Review Article

异源三聚体G蛋白α-亚基-结构,肽衍生抑制剂和机制

卷 29, 期 42, 2022

发表于: 01 April, 2022

页: [6359 - 6378] 页: 20

弟呕挨: 10.2174/0929867329666220308112424

价格: $65

conference banner
摘要

G蛋白偶联受体是人体内最大的蛋白质家族,是最重要的一类药物靶标。它们接收细胞外信号并将其转导到细胞质中。鸟嘌呤核苷酸结合Gα蛋白是GPCR诱导细胞内效应的主要中继。超过 800 种不同的 GPCR 与属于 4 个家族(Gαi、Gαs、Gαq 和 Gα12/13)的 16 种 Gα 蛋白相互作用。直接抑制Gα蛋白亚基而不是调节GPCR亚型已被提出作为治疗复杂疾病(包括炎症和癌症)的新策略。本文介绍了G蛋白的结构和功能,并描述了肽和肽衍生Gα蛋白抑制剂的研究进展。它们已成为不可或缺的药理工具,其中一些显示出作为未来药物的巨大潜力。

关键词: 环肽,FR900359,异源三聚体G蛋白,Gα蛋白,G蛋白偶联受体,肽,YM-254890,抑制剂。

[1]
Milligan, G.; Kostenis, E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol., 2006, 147(Suppl. 1), S46-S55.
[http://dx.doi.org/10.1038/sj.bjp.0706405] [PMID: 16402120]
[2]
Chua, V.; Lapadula, D.; Randolph, C.; Benovic, J.L.; Wedegaertner, P.B.; Aplin, A.E. Dysregulated GPCR signaling and therapeutic options in uveal melanoma. Mol. Cancer Res., 2017, 15(5), 501-506.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0007] [PMID: 28223438]
[3]
Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; Lichtenberg, T.M.; Kucherlapati, M.; Kimes, P.K.; Tang, M.; Penson, A.; Babur, O.; Akbani, R.; Bristow, C.A.; Hoadley, K.A.; Iype, L.; Chang, M.T.; Cherniack, A.D.; Benz, C.; Mills, G.B.; Verhaak, R.G.W.; Griewank, K.G.; Felau, I.; Zenklusen, J.C.; Gershenwald, J.E.; Schoenfield, L.; Lazar, A.J.; Abdel-Rahman, M.H.; Roman-Roman, S.; Stern, M-H.; Cebulla, C.M.; Williams, M.D.; Jager, M.J.; Coupland, S.E.; Esmaeli, B.; Kandoth, C.; Woodman, S.E. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell, 2017, 32(2), 204-220.e15.
[http://dx.doi.org/10.1016/j.ccell.2017.07.003] [PMID: 28810145]
[4]
Oldham, W.M.; Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 60-71.
[http://dx.doi.org/10.1038/nrm2299] [PMID: 18043707]
[5]
Pfeil, E.M.; Brands, J.; Merten, N.; Vögtle, T.; Vescovo, M.; Rick, U.; Albrecht, I-M.; Heycke, N.; Kawakami, K.; Ono, Y.; Ngako Kadji, F.M.; Hiratsuka, S.; Aoki, J.; Häberlein, F.; Matthey, M.; Garg, J.; Hennen, S.; Jobin, M-L.; Seier, K.; Calebiro, D.; Pfeifer, A.; Heinemann, A.; Wenzel, D.; König, G.M.; Nieswandt, B.; Fleischmann, B.K.; Inoue, A.; Simon, K.; Kostenis, E.; Heterotrimeric, G. Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs. Mol. Cell, 2020, 80(6), 940-954.e6.
[http://dx.doi.org/10.1016/j.molcel.2020.10.027] [PMID: 33202251]
[6]
Masuho, I.; Skamangas, N.K.; Muntean, B.S.; Martemyanov, K.A. Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst., 2021, 12(4), 324-337.e5.
[http://dx.doi.org/10.1016/j.cels.2021.02.001] [PMID: 33667409]
[7]
Latorraca, N.R.; Venkatakrishnan, A.J.; Dror, R.O. GPCR dynamics: Structures in motion. Chem. Rev., 2017, 117(1), 139-155.
[http://dx.doi.org/10.1021/acs.chemrev.6b00177] [PMID: 27622975]
[8]
Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol., 2018, 25(1), 4-12.
[http://dx.doi.org/10.1038/s41594-017-0011-7] [PMID: 29323277]
[9]
Simon, M.I.; Strathmann, M.P.; Gautam, N. Diversity of G proteins in signal transduction. Science, 1991, 252(5007), 802-808.
[http://dx.doi.org/10.1126/science.1902986] [PMID: 1902986]
[10]
Offermanns, S.; Simon, M.I. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem., 1995, 270(25), 15175-15180.
[http://dx.doi.org/10.1074/jbc.270.25.15175] [PMID: 7797501]
[11]
Taylor, S.J.; Chae, H.Z.; Rhee, S.G.; Exton, J.H. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature, 1991, 350(6318), 516-518.
[http://dx.doi.org/10.1038/350516a0] [PMID: 1707501]
[12]
Suzuki, N.; Hajicek, N.; Kozasa, T. Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals, 2009, 17(1), 55-70.
[http://dx.doi.org/10.1159/000186690] [PMID: 19212140]
[13]
Chen, Z.; Singer, W.D.; Sternweis, P.C.; Sprang, S.R. Structure of the p115RhoGEF rgRGS domain-Galpha13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat. Struct. Mol. Biol., 2005, 12(2), 191-197.
[http://dx.doi.org/10.1038/nsmb888] [PMID: 15665872]
[14]
Sánchez-Fernández, G.; Cabezudo, S.; García-Hoz, C.; Benincá, C.; Aragay, A.M.; Mayor, F., Jr; Ribas, C. Gαq signalling: The new and the old. Cell. Signal., 2014, 26(5), 833-848.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.010] [PMID: 24440667]
[15]
Wall, M.A.; Coleman, D.E.; Lee, E.; Iñiguez-Lluhi, J.A.; Posner, B.A.; Gilman, A.G.; Sprang, S.R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell, 1995, 83(6), 1047-1058.
[http://dx.doi.org/10.1016/0092-8674(95)90220-1] [PMID: 8521505]
[16]
Rasmussen, S.G.F.; DeVree, B.T.; Zou, Y.; Kruse, A.C.; Chung, K.Y.; Kobilka, T.S.; Thian, F.S.; Chae, P.S.; Pardon, E.; Calinski, D.; Mathiesen, J.M.; Shah, S.T.A.; Lyons, J.A.; Caffrey, M.; Gellman, S.H.; Steyaert, J.; Skiniotis, G.; Weis, W.I.; Sunahara, R.K.; Kobilka, B.K. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 2011, 477(7366), 549-555.
[http://dx.doi.org/10.1038/nature10361] [PMID: 21772288]
[17]
Traut, T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem., 1994, 140(1), 1-22.
[http://dx.doi.org/10.1007/BF00928361] [PMID: 7877593]
[18]
Flock, T.; Ravarani, C.N.J.; Sun, D.; Venkatakrishnan, A.J.; Kayikci, M.; Tate, C.G.; Veprintsev, D.B.; Babu, M.M. Universal allosteric mechanism for Gα activation by GPCRs. Nature, 2015, 524(7564), 173-179.
[http://dx.doi.org/10.1038/nature14663] [PMID: 26147082]
[19]
Yao, X-Q.; Malik, R.U.; Griggs, N.W.; Skjærven, L.; Traynor, J.R.; Sivaramakrishnan, S.; Grant, B.J. Dynamic coupling and allosteric networks in the α subunit of heterotrimeric G proteins. J. Biol. Chem., 2016, 291(9), 4742-4753.
[http://dx.doi.org/10.1074/jbc.M115.702605] [PMID: 26703464]
[20]
Lambright, D.G.; Noel, J.P.; Hamm, H.E.; Sigler, P.B. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature, 1994, 369(6482), 621-628.
[http://dx.doi.org/10.1038/369621a0] [PMID: 8208289]
[21]
Vetter, I.R.; Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science, 2001, 294(5545), 1299-1304.
[http://dx.doi.org/10.1126/science.1062023] [PMID: 11701921]
[22]
Mukhopadhyay, S.; Ross, E.M. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc. Natl. Acad. Sci. USA, 1999, 96(17), 9539-9544.
[http://dx.doi.org/10.1073/pnas.96.17.9539] [PMID: 10449728]
[23]
Masuho, I.; Balaji, S.; Muntean, B.S.; Skamangas, N.K.; Chavali, S.; Tesmer, J.J.G.; Babu, M.M.; Martemyanov, K.A. A global map of G protein signaling regulation by RGS proteins. Cell, 2020, 183(2), 503-521.e19.
[http://dx.doi.org/10.1016/j.cell.2020.08.052] [PMID: 33007266]
[24]
Berstein, G.; Blank, J.L.; Jhon, D.Y.; Exton, J.H.; Rhee, S.G.; Ross, E.M. Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell, 1992, 70(3), 411-418.
[http://dx.doi.org/10.1016/0092-8674(92)90165-9] [PMID: 1322796]
[25]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[26]
Noel, J.P.; Hamm, H.E.; Sigler, P.B. The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature, 1993, 366(6456), 654-663.
[http://dx.doi.org/10.1038/366654a0] [PMID: 8259210]
[27]
Holbrook, S.R.; Kim, S.H. Molecular model of the G protein alpha subunit based on the crystal structure of the HRAS protein. Proc. Natl. Acad. Sci. USA, 1989, 86(6), 1751-1755.
[http://dx.doi.org/10.1073/pnas.86.6.1751] [PMID: 2494654]
[28]
Avet, C.; Mancini, A.; Breton, B.; Le Gouill, C.; Hauser, A.S.; Normand, C.; Kobayashi, H.; Gross, F.; Hogue, M.; Lukasheva, V.; Morissette, S.; Fauman, E.; Fortin, J-P.; Schann, S.; Leroy, X.; Gloriam, D.E.; Bouvier, M. Selectivity landscape of 100 therapeutically relevant GPCR profiled by an effector translocation-based BRET platform. bioRxiv, 2020, 2020, 2.
[29]
Inoue, A.; Raimondi, F.; Kadji, F.M.N.; Singh, G.; Kishi, T.; Uwamizu, A.; Ono, Y.; Shinjo, Y.; Ishida, S.; Arang, N.; Kawakami, K.; Gutkind, J.S.; Aoki, J.; Russell, R.B. Illuminating G-protein-coupling selectivity of GPCRs. Cell, 2019, 177(7), 1933-1947.e25.
[http://dx.doi.org/10.1016/j.cell.2019.04.044] [PMID: 31160049]
[30]
Olsen, R.H.J.; DiBerto, J.F.; English, J.G.; Glaudin, A.M.; Krumm, B.E.; Slocum, S.T.; Che, T.; Gavin, A.C.; McCorvy, J.D.; Roth, B.L.; Strachan, R.T. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol., 2020, 16(8), 841-849.
[http://dx.doi.org/10.1038/s41589-020-0535-8] [PMID: 32367019]
[31]
Inoue, A.; Ishiguro, J.; Kitamura, H.; Arima, N.; Okutani, M.; Shuto, A.; Higashiyama, S.; Ohwada, T.; Arai, H.; Makide, K.; Aoki, J. TGFα shedding assay: An accurate and versatile method for detecting GPCR activation. Nat. Methods, 2012, 9(10), 1021-1029.
[http://dx.doi.org/10.1038/nmeth.2172] [PMID: 22983457]
[32]
Milligan, G.; Grassie, M.A. How do G-proteins stay at the plasma membrane? Essays Biochem., 1997, 32, 49-60.
[PMID: 9493010]
[33]
Lyon, A.M.; Taylor, V.G.; Tesmer, J.J.G. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol. Sci., 2014, 35(1), 23-30.
[http://dx.doi.org/10.1016/j.tips.2013.10.008] [PMID: 24287282]
[34]
Wedegaertner, P.B.; Wilson, P.T.; Bourne, H.R. Lipid modifications of trimeric G proteins. J. Biol. Chem., 1995, 270(2), 503-506.
[http://dx.doi.org/10.1074/jbc.270.2.503] [PMID: 7822269]
[35]
Maeda, S.; Qu, Q.; Robertson, M.J.; Skiniotis, G.; Kobilka, B.K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science, 2019, 364(6440), 552-557.
[http://dx.doi.org/10.1126/science.aaw5188] [PMID: 31073061]
[36]
Calebiro, D.; Koszegi, Z.; Lanoiselée, Y.; Miljus, T.; O’Brien, S. G protein-coupled receptor-G protein interactions: A single-molecule perspective. Physiol. Rev., 2021, 101(3), 857-906.
[http://dx.doi.org/10.1152/physrev.00021.2020] [PMID: 33331229]
[37]
Jang, W.; Adams, C.E.; Liu, H.; Zhang, C.; Levy, F.O.; Andressen, K.W.; Lambert, N.A. An inactive receptor-G protein complex maintains the dynamic range of agonist-induced signaling. Proc. Natl. Acad. Sci. USA, 2020, 117(48), 30755-30762.
[http://dx.doi.org/10.1073/pnas.2010801117] [PMID: 33199589]
[38]
Nobles, M.; Benians, A.; Tinker, A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18706-18711.
[http://dx.doi.org/10.1073/pnas.0504778102] [PMID: 16352729]
[39]
Coleman, D.E.; Berghuis, A.M.; Lee, E.; Linder, M.E.; Gilman, A.G.; Sprang, S.R. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science, 1994, 265(5177), 1405-1412.
[http://dx.doi.org/10.1126/science.8073283] [PMID: 8073283]
[40]
Sprang, S.R. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers, 2016, 105(8), 449-462.
[http://dx.doi.org/10.1002/bip.22836] [PMID: 26996924]
[41]
Nishimura, A.; Kitano, K.; Takasaki, J.; Taniguchi, M.; Mizuno, N.; Tago, K.; Hakoshima, T.; Itoh, H. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc. Natl. Acad. Sci. USA, 2010, 107(31), 13666-13671.
[http://dx.doi.org/10.1073/pnas.1003553107] [PMID: 20639466]
[42]
Lyon, A.M.; Dutta, S.; Boguth, C.A.; Skiniotis, G.; Tesmer, J.J.G. Full-length Gα(q)-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain. Nat. Struct. Mol. Biol., 2013, 20(3), 355-362.
[http://dx.doi.org/10.1038/nsmb.2497] [PMID: 23377541]
[43]
Maziarz, M.; Leyme, A.; Marivin, A.; Luebbers, A.; Patel, P.P.; Chen, Z.; Sprang, S.R.; Garcia-Marcos, M. Atypical activation of the G protein Gαq by the oncogenic mutation Q209P. J. Biol. Chem., 2018, 293(51), 19586-19599.
[http://dx.doi.org/10.1074/jbc.RA118.005291] [PMID: 30352874]
[44]
Van Raamsdonk, C.D.; Griewank, K.G.; Crosby, M.B.; Garrido, M.C.; Vemula, S.; Wiesner, T.; Obenauf, A.C.; Wackernagel, W.; Green, G.; Bouvier, N.; Sozen, M.M.; Baimukanova, G.; Roy, R.; Heguy, A.; Dolgalev, I.; Khanin, R.; Busam, K.; Speicher, M.R.; O’Brien, J.; Bastian, B.C. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med., 2010, 363(23), 2191-2199.
[http://dx.doi.org/10.1056/NEJMoa1000584] [PMID: 21083380]
[45]
Zhang, M.; Gui, M.; Wang, Z-F.; Gorgulla, C.; Yu, J.J.; Wu, H.; Sun, Z.J.; Klenk, C.; Merklinger, L.; Morstein, L.; Hagn, F.; Plückthun, A.; Brown, A.; Nasr, M.L.; Wagner, G. Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nat. Struct. Mol. Biol., 2021, 28(3), 258-267.
[http://dx.doi.org/10.1038/s41594-020-00554-6] [PMID: 33633398]
[46]
García-Nafría, J.; Tate, C.G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol., 2019, 488, 1-13.
[http://dx.doi.org/10.1016/j.mce.2019.02.006] [PMID: 30930094]
[47]
Taylor, V.G.; Bommarito, P.A.; Tesmer, J.J.G. Structure of the regulator of G Protein Signaling 8 (RGS8)-Gαq Complex: Molecular basis for Gα selectivity. J. Biol. Chem., 2016, 291(10), 5138-5145.
[http://dx.doi.org/10.1074/jbc.M115.712075] [PMID: 26755720]
[48]
Tesmer, J.J.; Dessauer, C.W.; Sunahara, R.K.; Murray, L.D.; Johnson, R.A.; Gilman, A.G.; Sprang, S.R. Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry, 2000, 39(47), 14464-14471.
[http://dx.doi.org/10.1021/bi0015562] [PMID: 11087399]
[49]
Edward Zhou, X.; Melcher, K.; Eric Xu, H. Structural biology of G protein-coupled receptor signaling complexes. Protein Sci., 2019, 28(3), 487-501.
[PMID: 30311978]
[50]
Hilger, D. The role of structural dynamics in GPCR-mediated signaling. FEBS J., 2021, 288(8), 2461-2489.
[http://dx.doi.org/10.1111/febs.15841] [PMID: 33871923]
[51]
Tesmer, J.J.G.; Berman, D.M.; Gilman, A.G.; Sprang, S.R. Structure of RGS4 bound to AlF4-activated G(i α1): stabilization of the transition state for GTP hydrolysis. Cell, 1997, 89(2), 251-261.
[http://dx.doi.org/10.1016/S0092-8674(00)80204-4] [PMID: 9108480]
[52]
Qi, C.; Sorrentino, S.; Medalia, O.; Korkhov, V.M. The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science, 2019, 364(6438), 389-394.
[http://dx.doi.org/10.1126/science.aav0778] [PMID: 31023924]
[53]
Hajicek, N.; Kukimoto-Niino, M.; Mishima-Tsumagari, C.; Chow, C.R.; Shirouzu, M.; Terada, T.; Patel, M.; Yokoyama, S.; Kozasa, T. Identification of critical residues in G(alpha)13 for stimulation of p115RhoGEF activity and the structure of the G(alpha)13-p115RhoGEF regulator of G protein signaling homology (RH) domain complex. J. Biol. Chem., 2011, 286(23), 20625-20636.
[http://dx.doi.org/10.1074/jbc.M110.201392] [PMID: 21507947]
[54]
Nance, M.R.; Kreutz, B.; Tesmer, V.M.; Sterne-Marr, R.; Kozasa, T.; Tesmer, J.J.G. Structural and functional analysis of the regulator of G protein signaling 2-gαq complex. Structure, 2013, 21(3), 438-448.
[http://dx.doi.org/10.1016/j.str.2012.12.016] [PMID: 23434405]
[55]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, S.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O'Donovan, C.; Redaschi, N.; Yeh, L.-S. L. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[56]
Tesmer, J.J.; Sunahara, R.K.; Johnson, R.A.; Gosselin, G.; Gilman, A.G.; Sprang, S.R. Two-metal-Ion catalysis in adenylyl cyclase. Science, 1999, 285(5428), 756-760.
[http://dx.doi.org/10.1126/science.285.5428.756] [PMID: 10427002]
[57]
Tesmer, J.J.; Sunahara, R.K.; Gilman, A.G.; Sprang, S.R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science, 1997, 278(5345), 1907-1916.
[http://dx.doi.org/10.1126/science.278.5345.1907] [PMID: 9417641]
[58]
Mou, T-C.; Masada, N.; Cooper, D.M.F.; Sprang, S.R. Structural basis for inhibition of mammalian adenylyl cyclase by calcium. Biochemistry, 2009, 48(15), 3387-3397.
[http://dx.doi.org/10.1021/bi802122k] [PMID: 19243146]
[59]
Mou, T-C.; Gille, A.; Fancy, D.A.; Seifert, R.; Sprang, S.R. Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 ‘(3’)-O-(N-Methylanthraniloyl)-guanosine 5 '-triphosphate. J. Biol. Chem., 2005, 280(8), 7253-7261.
[http://dx.doi.org/10.1074/jbc.M409076200] [PMID: 15591060]
[60]
Slep, K.C.; Kercher, M.A.; Wieland, T.; Chen, C-K.; Simon, M.I.; Sigler, P.B. Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6243-6248.
[http://dx.doi.org/10.1073/pnas.0801569105] [PMID: 18434540]
[61]
Soundararajan, M.; Willard, F.S.; Kimple, A.J.; Turnbull, A.P.; Ball, L.J.; Schoch, G.A.; Gileadi, C.; Fedorov, O.Y.; Dowler, E.F.; Higman, V.A.; Hutsell, S.Q.; Sundström, M.; Doyle, D.A.; Siderovski, D.P. Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6457-6462.
[http://dx.doi.org/10.1073/pnas.0801508105] [PMID: 18434541]
[62]
Kimple, A.J.; Soundararajan, M.; Hutsell, S.Q.; Roos, A.K.; Urban, D.J.; Setola, V.; Temple, B.R.S.; Roth, B.L.; Knapp, S.; Willard, F.S.; Siderovski, D.P. Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2). J. Biol. Chem., 2009, 284(29), 19402-19411.
[http://dx.doi.org/10.1074/jbc.M109.024711] [PMID: 19478087]
[63]
Gao, Y.; Eskici, G.; Ramachandran, S.; Poitevin, F.; Seven, A.B.; Panova, O.; Skiniotis, G.; Cerione, R.A. Structure of the Visual Signaling Complex between Transducin and Phosphodiesterase 6. Mol. Cell, 2020, 80(2), 237-245.e4.
[http://dx.doi.org/10.1016/j.molcel.2020.09.013] [PMID: 33007200]
[64]
Slep, K.C.; Kercher, M.A.; He, W.; Cowan, C.W.; Wensel, T.G.; Sigler, P.B. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature, 2001, 409(6823), 1071-1077.
[http://dx.doi.org/10.1038/35059138] [PMID: 11234020]
[65]
Waldo, G.L.; Ricks, T.K.; Hicks, S.N.; Cheever, M.L.; Kawano, T.; Tsuboi, K.; Wang, X.; Montell, C.; Kozasa, T.; Sondek, J.; Harden, T.K. Kinetic scaffolding mediated by a phospholipase C-beta and Gq signaling complex. Science, 2010, 330(6006), 974-980.
[http://dx.doi.org/10.1126/science.1193438] [PMID: 20966218]
[66]
Lyon, A.M.; Begley, J.A.; Manett, T.D.; Tesmer, J.J.G. Molecular mechanisms of phospholipase C β3 autoinhibition. Structure, 2014, 22(12), 1844-1854.
[http://dx.doi.org/10.1016/j.str.2014.10.008] [PMID: 25435326]
[67]
Tesmer, V.M.; Kawano, T.; Shankaranarayanan, A.; Kozasa, T.; Tesmer, J.J.G. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science, 2005, 310(5754), 1686-1690.
[http://dx.doi.org/10.1126/science.1118890] [PMID: 16339447]
[68]
Lutz, S.; Shankaranarayanan, A.; Coco, C.; Ridilla, M.; Nance, M.R.; Vettel, C.; Baltus, D.; Evelyn, C.R.; Neubig, R.R.; Wieland, T.; Tesmer, J.J.G. Structure of Galphaq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science, 2007, 318(5858), 1923-1927.
[http://dx.doi.org/10.1126/science.1147554] [PMID: 18096806]
[69]
Chen, Z.; Singer, W.D.; Danesh, S.M.; Sternweis, P.C.; Sprang, S.R. Recognition of the activated states of Galpha13 by the rgRGS domain of PDZRhoGEF. Structure, 2008, 16(10), 1532-1543.
[http://dx.doi.org/10.1016/j.str.2008.07.009] [PMID: 18940608]
[70]
Hermes, C.; König, G.M.; Crüsemann, M. The chromodepsins - chemistry, biology and biosynthesis of a selective Gq inhibitor natural product family. Nat. Prod. Rep., 2021, 38(12), 2276-2292.
[http://dx.doi.org/10.1039/D1NP00005E] [PMID: 33998635]
[71]
Zhang, H.; Nielsen, A.L.; Strømgaard, K. Recent achievements in developing selective Gq inhibitors. Med. Res. Rev., 2020, 40(1), 135-157.
[http://dx.doi.org/10.1002/med.21598] [PMID: 31218731]
[72]
Graziano, M.P.; Freissmuth, M.; Gilman, A.G. Expression of Gs alpha in Escherichia coli. Purification and properties of two forms of the protein. J. Biol. Chem., 1989, 264(1), 409-418.
[http://dx.doi.org/10.1016/S0021-9258(17)31273-5] [PMID: 2491850]
[73]
Malinski, J.A.; Zera, E.M.; Angleson, J.K.; Wensel, T.G. High affinity interactions of GTPgammaS with the heterotrimeric G protein, transducin. Evidence at high and low protein concentrations. J. Biol. Chem., 1996, 271(22), 12919-12924.
