector. J. Funct. Polym., 2013, 26(03), 248-252.
[41]
Bo, W.; Sha, X.; Huang, L.; Wang, Z. Separation, purification and structure of polysaccharide BSPI-A in Bletilla striata. Shipin Kexue, 2010, 31(17), 120-123.
[42]
Zhao, W.; Song, L.; Xu, J. Application of natural polymeric polysaccharide in drug preparation. Pharm. Today, 2010, 20(03), 2-3.
[43]
Qin, G.E.; Liu, T.; Huang, L. An overview of the study of Chinese herbal medicine Bletilla striata as a vascular embolic agent and drug carrier. China Pharm., 2003, 21(05), 49-51.
[44]
Li, W.; Feng, J.; Zheng, C.; Zeng, Y. Pharmacokinetics of 5-fluorouracil white and microsphere rabbit after renal artery embolization. J. Tongji Med. Univ., 2001, 40(05), 501-502.
[45]
Xia, X.; Xin, L.; Feng, G.; Zheng, C.; Liang, H.; Xi, L.; Bin, X. Feasibility of Chinese herbal extract as a gene delivery vector under interventional pathway. World J. Chin. Digest., 2009, 17(18), 1832-1835.
[http://dx.doi.org/10.11569/wcjd.v17.i18.1832]
[46]
Min, L. A Study on polycandons modified by natural plant polysaccharide as gene drug carrier. Dissertation, Zhejiang University, 2007.
[47]
Duan, B. Construction of gene/drug vector based on lentinan/polydeoxyribonucleotide complex and their application. Dissertation, Wuhan University, 2019.
[48]
Chenglong, W.; Shuhan, X.; Jiayi, Y.; Wencai, G.; Guoxiong, X.; Hongjing, D. Dextran-based coacervate nanodroplets as potential gene carriers for efficient cancer therapy. Carbohydr. Polym., 2020, 231, 115687.
[http://dx.doi.org/10.1016/j.carbpol.2019.115687] [PMID: 31888837]
[49]
Karmakar, P.D.; Seesala, V.S.; Pal, A.; Dhara, S.; Chatterjee, S.; Pal, S. Synthesis of RAFT-mediated amphiphilic graft copolymeric micelle using dextran and poly (oleic acid) towards oral delivery of nifedipine. J. Polym. Sci. A Polym. Chem., 2018, 56(20), 2354-2363.
[http://dx.doi.org/10.1002/pola.29210]
[50]
Tang, Q.; Cao, B.; Lei, X.; Sun, B.; Zhang, Y.; Cheng, G. Dextran-peptide hybrid for efficient gene delivery. Langmuir, 2014, 30(18), 5202-5208.
[http://dx.doi.org/10.1021/la500905z] [PMID: 24786753]
[51]
Tang, Q.; Cao, B.; Wu, H.; Cheng, G. Cholesterol-peptide hybrids to form liposome-like vesicles for gene delivery. PLoS One, 2013, 8(1), e54460.
[http://dx.doi.org/10.1371/journal.pone.0054460] [PMID: 23382899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy