Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Perspective

Liposome, Nanoliposome and Allied Technologies in Covid-19 Vaccines: Key Roles and Functionalities

Author(s): Z. Kabarkouhi, M. Mehrarya, B. Gharehchelou, Z. Jalilian, R. Jalili, M.N. Wintrasiri and M.R. Mozafari*

Volume 20, Issue 1, 2023

Published on: 10 June, 2022

Page: [3 - 7] Pages: 5

DOI: 10.2174/1567201819666220427125342

conference banner
Graphical Abstract
[1]
WHO Global. COVID-19 Vaccination Strategy: July 2021 Update., Available from: https://www.who.int/publications/m/item/who-global-covid-19-vaccination [Accessed on: 20 July 2021].
[2]
World Health Organization. WHO SAGE roadmap for prioritizing uses of COVID-19 vaccines in the context of limited supply: An approach to inform planning and subsequent recommendations based on epidemiological setting and vaccine supplyscenarios, first issued 20 October 2020, latest update 16 July 2021. 2021. https://apps.who.int/iris/handle/10665/342917
[3]
Raoufi, E.; Bahramimeimandi, B.; Salehi-Shadkami, M.; Chaosri, P.; Mozafari, M.R. Methodical design of viral vaccines based on avantgarde nanocarriers: A multi-domain narrative review. Biomedicines, 2021, 9(5), 520.
[http://dx.doi.org/10.3390/biomedicines9050520] [PMID: 34066608]
[4]
Henriksen-Lacey, M.; Korsholm, K.S.; Andersen, P.; Perrie, Y.; Christensen, D. Liposomal vaccine delivery systems. Expert Opin. Drug Deliv., 2011, 8(4), 505-519.
[http://dx.doi.org/10.1517/17425247.2011.558081] [PMID: 21413904]
[5]
Marasini, N.; Ghaffar, K.; Skwarczynski, M.; Toth, I. Liposomes as a vaccine delivery system. In: Micro and Nanotechnology in Vaccine Development; Skwarczynski, M.; Toth, I., Eds.; Elsevier, 2017; pp. 221-239.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00012-9]
[6]
CDC. Vaccine Excipient Summary., Available from: https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/appendices/b/excipient-table-2.pdf [Accessed on: 19 July 2021].
[7]
Allison, A.G.; Gregoriadis, G. Liposomes as immunological adjuvants. Nature, 1974, 252(5480), 252-252.
[http://dx.doi.org/10.1038/252252a0] [PMID: 4424229]
[8]
Mozafari, M.R.; Javanmard, R.; Raji, M. Novel drug delivery system containing phospholipids and tocopheryl phosphates. Int. J. Pharm., 2017, 528(1-2), 381-382.
[PMID: 28619450]
[9]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[10]
Frézard, F. Liposomes: From biophysics to the design of peptide vaccines. Braz. J. Med. Biol. Res., 1999, 32(2), 181-189.
[http://dx.doi.org/10.1590/S0100-879X1999000200006] [PMID: 10347753]
[11]
Mann, J.F.; Shakir, E.; Carter, K.C.; Mullen, A.B.; Alexander, J.; Ferro, V.A. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine, 2009, 27(27), 3643-3649.
[http://dx.doi.org/10.1016/j.vaccine.2009.03.040] [PMID: 19464545]
[12]
Christensen, D.; Korsholm, K.S.; Rosenkrands, I.; Lindenstrøm, T.; Andersen, P.; Agger, E.M. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines, 2007, 6(5), 785-796.
[http://dx.doi.org/10.1586/14760584.6.5.785] [PMID: 17931158]
[13]
Agger, E.M.; Rosenkrands, I.; Hansen, J.; Brahimi, K.; Vandahl, B.S.; Aagaard, C.; Werninghaus, K.; Kirschning, C.; Lang, R.; Christensen, D.; Theisen, M.; Follmann, F.; Andersen, P. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): A versatile adjuvant for vaccines with different immunological requirements. PLoS One, 2008, 3(9), e3116.
[http://dx.doi.org/10.1371/journal.pone.0003116] [PMID: 18776936]
[14]
Arthun, E.N. Cationic liposome-DNA complex-based immunotherapeutic and immunization strategies for control of la Crosse virus and Leishmania major infections Dissertation, Colorado State University, 2011.
[15]
Schwendener, R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines, 2014, 2(6), 159-182.
[http://dx.doi.org/10.1177/2051013614541440] [PMID: 25364509]
[16]
Nisini, R.; Poerio, N.; Mariotti, S.; De Santis, F.; Fraziano, M. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol., 2018, 9, 155.
[http://dx.doi.org/10.3389/fimmu.2018.00155] [PMID: 29459867]
[17]
Watson, D.S.; Platt, V.M.; Cao, L.; Venditto, V.J.; Szoka, F.C., Jr Antibody response to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrilotriacetic acid in mice. Clin. Vaccine Immunol., 2011, 18(2), 289-297.
[http://dx.doi.org/10.1128/CVI.00425-10] [PMID: 21159923]
[18]
Cassells, A.C. Uptake of charged lipid vesicles by isolated tomato protoplasts. Nature, 1978, 275(5682), 760.
[http://dx.doi.org/10.1038/275760a0]
[19]
Mozafari, M.R.; Omri, A. Importance of divalent cations in nanolipoplex gene delivery. J. Pharm. Sci., 2007, 96(8), 1955-1966.
[http://dx.doi.org/10.1002/jps.20902] [PMID: 17542023]
[20]
Elmeshad, A.N.; Mortazavi, S.M.; Mozafari, M.R. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J. Liposome Res., 2014, 24(1), 1-9.
[http://dx.doi.org/10.3109/08982104.2013.810644] [PMID: 23834067]
[21]
Mozafari, M.R. Manufacture of smart nanoliposomes for targeted drug delivery in cancer nanotherapy using Mozafari method. J. Bioequivalence Bioavailab., 2018, (10), 54.
[22]
Hernández, A.F.; Calina, D.; Poulas, K.; Docea, A.O.; Tsatsakis, A.M. Safety of COVID-19 vaccines administered in the EU: Should we be concerned? Toxicol. Rep., 2021, 8, 871-879.
[http://dx.doi.org/10.1016/j.toxrep.2021.04.003] [PMID: 33898273]
[23]
Forni, G.; Mantovani, A. COVID-19 vaccines: Where we stand and challenges ahead. Cell Death Differ., 2021, 28(2), 626-639.
[http://dx.doi.org/10.1038/s41418-020-00720-9] [PMID: 33479399]
[24]
Mozafari, M.R.; Danaei, M.; Javanmard, R.; Raji, M.; Maherani, B. Nanoscale lipidic carriersystems: Importance of preparation method and solvents. Glob. J. Nano., 2017, 2(4), 555593.
[http://dx.doi.org/10.19080/GJN.2017.02.555593]
[25]
Mozafari, M.R.; Khosravi-Darani, K. An overview of liposomederived nanocarrier technologies. In: Nanomaterials and Nanosystems for Biomedical Applications; Mozafari, M.R., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 113-123.
[http://dx.doi.org/10.1007/978-1-4020-6289-6_7]
[26]
Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 2021, 15(11), 16982-17015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[27]
Belliveau, N.M.; Huft, J.; Lin, P.J.; Chen, S.; Leung, A.K.; Leaver, T.J.; Wild, A.W.; Lee, J.B.; Taylor, R.J.; Tam, Y.K.; Hansen, C.L.; Cullis, P.R. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids, 2012, 1, e37.
[http://dx.doi.org/10.1038/mtna.2012.28] [PMID: 23344179]
[28]
Yanez Arteta, M.; Kjellman, T.; Bartesaghi, S.; Wallin, S.; Wu, X.; Kvist, A.J.; Dabkowska, A.; Székely, N.; Radulescu, A.; Bergenholtz, J.; Lindfors, L. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. USA, 2018, 115(15), E3351-E3360.
[http://dx.doi.org/10.1073/pnas.1720542115] [PMID: 29588418]
[29]
Colas, J.C.; Shi, W.; Rao, V.S.; Omri, A.; Mozafari, M.R.; Singh, H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 2007, 38(8), 841-847.
[http://dx.doi.org/10.1016/j.micron.2007.06.013] [PMID: 17689087]
[30]
Mozafari, M.R.; Reed, C.J.; Rostron, C.; Kocum, C.; Piskin, E. Formation and characterisation of non-toxic anionic liposomes for delivery of therapeutic agents to the pulmonary airways. Cell. Mol. Biol. Lett., 2002, 7(2), 243-244.
[PMID: 12097934]
[31]
Mozafari, M.R.; Reed, C.J.; Rostron, C. Development of non-toxic liposomal formulations for gene and drug delivery to the lung. Technol. Health Care, 2002, 10(3-4), 342-4.
[32]
Mozafari, M.R. Method and apparatus for producing carrier complexes. G.B. Patent 0404993 August 15;2005
[33]
Mozafari, M.R. Method for the preparation of micro-and nano-sized carrier systems for the encapsulation of bioactive substances. U.S. Patent 20100239521 September 23;2010
[34]
Rasti, B.; Jinap, S.; Mozafari, M.R.; Abd-Manap, M.Y. Optimization on preparation condition of polyunsaturated fatty acids nanoliposome prepared by Mozafari method. J. Liposome Res., 2014, 24(2), 99-105.
[http://dx.doi.org/10.3109/08982104.2013.839702] [PMID: 24099144]
[35]
Miere, F.; Fritea, L.; Cavalu, S.; Vicas, S.I. Formulation, characterisation and advantages ofusing liposomes in multiple therapies. Pharmacophore, 2020, 11, 1-12.

© 2024 Bentham Science Publishers | Privacy Policy