[http://dx.doi.org/10.1074/jbc.271.22.12919] [PMID: 8662740]
[74]
Becher, I.; Savitski, M.M.; Savitski, M.F.; Hopf, C.; Bantscheff, M.; Drewes, G. Affinity profiling of the cellular kinome for the nucleotide cofactors ATP, ADP, and GTP. ACS Chem. Biol., 2013, 8(3), 599-607.
[http://dx.doi.org/10.1021/cb3005879] [PMID: 23215245]
[75]
Katada, T.; Tamura, M.; Ui, M. The A protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of a membrane protein. Arch. Biochem. Biophys., 1983, 224(1), 290-298.
[http://dx.doi.org/10.1016/0003-9861(83)90212-6] [PMID: 6683482]
[76]
Carbonetti, N.H. Pertussis toxin and adenylate cyclase toxin: Key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol., 2010, 5(3), 455-469.
[http://dx.doi.org/10.2217/fmb.09.133] [PMID: 20210554]
[77]
Moss, J.; Stanley, S.J.; Burns, D.L.; Hsia, J.A.; Yost, D.A.; Myers, G.A.; Hewlett, E.L. Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J. Biol. Chem., 1983, 258(19), 11879-11882.
[http://dx.doi.org/10.1016/S0021-9258(17)44314-6] [PMID: 6311827]
[78]
Beindl, W.; Mitterauer, T.; Hohenegger, M.; Ijzerman, A.P.; Nanoff, C.; Freissmuth, M. Inhibition of receptor/G protein coupling by suramin analogues. Mol. Pharmacol., 1996, 50(2), 415-423.
[PMID: 8700151]
[79]
Freissmuth, M.; Boehm, S.; Beindl, W.; Nickel, P.; Ijzerman, A.P.; Hohenegger, M.; Nanoff, C. Suramin analogues as subtype-selective G protein inhibitors. Mol. Pharmacol., 1996, 49(4), 602-611.
[PMID: 8609887]
[80]
Chung, W-C.; Kermode, J.C. Suramin disrupts receptor-G protein coupling by blocking association of G protein alpha and betagamma subunits. J. Pharmacol. Exp. Ther., 2005, 313(1), 191-198.
[http://dx.doi.org/10.1124/jpet.104.078311] [PMID: 15626724]
[81]
Mannes, M.; Martin, C.; Triest, S.; Pia Dimmito, M.; Mollica, A.; Laeremans, T.; Menet, C.J.; Ballet, S. Development of Generic G Protein Peptidomimetics able to stabilize active state Gs Protein-Coupled receptors for application in drug discovery. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10247-10254.
[http://dx.doi.org/10.1002/anie.202100180] [PMID: 33596327]
[82]
Rasenick, M.M.; Watanabe, M.; Lazarevic, M.B.; Hatta, S.; Hamm, H.E. Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J. Biol. Chem., 1994, 269(34), 21519-21525.
[http://dx.doi.org/10.1016/S0021-9258(17)31835-5] [PMID: 8063788]
[83]
Scheerer, P.; Park, J.H.; Hildebrand, P.W.; Kim, Y.J.; Krauss, N.; Choe, H-W.; Hofmann, K.P.; Ernst, O.P. Crystal structure of opsin in its G-protein-interacting conformation. Nature, 2008, 455(7212), 497-502.
[http://dx.doi.org/10.1038/nature07330] [PMID: 18818650]
[84]
Herrmann, R.; Heck, M.; Henklein, P.; Kleuss, C.; Wray, V.; Hofmann, K.P.; Ernst, O.P. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis. Vision Res., 2006, 46(27), 4582-4593.
[http://dx.doi.org/10.1016/j.visres.2006.07.027] [PMID: 17011013]
[85]
Feldman, D.S.; Zamah, A.M.; Pierce, K.L.; Miller, W.E.; Kelly, F.; Rapacciuolo, A.; Rockman, H.A.; Koch, W.J.; Luttrell, L.M. Selective inhibition of heterotrimeric Gs signaling. Targeting the receptor-G protein interface using a peptide minigene encoding the Galpha(s) carboxyl terminus. J. Biol. Chem., 2002, 277(32), 28631-28640.
[http://dx.doi.org/10.1074/jbc.M204753200] [PMID: 12036966]
[86]
Mukai, H.; Munekata, E.; Higashijima, T. G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding. J. Biol. Chem., 1992, 267(23), 16237-16243.
[http://dx.doi.org/10.1016/S0021-9258(18)41991-6] [PMID: 1379592]
[87]
Covic, L.; Gresser, A.L.; Talavera, J.; Swift, S.; Kuliopulos, A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 643-648.
[http://dx.doi.org/10.1073/pnas.022460899] [PMID: 11805322]
[88]
Tressel, S.L.; Koukos, G.; Tchernychev, B.; Jacques, S.L.; Covic, L.; Kuliopulos, A. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol. Biol., 2011, 683, 259-275.
[http://dx.doi.org/10.1007/978-1-60761-919-2_19] [PMID: 21053136]
[89]
Higashijima, T.; Ferguson, K.M.; Smigel, M.D.; Gilman, A.G. The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go. J. Biol. Chem., 1987, 262(2), 757-761.
[http://dx.doi.org/10.1016/S0021-9258(19)75850-5] [PMID: 3027067]
[90]
Higashijima, T.; Ferguson, K.M.; Sternweis, P.C.; Ross, E.M.; Smigel, M.D.; Gilman, A.G. The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J. Biol. Chem., 1987, 262(2), 752-756.
[http://dx.doi.org/10.1016/S0021-9258(19)75849-9] [PMID: 3100518]
[91]
Takasaki, J.; Saito, T.; Taniguchi, M.; Kawasaki, T.; Moritani, Y.; Hayashi, K.; Kobori, M. A novel Galphaq/11-selective inhibitor. J. Biol. Chem., 2004, 279(46), 47438-47445.
[http://dx.doi.org/10.1074/jbc.M408846200] [PMID: 15339913]
[92]
Taniguchi, M.; Nagai, K.; Arao, N.; Kawasaki, T.; Saito, T.; Moritani, Y.; Takasaki, J.; Hayashi, K.; Fujita, S.; Suzuki, K.; Tsukamoto, S. YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666. J. Antibiot. (Tokyo), 2003, 56(4), 358-363.
[http://dx.doi.org/10.7164/antibiotics.56.358] [PMID: 12817809]
[93]
Hermes, C.; Richarz, R.; Wirtz, D.A.; Patt, J.; Hanke, W.; Kehraus, S.; Voß, J.H.; Küppers, J.; Ohbayashi, T.; Namasivayam, V.; Alenfelder, J.; Inoue, A.; Mergaert, P.; Gütschow, M.; Müller, C.E.; Kostenis, E.; König, G.M.; Crüsemann, M. Thioesterase-mediated side chain transesterification generates potent Gq signaling inhibitor FR900359. Nat. Commun., 2021, 12(1), 144.
[http://dx.doi.org/10.1038/s41467-020-20418-3] [PMID: 33420046]
[94]
Carlier, A.; Fehr, L.; Pinto-Carbó, M.; Schäberle, T.; Reher, R.; Dessein, S.; König, G.; Eberl, L. The genome analysis of Candidatus burkholderia Crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. Environ. Microbiol., 2016, 18(8), 2507-2522.
[http://dx.doi.org/10.1111/1462-2920.13184] [PMID: 26663534]
[95]
Kostenis, E.; Pfeil, E.M.; Annala, S. Heterotrimeric Gq proteins as therapeutic targets? J. Biol. Chem., 2020, 295(16), 5206-5215.
[http://dx.doi.org/10.1074/jbc.REV119.007061] [PMID: 32122969]
[96]
Matthey, M.; Roberts, R.; Seidinger, A.; Simon, A.; Schröder, R.; Kuschak, M.; Annala, S.; König, G.M.; Müller, C.E.; Hall, I.P.; Kostenis, E.; Fleischmann, B.K.; Wenzel, D. Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma. Sci. Transl. Med., 2017, 9(407), 9.
[http://dx.doi.org/10.1126/scitranslmed.aag2288] [PMID: 28904224]
[97]
White, A.D.; Jean-Alphonse, F.G.; Fang, F.; Peña, K.A.; Liu, S.; König, G.M.; Inoue, A.; Aslanoglou, D.; Gellman, S.H.; Kostenis, E.; Xiao, K.; Vilardaga, J-P. Gq/11-dependent regulation of endosomal cAMP generation by parathyroid hormone class B GPCR. Proc. Natl. Acad. Sci. USA, 2020, 117(13), 7455-7460.
[http://dx.doi.org/10.1073/pnas.1918158117] [PMID: 32184323]
[98]
Schrage, R.; Schmitz, A-L.; Gaffal, E.; Annala, S.; Kehraus, S.; Wenzel, D.; Büllesbach, K.M.; Bald, T.; Inoue, A.; Shinjo, Y.; Galandrin, S.; Shridhar, N.; Hesse, M.; Grundmann, M.; Merten, N.; Charpentier, T.H.; Martz, M.; Butcher, A.J.; Slodczyk, T.; Armando, S.; Effern, M.; Namkung, Y.; Jenkins, L.; Horn, V.; Stößel, A.; Dargatz, H.; Tietze, D.; Imhof, D.; Galés, C.; Drewke, C.; Müller, C.E.; Hölzel, M.; Milligan, G.; Tobin, A.B.; Gomeza, J.; Dohlman, H.G.; Sondek, J.; Harden, T.K.; Bouvier, M.; Laporte, S.A.; Aoki, J.; Fleischmann, B.K.; Mohr, K.; König, G.M.; Tüting, T.; Kostenis, E. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun., 2015, 6, 10156.
[http://dx.doi.org/10.1038/ncomms10156] [PMID: 26658454]
[99]
Kuschak, M.; Namasivayam, V.; Rafehi, M.; Voss, J.H.; Garg, J.; Schlegel, J.G.; Abdelrahman, A.; Kehraus, S.; Reher, R.; Küppers, J.; Sylvester, K.; Hinz, S.; Matthey, M.; Wenzel, D.; Fleischmann, B.K.; Pfeifer, A.; Inoue, A.; Gütschow, M.; König, G.M.; Müller, C.E. Cell-permeable high-affinity tracers for Gq proteins provide structural insights, reveal distinct binding kinetics, and identify small molecule inhibitors. Br. J. Pharmacol., 2020, 177(8), 1898-1916.
[PMID: 31881095]
[100]
Schlegel, J.G.; Tahoun, M.; Seidinger, A.; Voss, J.H.; Kuschak, M.; Kehraus, S.; Schneider, M.; Matthey, M.; Fleischmann, B.K.; König, G.M.; Wenzel, D.; Müller, C.E. Macrocyclic Gq protein inhibitors FR900359 and/or YM-254890-Fit for translation? ACS Pharmacol. Transl. Sci., 2021, 4(2), 888-897.
[http://dx.doi.org/10.1021/acsptsci.1c00021] [PMID: 33860209]
[101]
Voss, J.H.; Nagel, J.; Rafehi, M.; Guixà-González, R.; Malfacini, D.; Patt, J.; Kehraus, S.; Inoue, A.; König, G.M.; Kostenis, E.; Deupi, X.; Namasivayam, V.; Müller, C.E. Unraveling binding mechanism and kinetics of macrocyclic Gαq protein inhibitors. Pharmacol. Res., 2021, 173, 105880.
[http://dx.doi.org/10.1016/j.phrs.2021.105880] [PMID: 34506902]
[102]
Kuschak, M.; Schlegel, J.G.; Schneider, M.; Kehraus, S.; Voss, J.H.; Seidinger, A.; Matthey, M.; Wenzel, D.; Fleischmann, B.K.; König, G.M.; Müller, C.E. Sensitive LC-MS/MS method for the quantification of macrocyclic Gαq protein inhibitors in biological samples. Front Chem., 2020, 8, 833.
[http://dx.doi.org/10.3389/fchem.2020.00833] [PMID: 33173765]
[103]
Malfacini, D.; Patt, J.; Annala, S.; Harpsøe, K.; Eryilmaz, F.; Reher, R.; Crüsemann, M.; Hanke, W.; Zhang, H.; Tietze, D.; Gloriam, D.E.; Bräuner-Osborne, H.; Strømgaard, K.; König, G.M.; Inoue, A.; Gomeza, J.; Kostenis, E. Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity. J. Biol. Chem., 2019, 294(15), 5747-5758.
[http://dx.doi.org/10.1074/jbc.RA118.007250] [PMID: 30745359]
[104]
Boesgaard, M.W.; Harpsøe, K.; Malmberg, M.; Underwood, C.R.; Inoue, A.; Mathiesen, J.M.; König, G.M.; Kostenis, E.; Gloriam, D.E.; Bräuner-Osborne, H. Delineation of molecular determinants for FR900359 inhibition of Gq/11 unlocks inhibition of Gαs. J. Biol. Chem., 2020, 295(40), 13850-13861.
[http://dx.doi.org/10.1074/jbc.RA120.013002] [PMID: 32753482]
[105]
Xiong, X-F.; Zhang, H.; Underwood, C.R.; Harpsøe, K.; Gardella, T.J.; Wöldike, M.F.; Mannstadt, M.; Gloriam, D.E.; Bräuner-Osborne, H.; Strømgaard, K. Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors. Nat. Chem., 2016, 8(11), 1035-1041.
[http://dx.doi.org/10.1038/nchem.2577] [PMID: 27768111]
[106]
Zhang, H.; Nielsen, A.L.; Boesgaard, M.W.; Harpsøe, K.; Daly, N.L.; Xiong, X-F.; Underwood, C.R.; Haugaard-Kedström, L.M.; Bräuner-Osborne, H.; Gloriam, D.E.; Strømgaard, K. Structure-activity relationship and conformational studies of the natural product cyclic depsipeptides YM-254890 and FR900359. Eur. J. Med. Chem., 2018, 156, 847-860.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.023] [PMID: 30055466]
[107]
Reher, R.; Kühl, T.; Annala, S.; Benkel, T.; Kaufmann, D.; Nubbemeyer, B.; Odhiambo, J.P.; Heimer, P.; Bäuml, C.A.; Kehraus, S.; Crüsemann, M.; Kostenis, E.; Tietze, D.; König, G.M.; Imhof, D. Deciphering specificity determinants for FR900359-Derived Gq α inhibitors based on computational and structure-activity studies. ChemMedChem, 2018, 13(16), 1634-1643.
[http://dx.doi.org/10.1002/cmdc.201800304] [PMID: 29873888]
[108]
Reher, R.; Kuschak, M.; Heycke, N.; Annala, S.; Kehraus, S.; Dai, H-F.; Müller, C.E.; Kostenis, E.; König, G.M.; Crüsemann, M. Applying molecular networking for the detection of natural sources and analogues of the selective Gq protein inhibitor FR900359. J. Nat. Prod., 2018, 81(7), 1628-1635.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00222] [PMID: 29943987]
[109]
Fukushima, N.; Kohno, M.; Kato, T.; Kawamoto, S.; Okuda, K.; Misu, Y.; Ueda, H. Melittin, a metabostatic peptide inhibiting Gs activity. Peptides, 1998, 19(5), 811-819.
[http://dx.doi.org/10.1016/S0196-9781(98)00027-8] [PMID: 9663445]
[110]
Higashijima, T.; Burnier, J.; Ross, E.M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J. Biol. Chem., 1990, 265(24), 14176-14186.
[http://dx.doi.org/10.1016/S0021-9258(18)77284-0] [PMID: 2117607]
[111]
Choi, O.H.; Padgett, W.L.; Daly, J.W. Effects of the amphiphilic peptides melittin and mastoparan on calcium influx, phosphoinositide breakdown and arachidonic acid release in rat pheochromocytoma PC12 cells. J. Pharmacol. Exp. Ther., 1992, 260(1), 369-375.
[PMID: 1309880]
[112]
DiGiacomo, V.; de Opakua, A.I.; Papakonstantinou, M.P.; Nguyen, L.T.; Merino, N.; Blanco-Canosa, J.B.; Blanco, F.J.; Garcia-Marcos, M. The Gαi-GIV binding interface is a druggable protein-protein interaction. Sci. Rep., 2017, 7(1), 8575.
[http://dx.doi.org/10.1038/s41598-017-08829-7] [PMID: 28819150]
[113]
Kalogriopoulos, N.A.; Rees, S.D.; Ngo, T.; Kopcho, N.J.; Ilatovskiy, A.V.; Sun, N.; Komives, E.A.; Chang, G.; Ghosh, P.; Kufareva, I. Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proc. Natl. Acad. Sci. USA, 2019, 116(33), 16394-16403.
[http://dx.doi.org/10.1073/pnas.1906658116] [PMID: 31363053]
[114]
Kimple, R.J.; Kimple, M.E.; Betts, L.; Sondek, J.; Siderovski, D.P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature, 2002, 416(6883), 878-881.
[http://dx.doi.org/10.1038/416878a] [PMID: 11976690]
[115]
Siderovski, D.P.; Willard, F.S. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int. J. Biol. Sci., 2005, 1(2), 51-66.
[http://dx.doi.org/10.7150/ijbs.1.51] [PMID: 15951850]
[116]
Seven, A.B.; Hilger, D.; Papasergi-Scott, M.M.; Zhang, L.; Qu, Q.; Kobilka, B.K.; Tall, G.G.; Skiniotis, G. Structures of Gα proteins in complex with their chaperone reveal quality control mechanisms. Cell Rep., 2020, 30(11), 3699-3709.e6.
[http://dx.doi.org/10.1016/j.celrep.2020.02.086] [PMID: 32126208]
[117]
Ayoub, M.A.; Damian, M.; Gespach, C.; Ferrandis, E.; Lavergne, O.; De Wever, O.; Banères, J-L.; Pin, J-P.; Prévost, G.P. Inhibition of heterotrimeric G protein signaling by a small molecule acting on Galpha subunit. J. Biol. Chem., 2009, 284(42), 29136-29145.
[http://dx.doi.org/10.1074/jbc.M109.042333] [PMID: 19648112]
[118]
Prévost, G.P.; Lonchampt, M.O.; Holbeck, S.; Attoub, S.; Zaharevitz, D.; Alley, M.; Wright, J.; Brezak, M.C.; Coulomb, H.; Savola, A.; Huchet, M.; Chaumeron, S.; Nguyen, Q-D.; Forgez, P.; Bruyneel, E.; Bracke, M.; Ferrandis, E.; Roubert, P.; Demarquay, D.; Gespach, C.; Kasprzyk, P.G. Anticancer activity of BIM-46174, a new inhibitor of the heterotrimeric Galpha/Gbetagamma protein complex. Cancer Res., 2006, 66(18), 9227-9234.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4205] [PMID: 16982767]
[119]
Schmitz, A-L.; Schrage, R.; Gaffal, E.; Charpentier, T.H.; Wiest, J.; Hiltensperger, G.; Morschel, J.; Hennen, S.; Häußler, D.; Horn, V.; Wenzel, D.; Grundmann, M.; Büllesbach, K.M.; Schröder, R.; Brewitz, H.H.; Schmidt, J.; Gomeza, J.; Galés, C.; Fleischmann, B.K.; Tüting, T.; Imhof, D.; Tietze, D.; Gütschow, M.; Holzgrabe, U.; Sondek, J.; Harden, T.K.; Mohr, K.; Kostenis, E. A cell-permeable inhibitor to trap Gαq proteins in the empty pocket conformation. Chem. Biol., 2014, 21(7), 890-902.
[http://dx.doi.org/10.1016/j.chembiol.2014.06.003] [PMID: 25036778]
[120]
Küppers, J.; Benkel, T.; Annala, S.; Schnakenburg, G.; Kostenis, E.; Gütschow, M. BIM-46174 fragments as potential ligands of G proteins. MedChemComm, 2019, 10(10), 1838-1843.
[http://dx.doi.org/10.1039/C9MD00269C] [PMID: 32180917]
[121]
Gütschow, M.; Küppers, J.; Benkel, T.; Annala, S.; Kimura, K.; Reinelt, L.; Fleischmann, B.K.; Kostenis, E. Tetrahydroimidazo1,2-apyrazine derivatives: Synthesis and evaluation As Gαq-Protein Ligands. Chemistry, 2020, 26(55), 12615-12623.
[122]
Charpentier, T.H.; Waldo, G.L.; Lowery-Gionta, E.G.; Krajewski, K.; Strahl, B.D.; Kash, T.L.; Harden, T.K.; Sondek, J. Potent and selective peptide-based inhibition of the G protein Gαq. J. Biol. Chem., 2016, 291(49), 25608-25616.
[http://dx.doi.org/10.1074/jbc.M116.740407] [PMID: 27742837]
[123]
Johnston, C.A.; Lobanova, E.S.; Shavkunov, A.S.; Low, J.; Ramer, J.K.; Blaesius, R.; Fredericks, Z.; Willard, F.S.; Kuhlman, B.; Arshavsky, V.Y.; Siderovski, D.P. Minimal determinants for binding activated G alpha from the structure of a G alpha(i1)-peptide dimer. Biochemistry, 2006, 45(38), 11390-11400.
[http://dx.doi.org/10.1021/bi0613832] [PMID: 16981699]
[124]
Dai, S.A.; Hu, Q.; Gao, R.; Lazar, A.; Zhang, Z.; von Zastrow, M.; Suga, H.; Shokat, K.M. A GTP-state specific cyclic peptide inhibitor of the GTPase Gαs. bioRxiv, 2020, 2020, 054080.
[http://dx.doi.org/10.1101/2020.04.25.054080]
[125]
Higashijima, T.; Uzu, S.; Nakajima, T.; Ross, E.M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J. Biol. Chem., 1988, 263(14), 6491-6494.
[http://dx.doi.org/10.1016/S0021-9258(18)68669-7] [PMID: 3129426]
[126]
Leschke, C.; Storm, R.; Breitweg-Lehmann, E.; Exner, T.; Nürnberg, B.; Schunack, W. Alkyl-substituted amino acid amides and analogous di- and triamines: new non-peptide G protein activators. J. Med. Chem., 1997, 40(19), 3130-3139.
[http://dx.doi.org/10.1021/jm9703092] [PMID: 9301677]
[127]
Breitweg-Lehmann, E.; Czupalla, C.; Storm, R.; Kudlacek, O.; Schunack, W.; Freissmuth, M.; Nürnberg, B. Activation and inhibition of G proteins by lipoamines. Mol. Pharmacol., 2002, 61(3), 628-636.
[http://dx.doi.org/10.1124/mol.61.3.628] [PMID: 11854444]
[128]
Hagelüken, A.; Grünbaum, L.; Nürnberg, B.; Harhammer, R.; Schunack, W.; Seifert, R. Lipophilic β-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem. Pharmacol., 1994, 47(10), 1789-1795.
[http://dx.doi.org/10.1016/0006-2952(94)90307-7] [PMID: 7911302]
[129]
Hagelüken, A.; Nürnberg, B.; Harhammer, R.; Grünbaum, L.; Schunack, W.; Seifert, R. The class III antiarrhythmic drug amiodarone directly activates pertussis toxin-sensitive G proteins. Mol. Pharmacol., 1995, 47(2), 234-240.
[PMID: 7870030]
[130]
Sanchez, J.; Holmgren, J. Cholera toxin - a foe & a friend. Indian J. Med. Res., 2011, 133, 153-163.
[PMID: 21415489]
[131]
O’Brien, J.B.; Wilkinson, J.C.; Roman, D.L. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J. Biol. Chem., 2019, 294(49), 18571-18585.
[http://dx.doi.org/10.1074/jbc.REV119.007060] [PMID: 31636120]
[132]
Mangmool, S.; Kurose, H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins (Basel), 2011, 3(7), 884-899.
[http://dx.doi.org/10.3390/toxins3070884] [PMID: 22069745]
[133]
Johnston, C.A.; Willard, F.S.; Jezyk, M.R.; Fredericks, Z.; Bodor, E.T.; Jones, M.B.; Blaesius, R.; Watts, V.J.; Harden, T.K.; Sondek, J.; Ramer, J.K.; Siderovski, D.P. Structure of Galpha(i1) bound to a GDP-selective peptide provides insight into guanine nucleotide exchange. Structure, 2005, 13(7), 1069-1080.
[http://dx.doi.org/10.1016/j.str.2005.04.007] [PMID: 16004878]
[134]
Galés, C.; Rebois, R.V.; Hogue, M.; Trieu, P.; Breit, A.; Hébert, T.E.; Bouvier, M. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods, 2005, 2(3), 177-184.
[http://dx.doi.org/10.1038/nmeth743] [PMID: 15782186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy