Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Heterotrimeric G Protein α-Subunits - Structures, Peptide-Derived Inhibitors, and Mechanisms

Author(s): Jan H. Voss and Christa E. Müller*

Volume 29, Issue 42, 2022

Published on: 01 April, 2022

Page: [6359 - 6378] Pages: 20

DOI: 10.2174/0929867329666220308112424

Price: $65

conference banner
Abstract

G protein-coupled receptors are the largest protein family in the human body and represent the most important class of drug targets. They receive extracellular signals and transduce them into the cytosol. The guanine nucleotide-binding Gα proteins represent the main relays by which GPCRs induce intracellular effects. More than 800 different GPCRs interact with 16 Gα proteins belonging to 4 families, Gαi, Gαs, Gαq, and Gα12/13. The direct inhibition of Gα protein subunits rather than the modulation of GPCR subtypes has been proposed as a novel strategy for the treatment of complex diseases, including inflammation and cancer. This mini-review presents an introduction to G protein structure and function and describes achievements in the development of peptidic and peptide-derived Gα protein inhibitors. They have become indispensable pharmacological tools, and some of them exhibit significant potential as future drugs.

Keywords: Cyclo(depsi)peptide, FR900359, heterotrimeric G protein, Gα protein, G protein-coupled receptor, peptide, YM-254890, inhibitor.

[1]
Milligan, G.; Kostenis, E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol., 2006, 147(Suppl. 1), S46-S55.
[http://dx.doi.org/10.1038/sj.bjp.0706405] [PMID: 16402120]
[2]
Chua, V.; Lapadula, D.; Randolph, C.; Benovic, J.L.; Wedegaertner, P.B.; Aplin, A.E. Dysregulated GPCR signaling and therapeutic options in uveal melanoma. Mol. Cancer Res., 2017, 15(5), 501-506.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0007] [PMID: 28223438]
[3]
Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; Lichtenberg, T.M.; Kucherlapati, M.; Kimes, P.K.; Tang, M.; Penson, A.; Babur, O.; Akbani, R.; Bristow, C.A.; Hoadley, K.A.; Iype, L.; Chang, M.T.; Cherniack, A.D.; Benz, C.; Mills, G.B.; Verhaak, R.G.W.; Griewank, K.G.; Felau, I.; Zenklusen, J.C.; Gershenwald, J.E.; Schoenfield, L.; Lazar, A.J.; Abdel-Rahman, M.H.; Roman-Roman, S.; Stern, M-H.; Cebulla, C.M.; Williams, M.D.; Jager, M.J.; Coupland, S.E.; Esmaeli, B.; Kandoth, C.; Woodman, S.E. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell, 2017, 32(2), 204-220.e15.
[http://dx.doi.org/10.1016/j.ccell.2017.07.003] [PMID: 28810145]
[4]
Oldham, W.M.; Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 60-71.
[http://dx.doi.org/10.1038/nrm2299] [PMID: 18043707]
[5]
Pfeil, E.M.; Brands, J.; Merten, N.; Vögtle, T.; Vescovo, M.; Rick, U.; Albrecht, I-M.; Heycke, N.; Kawakami, K.; Ono, Y.; Ngako Kadji, F.M.; Hiratsuka, S.; Aoki, J.; Häberlein, F.; Matthey, M.; Garg, J.; Hennen, S.; Jobin, M-L.; Seier, K.; Calebiro, D.; Pfeifer, A.; Heinemann, A.; Wenzel, D.; König, G.M.; Nieswandt, B.; Fleischmann, B.K.; Inoue, A.; Simon, K.; Kostenis, E.; Heterotrimeric, G. Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs. Mol. Cell, 2020, 80(6), 940-954.e6.
[http://dx.doi.org/10.1016/j.molcel.2020.10.027] [PMID: 33202251]
[6]
Masuho, I.; Skamangas, N.K.; Muntean, B.S.; Martemyanov, K.A. Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst., 2021, 12(4), 324-337.e5.
[http://dx.doi.org/10.1016/j.cels.2021.02.001] [PMID: 33667409]
[7]
Latorraca, N.R.; Venkatakrishnan, A.J.; Dror, R.O. GPCR dynamics: Structures in motion. Chem. Rev., 2017, 117(1), 139-155.
[http://dx.doi.org/10.1021/acs.chemrev.6b00177] [PMID: 27622975]
[8]
Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol., 2018, 25(1), 4-12.
[http://dx.doi.org/10.1038/s41594-017-0011-7] [PMID: 29323277]
[9]
Simon, M.I.; Strathmann, M.P.; Gautam, N. Diversity of G proteins in signal transduction. Science, 1991, 252(5007), 802-808.
[http://dx.doi.org/10.1126/science.1902986] [PMID: 1902986]
[10]
Offermanns, S.; Simon, M.I. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem., 1995, 270(25), 15175-15180.
[http://dx.doi.org/10.1074/jbc.270.25.15175] [PMID: 7797501]
[11]
Taylor, S.J.; Chae, H.Z.; Rhee, S.G.; Exton, J.H. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature, 1991, 350(6318), 516-518.
[http://dx.doi.org/10.1038/350516a0] [PMID: 1707501]
[12]
Suzuki, N.; Hajicek, N.; Kozasa, T. Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals, 2009, 17(1), 55-70.
[http://dx.doi.org/10.1159/000186690] [PMID: 19212140]
[13]
Chen, Z.; Singer, W.D.; Sternweis, P.C.; Sprang, S.R. Structure of the p115RhoGEF rgRGS domain-Galpha13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat. Struct. Mol. Biol., 2005, 12(2), 191-197.
[http://dx.doi.org/10.1038/nsmb888] [PMID: 15665872]
[14]
Sánchez-Fernández, G.; Cabezudo, S.; García-Hoz, C.; Benincá, C.; Aragay, A.M.; Mayor, F., Jr; Ribas, C. Gαq signalling: The new and the old. Cell. Signal., 2014, 26(5), 833-848.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.010] [PMID: 24440667]
[15]
Wall, M.A.; Coleman, D.E.; Lee, E.; Iñiguez-Lluhi, J.A.; Posner, B.A.; Gilman, A.G.; Sprang, S.R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell, 1995, 83(6), 1047-1058.
[http://dx.doi.org/10.1016/0092-8674(95)90220-1] [PMID: 8521505]
[16]
Rasmussen, S.G.F.; DeVree, B.T.; Zou, Y.; Kruse, A.C.; Chung, K.Y.; Kobilka, T.S.; Thian, F.S.; Chae, P.S.; Pardon, E.; Calinski, D.; Mathiesen, J.M.; Shah, S.T.A.; Lyons, J.A.; Caffrey, M.; Gellman, S.H.; Steyaert, J.; Skiniotis, G.; Weis, W.I.; Sunahara, R.K.; Kobilka, B.K. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 2011, 477(7366), 549-555.
[http://dx.doi.org/10.1038/nature10361] [PMID: 21772288]
[17]
Traut, T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem., 1994, 140(1), 1-22.
[http://dx.doi.org/10.1007/BF00928361] [PMID: 7877593]
[18]
Flock, T.; Ravarani, C.N.J.; Sun, D.; Venkatakrishnan, A.J.; Kayikci, M.; Tate, C.G.; Veprintsev, D.B.; Babu, M.M. Universal allosteric mechanism for Gα activation by GPCRs. Nature, 2015, 524(7564), 173-179.
[http://dx.doi.org/10.1038/nature14663] [PMID: 26147082]
[19]
Yao, X-Q.; Malik, R.U.; Griggs, N.W.; Skjærven, L.; Traynor, J.R.; Sivaramakrishnan, S.; Grant, B.J. Dynamic coupling and allosteric networks in the α subunit of heterotrimeric G proteins. J. Biol. Chem., 2016, 291(9), 4742-4753.
[http://dx.doi.org/10.1074/jbc.M115.702605] [PMID: 26703464]
[20]
Lambright, D.G.; Noel, J.P.; Hamm, H.E.; Sigler, P.B. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature, 1994, 369(6482), 621-628.
[http://dx.doi.org/10.1038/369621a0] [PMID: 8208289]
[21]
Vetter, I.R.; Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science, 2001, 294(5545), 1299-1304.
[http://dx.doi.org/10.1126/science.1062023] [PMID: 11701921]
[22]
Mukhopadhyay, S.; Ross, E.M. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc. Natl. Acad. Sci. USA, 1999, 96(17), 9539-9544.
[http://dx.doi.org/10.1073/pnas.96.17.9539] [PMID: 10449728]
[23]
Masuho, I.; Balaji, S.; Muntean, B.S.; Skamangas, N.K.; Chavali, S.; Tesmer, J.J.G.; Babu, M.M.; Martemyanov, K.A. A global map of G protein signaling regulation by RGS proteins. Cell, 2020, 183(2), 503-521.e19.
[http://dx.doi.org/10.1016/j.cell.2020.08.052] [PMID: 33007266]
[24]
Berstein, G.; Blank, J.L.; Jhon, D.Y.; Exton, J.H.; Rhee, S.G.; Ross, E.M. Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell, 1992, 70(3), 411-418.
[http://dx.doi.org/10.1016/0092-8674(92)90165-9] [PMID: 1322796]
[25]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[26]
Noel, J.P.; Hamm, H.E.; Sigler, P.B. The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature, 1993, 366(6456), 654-663.
[http://dx.doi.org/10.1038/366654a0] [PMID: 8259210]
[27]
Holbrook, S.R.; Kim, S.H. Molecular model of the G protein alpha subunit based on the crystal structure of the HRAS protein. Proc. Natl. Acad. Sci. USA, 1989, 86(6), 1751-1755.
[http://dx.doi.org/10.1073/pnas.86.6.1751] [PMID: 2494654]
[28]
Avet, C.; Mancini, A.; Breton, B.; Le Gouill, C.; Hauser, A.S.; Normand, C.; Kobayashi, H.; Gross, F.; Hogue, M.; Lukasheva, V.; Morissette, S.; Fauman, E.; Fortin, J-P.; Schann, S.; Leroy, X.; Gloriam, D.E.; Bouvier, M. Selectivity landscape of 100 therapeutically relevant GPCR profiled by an effector translocation-based BRET platform. bioRxiv, 2020, 2020, 2.
[29]
Inoue, A.; Raimondi, F.; Kadji, F.M.N.; Singh, G.; Kishi, T.; Uwamizu, A.; Ono, Y.; Shinjo, Y.; Ishida, S.; Arang, N.; Kawakami, K.; Gutkind, J.S.; Aoki, J.; Russell, R.B. Illuminating G-protein-coupling selectivity of GPCRs. Cell, 2019, 177(7), 1933-1947.e25.
[http://dx.doi.org/10.1016/j.cell.2019.04.044] [PMID: 31160049]
[30]
Olsen, R.H.J.; DiBerto, J.F.; English, J.G.; Glaudin, A.M.; Krumm, B.E.; Slocum, S.T.; Che, T.; Gavin, A.C.; McCorvy, J.D.; Roth, B.L.; Strachan, R.T. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol., 2020, 16(8), 841-849.
[http://dx.doi.org/10.1038/s41589-020-0535-8] [PMID: 32367019]
[31]
Inoue, A.; Ishiguro, J.; Kitamura, H.; Arima, N.; Okutani, M.; Shuto, A.; Higashiyama, S.; Ohwada, T.; Arai, H.; Makide, K.; Aoki, J. TGFα shedding assay: An accurate and versatile method for detecting GPCR activation. Nat. Methods, 2012, 9(10), 1021-1029.
[http://dx.doi.org/10.1038/nmeth.2172] [PMID: 22983457]
[32]
Milligan, G.; Grassie, M.A. How do G-proteins stay at the plasma membrane? Essays Biochem., 1997, 32, 49-60.
[PMID: 9493010]
[33]
Lyon, A.M.; Taylor, V.G.; Tesmer, J.J.G. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol. Sci., 2014, 35(1), 23-30.
[http://dx.doi.org/10.1016/j.tips.2013.10.008] [PMID: 24287282]
[34]
Wedegaertner, P.B.; Wilson, P.T.; Bourne, H.R. Lipid modifications of trimeric G proteins. J. Biol. Chem., 1995, 270(2), 503-506.
[http://dx.doi.org/10.1074/jbc.270.2.503] [PMID: 7822269]
[35]
Maeda, S.; Qu, Q.; Robertson, M.J.; Skiniotis, G.; Kobilka, B.K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science, 2019, 364(6440), 552-557.
[http://dx.doi.org/10.1126/science.aaw5188] [PMID: 31073061]
[36]
Calebiro, D.; Koszegi, Z.; Lanoiselée, Y.; Miljus, T.; O’Brien, S. G protein-coupled receptor-G protein interactions: A single-molecule perspective. Physiol. Rev., 2021, 101(3), 857-906.
[http://dx.doi.org/10.1152/physrev.00021.2020] [PMID: 33331229]
[37]
Jang, W.; Adams, C.E.; Liu, H.; Zhang, C.; Levy, F.O.; Andressen, K.W.; Lambert, N.A. An inactive receptor-G protein complex maintains the dynamic range of agonist-induced signaling. Proc. Natl. Acad. Sci. USA, 2020, 117(48), 30755-30762.
[http://dx.doi.org/10.1073/pnas.2010801117] [PMID: 33199589]
[38]
Nobles, M.; Benians, A.; Tinker, A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18706-18711.
[http://dx.doi.org/10.1073/pnas.0504778102] [PMID: 16352729]
[39]
Coleman, D.E.; Berghuis, A.M.; Lee, E.; Linder, M.E.; Gilman, A.G.; Sprang, S.R. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science, 1994, 265(5177), 1405-1412.
[http://dx.doi.org/10.1126/science.8073283] [PMID: 8073283]
[40]
Sprang, S.R. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers, 2016, 105(8), 449-462.
[http://dx.doi.org/10.1002/bip.22836] [PMID: 26996924]
[41]
Nishimura, A.; Kitano, K.; Takasaki, J.; Taniguchi, M.; Mizuno, N.; Tago, K.; Hakoshima, T.; Itoh, H. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc. Natl. Acad. Sci. USA, 2010, 107(31), 13666-13671.
[http://dx.doi.org/10.1073/pnas.1003553107] [PMID: 20639466]
[42]
Lyon, A.M.; Dutta, S.; Boguth, C.A.; Skiniotis, G.; Tesmer, J.J.G. Full-length Gα(q)-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain. Nat. Struct. Mol. Biol., 2013, 20(3), 355-362.
[http://dx.doi.org/10.1038/nsmb.2497] [PMID: 23377541]
[43]
Maziarz, M.; Leyme, A.; Marivin, A.; Luebbers, A.; Patel, P.P.; Chen, Z.; Sprang, S.R.; Garcia-Marcos, M. Atypical activation of the G protein Gαq by the oncogenic mutation Q209P. J. Biol. Chem., 2018, 293(51), 19586-19599.
[http://dx.doi.org/10.1074/jbc.RA118.005291] [PMID: 30352874]
[44]
Van Raamsdonk, C.D.; Griewank, K.G.; Crosby, M.B.; Garrido, M.C.; Vemula, S.; Wiesner, T.; Obenauf, A.C.; Wackernagel, W.; Green, G.; Bouvier, N.; Sozen, M.M.; Baimukanova, G.; Roy, R.; Heguy, A.; Dolgalev, I.; Khanin, R.; Busam, K.; Speicher, M.R.; O’Brien, J.; Bastian, B.C. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med., 2010, 363(23), 2191-2199.
[http://dx.doi.org/10.1056/NEJMoa1000584] [PMID: 21083380]
[45]
Zhang, M.; Gui, M.; Wang, Z-F.; Gorgulla, C.; Yu, J.J.; Wu, H.; Sun, Z.J.; Klenk, C.; Merklinger, L.; Morstein, L.; Hagn, F.; Plückthun, A.; Brown, A.; Nasr, M.L.; Wagner, G. Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nat. Struct. Mol. Biol., 2021, 28(3), 258-267.
[http://dx.doi.org/10.1038/s41594-020-00554-6] [PMID: 33633398]
[46]
García-Nafría, J.; Tate, C.G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol., 2019, 488, 1-13.
[http://dx.doi.org/10.1016/j.mce.2019.02.006] [PMID: 30930094]
[47]
Taylor, V.G.; Bommarito, P.A.; Tesmer, J.J.G. Structure of the regulator of G Protein Signaling 8 (RGS8)-Gαq Complex: Molecular basis for Gα selectivity. J. Biol. Chem., 2016, 291(10), 5138-5145.
[http://dx.doi.org/10.1074/jbc.M115.712075] [PMID: 26755720]
[48]
Tesmer, J.J.; Dessauer, C.W.; Sunahara, R.K.; Murray, L.D.; Johnson, R.A.; Gilman, A.G.; Sprang, S.R. Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry, 2000, 39(47), 14464-14471.
[http://dx.doi.org/10.1021/bi0015562] [PMID: 11087399]
[49]
Edward Zhou, X.; Melcher, K.; Eric Xu, H. Structural biology of G protein-coupled receptor signaling complexes. Protein Sci., 2019, 28(3), 487-501.
[PMID: 30311978]
[50]
Hilger, D. The role of structural dynamics in GPCR-mediated signaling. FEBS J., 2021, 288(8), 2461-2489.
[http://dx.doi.org/10.1111/febs.15841] [PMID: 33871923]
[51]
Tesmer, J.J.G.; Berman, D.M.; Gilman, A.G.; Sprang, S.R. Structure of RGS4 bound to AlF4-activated G(i α1): stabilization of the transition state for GTP hydrolysis. Cell, 1997, 89(2), 251-261.
[http://dx.doi.org/10.1016/S0092-8674(00)80204-4] [PMID: 9108480]
[52]
Qi, C.; Sorrentino, S.; Medalia, O.; Korkhov, V.M. The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science, 2019, 364(6438), 389-394.
[http://dx.doi.org/10.1126/science.aav0778] [PMID: 31023924]
[53]
Hajicek, N.; Kukimoto-Niino, M.; Mishima-Tsumagari, C.; Chow, C.R.; Shirouzu, M.; Terada, T.; Patel, M.; Yokoyama, S.; Kozasa, T. Identification of critical residues in G(alpha)13 for stimulation of p115RhoGEF activity and the structure of the G(alpha)13-p115RhoGEF regulator of G protein signaling homology (RH) domain complex. J. Biol. Chem., 2011, 286(23), 20625-20636.
[http://dx.doi.org/10.1074/jbc.M110.201392] [PMID: 21507947]
[54]
Nance, M.R.; Kreutz, B.; Tesmer, V.M.; Sterne-Marr, R.; Kozasa, T.; Tesmer, J.J.G. Structural and functional analysis of the regulator of G protein signaling 2-gαq complex. Structure, 2013, 21(3), 438-448.
[http://dx.doi.org/10.1016/j.str.2012.12.016] [PMID: 23434405]
[55]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, S.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O'Donovan, C.; Redaschi, N.; Yeh, L.-S. L. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[56]
Tesmer, J.J.; Sunahara, R.K.; Johnson, R.A.; Gosselin, G.; Gilman, A.G.; Sprang, S.R. Two-metal-Ion catalysis in adenylyl cyclase. Science, 1999, 285(5428), 756-760.
[http://dx.doi.org/10.1126/science.285.5428.756] [PMID: 10427002]
[57]
Tesmer, J.J.; Sunahara, R.K.; Gilman, A.G.; Sprang, S.R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science, 1997, 278(5345), 1907-1916.
[http://dx.doi.org/10.1126/science.278.5345.1907] [PMID: 9417641]
[58]
Mou, T-C.; Masada, N.; Cooper, D.M.F.; Sprang, S.R. Structural basis for inhibition of mammalian adenylyl cyclase by calcium. Biochemistry, 2009, 48(15), 3387-3397.
[http://dx.doi.org/10.1021/bi802122k] [PMID: 19243146]
[59]
Mou, T-C.; Gille, A.; Fancy, D.A.; Seifert, R.; Sprang, S.R. Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 ‘(3’)-O-(N-Methylanthraniloyl)-guanosine 5 '-triphosphate. J. Biol. Chem., 2005, 280(8), 7253-7261.
[http://dx.doi.org/10.1074/jbc.M409076200] [PMID: 15591060]
[60]
Slep, K.C.; Kercher, M.A.; Wieland, T.; Chen, C-K.; Simon, M.I.; Sigler, P.B. Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6243-6248.
[http://dx.doi.org/10.1073/pnas.0801569105] [PMID: 18434540]
[61]
Soundararajan, M.; Willard, F.S.; Kimple, A.J.; Turnbull, A.P.; Ball, L.J.; Schoch, G.A.; Gileadi, C.; Fedorov, O.Y.; Dowler, E.F.; Higman, V.A.; Hutsell, S.Q.; Sundström, M.; Doyle, D.A.; Siderovski, D.P. Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6457-6462.
[http://dx.doi.org/10.1073/pnas.0801508105] [PMID: 18434541]
[62]
Kimple, A.J.; Soundararajan, M.; Hutsell, S.Q.; Roos, A.K.; Urban, D.J.; Setola, V.; Temple, B.R.S.; Roth, B.L.; Knapp, S.; Willard, F.S.; Siderovski, D.P. Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2). J. Biol. Chem., 2009, 284(29), 19402-19411.
[http://dx.doi.org/10.1074/jbc.M109.024711] [PMID: 19478087]
[63]
Gao, Y.; Eskici, G.; Ramachandran, S.; Poitevin, F.; Seven, A.B.; Panova, O.; Skiniotis, G.; Cerione, R.A. Structure of the Visual Signaling Complex between Transducin and Phosphodiesterase 6. Mol. Cell, 2020, 80(2), 237-245.e4.
[http://dx.doi.org/10.1016/j.molcel.2020.09.013] [PMID: 33007200]
[64]
Slep, K.C.; Kercher, M.A.; He, W.; Cowan, C.W.; Wensel, T.G.; Sigler, P.B. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature, 2001, 409(6823), 1071-1077.
[http://dx.doi.org/10.1038/35059138] [PMID: 11234020]
[65]
Waldo, G.L.; Ricks, T.K.; Hicks, S.N.; Cheever, M.L.; Kawano, T.; Tsuboi, K.; Wang, X.; Montell, C.; Kozasa, T.; Sondek, J.; Harden, T.K. Kinetic scaffolding mediated by a phospholipase C-beta and Gq signaling complex. Science, 2010, 330(6006), 974-980.
[http://dx.doi.org/10.1126/science.1193438] [PMID: 20966218]
[66]
Lyon, A.M.; Begley, J.A.; Manett, T.D.; Tesmer, J.J.G. Molecular mechanisms of phospholipase C β3 autoinhibition. Structure, 2014, 22(12), 1844-1854.
[http://dx.doi.org/10.1016/j.str.2014.10.008] [PMID: 25435326]
[67]
Tesmer, V.M.; Kawano, T.; Shankaranarayanan, A.; Kozasa, T.; Tesmer, J.J.G. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science, 2005, 310(5754), 1686-1690.
[http://dx.doi.org/10.1126/science.1118890] [PMID: 16339447]
[68]
Lutz, S.; Shankaranarayanan, A.; Coco, C.; Ridilla, M.; Nance, M.R.; Vettel, C.; Baltus, D.; Evelyn, C.R.; Neubig, R.R.; Wieland, T.; Tesmer, J.J.G. Structure of Galphaq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science, 2007, 318(5858), 1923-1927.
[http://dx.doi.org/10.1126/science.1147554] [PMID: 18096806]
[69]
Chen, Z.; Singer, W.D.; Danesh, S.M.; Sternweis, P.C.; Sprang, S.R. Recognition of the activated states of Galpha13 by the rgRGS domain of PDZRhoGEF. Structure, 2008, 16(10), 1532-1543.
[http://dx.doi.org/10.1016/j.str.2008.07.009] [PMID: 18940608]
[70]
Hermes, C.; König, G.M.; Crüsemann, M. The chromodepsins - chemistry, biology and biosynthesis of a selective Gq inhibitor natural product family. Nat. Prod. Rep., 2021, 38(12), 2276-2292.
[http://dx.doi.org/10.1039/D1NP00005E] [PMID: 33998635]
[71]
Zhang, H.; Nielsen, A.L.; Strømgaard, K. Recent achievements in developing selective Gq inhibitors. Med. Res. Rev., 2020, 40(1), 135-157.
[http://dx.doi.org/10.1002/med.21598] [PMID: 31218731]
[72]
Graziano, M.P.; Freissmuth, M.; Gilman, A.G. Expression of Gs alpha in Escherichia coli. Purification and properties of two forms of the protein. J. Biol. Chem., 1989, 264(1), 409-418.
[http://dx.doi.org/10.1016/S0021-9258(17)31273-5] [PMID: 2491850]
[73]
Malinski, J.A.; Zera, E.M.; Angleson, J.K.; Wensel, T.G. High affinity interactions of GTPgammaS with the heterotrimeric G protein, transducin. Evidence at high and low protein concentrations. J. Biol. Chem., 1996, 271(22), 12919-12924.
[http://dx.doi.org/10.1074/jbc.271.22.12919] [PMID: 8662740]
[74]
Becher, I.; Savitski, M.M.; Savitski, M.F.; Hopf, C.; Bantscheff, M.; Drewes, G. Affinity profiling of the cellular kinome for the nucleotide cofactors ATP, ADP, and GTP. ACS Chem. Biol., 2013, 8(3), 599-607.
[http://dx.doi.org/10.1021/cb3005879] [PMID: 23215245]
[75]
Katada, T.; Tamura, M.; Ui, M. The A protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of a membrane protein. Arch. Biochem. Biophys., 1983, 224(1), 290-298.
[http://dx.doi.org/10.1016/0003-9861(83)90212-6] [PMID: 6683482]
[76]
Carbonetti, N.H. Pertussis toxin and adenylate cyclase toxin: Key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol., 2010, 5(3), 455-469.
[http://dx.doi.org/10.2217/fmb.09.133] [PMID: 20210554]
[77]
Moss, J.; Stanley, S.J.; Burns, D.L.; Hsia, J.A.; Yost, D.A.; Myers, G.A.; Hewlett, E.L. Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J. Biol. Chem., 1983, 258(19), 11879-11882.
[http://dx.doi.org/10.1016/S0021-9258(17)44314-6] [PMID: 6311827]
[78]
Beindl, W.; Mitterauer, T.; Hohenegger, M.; Ijzerman, A.P.; Nanoff, C.; Freissmuth, M. Inhibition of receptor/G protein coupling by suramin analogues. Mol. Pharmacol., 1996, 50(2), 415-423.
[PMID: 8700151]
[79]
Freissmuth, M.; Boehm, S.; Beindl, W.; Nickel, P.; Ijzerman, A.P.; Hohenegger, M.; Nanoff, C. Suramin analogues as subtype-selective G protein inhibitors. Mol. Pharmacol., 1996, 49(4), 602-611.
[PMID: 8609887]
[80]
Chung, W-C.; Kermode, J.C. Suramin disrupts receptor-G protein coupling by blocking association of G protein alpha and betagamma subunits. J. Pharmacol. Exp. Ther., 2005, 313(1), 191-198.
[http://dx.doi.org/10.1124/jpet.104.078311] [PMID: 15626724]
[81]
Mannes, M.; Martin, C.; Triest, S.; Pia Dimmito, M.; Mollica, A.; Laeremans, T.; Menet, C.J.; Ballet, S. Development of Generic G Protein Peptidomimetics able to stabilize active state Gs Protein-Coupled receptors for application in drug discovery. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10247-10254.
[http://dx.doi.org/10.1002/anie.202100180] [PMID: 33596327]
[82]
Rasenick, M.M.; Watanabe, M.; Lazarevic, M.B.; Hatta, S.; Hamm, H.E. Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J. Biol. Chem., 1994, 269(34), 21519-21525.
[http://dx.doi.org/10.1016/S0021-9258(17)31835-5] [PMID: 8063788]
[83]
Scheerer, P.; Park, J.H.; Hildebrand, P.W.; Kim, Y.J.; Krauss, N.; Choe, H-W.; Hofmann, K.P.; Ernst, O.P. Crystal structure of opsin in its G-protein-interacting conformation. Nature, 2008, 455(7212), 497-502.
[http://dx.doi.org/10.1038/nature07330] [PMID: 18818650]
[84]
Herrmann, R.; Heck, M.; Henklein, P.; Kleuss, C.; Wray, V.; Hofmann, K.P.; Ernst, O.P. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis. Vision Res., 2006, 46(27), 4582-4593.
[http://dx.doi.org/10.1016/j.visres.2006.07.027] [PMID: 17011013]
[85]
Feldman, D.S.; Zamah, A.M.; Pierce, K.L.; Miller, W.E.; Kelly, F.; Rapacciuolo, A.; Rockman, H.A.; Koch, W.J.; Luttrell, L.M. Selective inhibition of heterotrimeric Gs signaling. Targeting the receptor-G protein interface using a peptide minigene encoding the Galpha(s) carboxyl terminus. J. Biol. Chem., 2002, 277(32), 28631-28640.
[http://dx.doi.org/10.1074/jbc.M204753200] [PMID: 12036966]
[86]
Mukai, H.; Munekata, E.; Higashijima, T. G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding. J. Biol. Chem., 1992, 267(23), 16237-16243.
[http://dx.doi.org/10.1016/S0021-9258(18)41991-6] [PMID: 1379592]
[87]
Covic, L.; Gresser, A.L.; Talavera, J.; Swift, S.; Kuliopulos, A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 643-648.
[http://dx.doi.org/10.1073/pnas.022460899] [PMID: 11805322]
[88]
Tressel, S.L.; Koukos, G.; Tchernychev, B.; Jacques, S.L.; Covic, L.; Kuliopulos, A. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol. Biol., 2011, 683, 259-275.
[http://dx.doi.org/10.1007/978-1-60761-919-2_19] [PMID: 21053136]
[89]
Higashijima, T.; Ferguson, K.M.; Smigel, M.D.; Gilman, A.G. The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go. J. Biol. Chem., 1987, 262(2), 757-761.
[http://dx.doi.org/10.1016/S0021-9258(19)75850-5] [PMID: 3027067]
[90]
Higashijima, T.; Ferguson, K.M.; Sternweis, P.C.; Ross, E.M.; Smigel, M.D.; Gilman, A.G. The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J. Biol. Chem., 1987, 262(2), 752-756.
[http://dx.doi.org/10.1016/S0021-9258(19)75849-9] [PMID: 3100518]
[91]
Takasaki, J.; Saito, T.; Taniguchi, M.; Kawasaki, T.; Moritani, Y.; Hayashi, K.; Kobori, M. A novel Galphaq/11-selective inhibitor. J. Biol. Chem., 2004, 279(46), 47438-47445.
[http://dx.doi.org/10.1074/jbc.M408846200] [PMID: 15339913]
[92]
Taniguchi, M.; Nagai, K.; Arao, N.; Kawasaki, T.; Saito, T.; Moritani, Y.; Takasaki, J.; Hayashi, K.; Fujita, S.; Suzuki, K.; Tsukamoto, S. YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666. J. Antibiot. (Tokyo), 2003, 56(4), 358-363.
[http://dx.doi.org/10.7164/antibiotics.56.358] [PMID: 12817809]
[93]
Hermes, C.; Richarz, R.; Wirtz, D.A.; Patt, J.; Hanke, W.; Kehraus, S.; Voß, J.H.; Küppers, J.; Ohbayashi, T.; Namasivayam, V.; Alenfelder, J.; Inoue, A.; Mergaert, P.; Gütschow, M.; Müller, C.E.; Kostenis, E.; König, G.M.; Crüsemann, M. Thioesterase-mediated side chain transesterification generates potent Gq signaling inhibitor FR900359. Nat. Commun., 2021, 12(1), 144.
[http://dx.doi.org/10.1038/s41467-020-20418-3] [PMID: 33420046]
[94]
Carlier, A.; Fehr, L.; Pinto-Carbó, M.; Schäberle, T.; Reher, R.; Dessein, S.; König, G.; Eberl, L. The genome analysis of Candidatus burkholderia Crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. Environ. Microbiol., 2016, 18(8), 2507-2522.
[http://dx.doi.org/10.1111/1462-2920.13184] [PMID: 26663534]
[95]
Kostenis, E.; Pfeil, E.M.; Annala, S. Heterotrimeric Gq proteins as therapeutic targets? J. Biol. Chem., 2020, 295(16), 5206-5215.
[http://dx.doi.org/10.1074/jbc.REV119.007061] [PMID: 32122969]
[96]
Matthey, M.; Roberts, R.; Seidinger, A.; Simon, A.; Schröder, R.; Kuschak, M.; Annala, S.; König, G.M.; Müller, C.E.; Hall, I.P.; Kostenis, E.; Fleischmann, B.K.; Wenzel, D. Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma. Sci. Transl. Med., 2017, 9(407), 9.
[http://dx.doi.org/10.1126/scitranslmed.aag2288] [PMID: 28904224]
[97]
White, A.D.; Jean-Alphonse, F.G.; Fang, F.; Peña, K.A.; Liu, S.; König, G.M.; Inoue, A.; Aslanoglou, D.; Gellman, S.H.; Kostenis, E.; Xiao, K.; Vilardaga, J-P. Gq/11-dependent regulation of endosomal cAMP generation by parathyroid hormone class B GPCR. Proc. Natl. Acad. Sci. USA, 2020, 117(13), 7455-7460.
[http://dx.doi.org/10.1073/pnas.1918158117] [PMID: 32184323]
[98]
Schrage, R.; Schmitz, A-L.; Gaffal, E.; Annala, S.; Kehraus, S.; Wenzel, D.; Büllesbach, K.M.; Bald, T.; Inoue, A.; Shinjo, Y.; Galandrin, S.; Shridhar, N.; Hesse, M.; Grundmann, M.; Merten, N.; Charpentier, T.H.; Martz, M.; Butcher, A.J.; Slodczyk, T.; Armando, S.; Effern, M.; Namkung, Y.; Jenkins, L.; Horn, V.; Stößel, A.; Dargatz, H.; Tietze, D.; Imhof, D.; Galés, C.; Drewke, C.; Müller, C.E.; Hölzel, M.; Milligan, G.; Tobin, A.B.; Gomeza, J.; Dohlman, H.G.; Sondek, J.; Harden, T.K.; Bouvier, M.; Laporte, S.A.; Aoki, J.; Fleischmann, B.K.; Mohr, K.; König, G.M.; Tüting, T.; Kostenis, E. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun., 2015, 6, 10156.
[http://dx.doi.org/10.1038/ncomms10156] [PMID: 26658454]
[99]
Kuschak, M.; Namasivayam, V.; Rafehi, M.; Voss, J.H.; Garg, J.; Schlegel, J.G.; Abdelrahman, A.; Kehraus, S.; Reher, R.; Küppers, J.; Sylvester, K.; Hinz, S.; Matthey, M.; Wenzel, D.; Fleischmann, B.K.; Pfeifer, A.; Inoue, A.; Gütschow, M.; König, G.M.; Müller, C.E. Cell-permeable high-affinity tracers for Gq proteins provide structural insights, reveal distinct binding kinetics, and identify small molecule inhibitors. Br. J. Pharmacol., 2020, 177(8), 1898-1916.
[PMID: 31881095]
[100]
Schlegel, J.G.; Tahoun, M.; Seidinger, A.; Voss, J.H.; Kuschak, M.; Kehraus, S.; Schneider, M.; Matthey, M.; Fleischmann, B.K.; König, G.M.; Wenzel, D.; Müller, C.E. Macrocyclic Gq protein inhibitors FR900359 and/or YM-254890-Fit for translation? ACS Pharmacol. Transl. Sci., 2021, 4(2), 888-897.
[http://dx.doi.org/10.1021/acsptsci.1c00021] [PMID: 33860209]
[101]
Voss, J.H.; Nagel, J.; Rafehi, M.; Guixà-González, R.; Malfacini, D.; Patt, J.; Kehraus, S.; Inoue, A.; König, G.M.; Kostenis, E.; Deupi, X.; Namasivayam, V.; Müller, C.E. Unraveling binding mechanism and kinetics of macrocyclic Gαq protein inhibitors. Pharmacol. Res., 2021, 173, 105880.
[http://dx.doi.org/10.1016/j.phrs.2021.105880] [PMID: 34506902]
[102]
Kuschak, M.; Schlegel, J.G.; Schneider, M.; Kehraus, S.; Voss, J.H.; Seidinger, A.; Matthey, M.; Wenzel, D.; Fleischmann, B.K.; König, G.M.; Müller, C.E. Sensitive LC-MS/MS method for the quantification of macrocyclic Gαq protein inhibitors in biological samples. Front Chem., 2020, 8, 833.
[http://dx.doi.org/10.3389/fchem.2020.00833] [PMID: 33173765]
[103]
Malfacini, D.; Patt, J.; Annala, S.; Harpsøe, K.; Eryilmaz, F.; Reher, R.; Crüsemann, M.; Hanke, W.; Zhang, H.; Tietze, D.; Gloriam, D.E.; Bräuner-Osborne, H.; Strømgaard, K.; König, G.M.; Inoue, A.; Gomeza, J.; Kostenis, E. Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity. J. Biol. Chem., 2019, 294(15), 5747-5758.
[http://dx.doi.org/10.1074/jbc.RA118.007250] [PMID: 30745359]
[104]
Boesgaard, M.W.; Harpsøe, K.; Malmberg, M.; Underwood, C.R.; Inoue, A.; Mathiesen, J.M.; König, G.M.; Kostenis, E.; Gloriam, D.E.; Bräuner-Osborne, H. Delineation of molecular determinants for FR900359 inhibition of Gq/11 unlocks inhibition of Gαs. J. Biol. Chem., 2020, 295(40), 13850-13861.
[http://dx.doi.org/10.1074/jbc.RA120.013002] [PMID: 32753482]
[105]
Xiong, X-F.; Zhang, H.; Underwood, C.R.; Harpsøe, K.; Gardella, T.J.; Wöldike, M.F.; Mannstadt, M.; Gloriam, D.E.; Bräuner-Osborne, H.; Strømgaard, K. Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors. Nat. Chem., 2016, 8(11), 1035-1041.
[http://dx.doi.org/10.1038/nchem.2577] [PMID: 27768111]
[106]
Zhang, H.; Nielsen, A.L.; Boesgaard, M.W.; Harpsøe, K.; Daly, N.L.; Xiong, X-F.; Underwood, C.R.; Haugaard-Kedström, L.M.; Bräuner-Osborne, H.; Gloriam, D.E.; Strømgaard, K. Structure-activity relationship and conformational studies of the natural product cyclic depsipeptides YM-254890 and FR900359. Eur. J. Med. Chem., 2018, 156, 847-860.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.023] [PMID: 30055466]
[107]
Reher, R.; Kühl, T.; Annala, S.; Benkel, T.; Kaufmann, D.; Nubbemeyer, B.; Odhiambo, J.P.; Heimer, P.; Bäuml, C.A.; Kehraus, S.; Crüsemann, M.; Kostenis, E.; Tietze, D.; König, G.M.; Imhof, D. Deciphering specificity determinants for FR900359-Derived Gq α inhibitors based on computational and structure-activity studies. ChemMedChem, 2018, 13(16), 1634-1643.
[http://dx.doi.org/10.1002/cmdc.201800304] [PMID: 29873888]
[108]
Reher, R.; Kuschak, M.; Heycke, N.; Annala, S.; Kehraus, S.; Dai, H-F.; Müller, C.E.; Kostenis, E.; König, G.M.; Crüsemann, M. Applying molecular networking for the detection of natural sources and analogues of the selective Gq protein inhibitor FR900359. J. Nat. Prod., 2018, 81(7), 1628-1635.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00222] [PMID: 29943987]
[109]
Fukushima, N.; Kohno, M.; Kato, T.; Kawamoto, S.; Okuda, K.; Misu, Y.; Ueda, H. Melittin, a metabostatic peptide inhibiting Gs activity. Peptides, 1998, 19(5), 811-819.
[http://dx.doi.org/10.1016/S0196-9781(98)00027-8] [PMID: 9663445]
[110]
Higashijima, T.; Burnier, J.; Ross, E.M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J. Biol. Chem., 1990, 265(24), 14176-14186.
[http://dx.doi.org/10.1016/S0021-9258(18)77284-0] [PMID: 2117607]
[111]
Choi, O.H.; Padgett, W.L.; Daly, J.W. Effects of the amphiphilic peptides melittin and mastoparan on calcium influx, phosphoinositide breakdown and arachidonic acid release in rat pheochromocytoma PC12 cells. J. Pharmacol. Exp. Ther., 1992, 260(1), 369-375.
[PMID: 1309880]
[112]
DiGiacomo, V.; de Opakua, A.I.; Papakonstantinou, M.P.; Nguyen, L.T.; Merino, N.; Blanco-Canosa, J.B.; Blanco, F.J.; Garcia-Marcos, M. The Gαi-GIV binding interface is a druggable protein-protein interaction. Sci. Rep., 2017, 7(1), 8575.
[http://dx.doi.org/10.1038/s41598-017-08829-7] [PMID: 28819150]
[113]
Kalogriopoulos, N.A.; Rees, S.D.; Ngo, T.; Kopcho, N.J.; Ilatovskiy, A.V.; Sun, N.; Komives, E.A.; Chang, G.; Ghosh, P.; Kufareva, I. Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proc. Natl. Acad. Sci. USA, 2019, 116(33), 16394-16403.
[http://dx.doi.org/10.1073/pnas.1906658116] [PMID: 31363053]
[114]
Kimple, R.J.; Kimple, M.E.; Betts, L.; Sondek, J.; Siderovski, D.P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature, 2002, 416(6883), 878-881.
[http://dx.doi.org/10.1038/416878a] [PMID: 11976690]
[115]
Siderovski, D.P.; Willard, F.S. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int. J. Biol. Sci., 2005, 1(2), 51-66.
[http://dx.doi.org/10.7150/ijbs.1.51] [PMID: 15951850]
[116]
Seven, A.B.; Hilger, D.; Papasergi-Scott, M.M.; Zhang, L.; Qu, Q.; Kobilka, B.K.; Tall, G.G.; Skiniotis, G. Structures of Gα proteins in complex with their chaperone reveal quality control mechanisms. Cell Rep., 2020, 30(11), 3699-3709.e6.
[http://dx.doi.org/10.1016/j.celrep.2020.02.086] [PMID: 32126208]
[117]
Ayoub, M.A.; Damian, M.; Gespach, C.; Ferrandis, E.; Lavergne, O.; De Wever, O.; Banères, J-L.; Pin, J-P.; Prévost, G.P. Inhibition of heterotrimeric G protein signaling by a small molecule acting on Galpha subunit. J. Biol. Chem., 2009, 284(42), 29136-29145.
[http://dx.doi.org/10.1074/jbc.M109.042333] [PMID: 19648112]
[118]
Prévost, G.P.; Lonchampt, M.O.; Holbeck, S.; Attoub, S.; Zaharevitz, D.; Alley, M.; Wright, J.; Brezak, M.C.; Coulomb, H.; Savola, A.; Huchet, M.; Chaumeron, S.; Nguyen, Q-D.; Forgez, P.; Bruyneel, E.; Bracke, M.; Ferrandis, E.; Roubert, P.; Demarquay, D.; Gespach, C.; Kasprzyk, P.G. Anticancer activity of BIM-46174, a new inhibitor of the heterotrimeric Galpha/Gbetagamma protein complex. Cancer Res., 2006, 66(18), 9227-9234.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4205] [PMID: 16982767]
[119]
Schmitz, A-L.; Schrage, R.; Gaffal, E.; Charpentier, T.H.; Wiest, J.; Hiltensperger, G.; Morschel, J.; Hennen, S.; Häußler, D.; Horn, V.; Wenzel, D.; Grundmann, M.; Büllesbach, K.M.; Schröder, R.; Brewitz, H.H.; Schmidt, J.; Gomeza, J.; Galés, C.; Fleischmann, B.K.; Tüting, T.; Imhof, D.; Tietze, D.; Gütschow, M.; Holzgrabe, U.; Sondek, J.; Harden, T.K.; Mohr, K.; Kostenis, E. A cell-permeable inhibitor to trap Gαq proteins in the empty pocket conformation. Chem. Biol., 2014, 21(7), 890-902.
[http://dx.doi.org/10.1016/j.chembiol.2014.06.003] [PMID: 25036778]
[120]
Küppers, J.; Benkel, T.; Annala, S.; Schnakenburg, G.; Kostenis, E.; Gütschow, M. BIM-46174 fragments as potential ligands of G proteins. MedChemComm, 2019, 10(10), 1838-1843.
[http://dx.doi.org/10.1039/C9MD00269C] [PMID: 32180917]
[121]
Gütschow, M.; Küppers, J.; Benkel, T.; Annala, S.; Kimura, K.; Reinelt, L.; Fleischmann, B.K.; Kostenis, E. Tetrahydroimidazo1,2-apyrazine derivatives: Synthesis and evaluation As Gαq-Protein Ligands. Chemistry, 2020, 26(55), 12615-12623.
[122]
Charpentier, T.H.; Waldo, G.L.; Lowery-Gionta, E.G.; Krajewski, K.; Strahl, B.D.; Kash, T.L.; Harden, T.K.; Sondek, J. Potent and selective peptide-based inhibition of the G protein Gαq. J. Biol. Chem., 2016, 291(49), 25608-25616.
[http://dx.doi.org/10.1074/jbc.M116.740407] [PMID: 27742837]
[123]
Johnston, C.A.; Lobanova, E.S.; Shavkunov, A.S.; Low, J.; Ramer, J.K.; Blaesius, R.; Fredericks, Z.; Willard, F.S.; Kuhlman, B.; Arshavsky, V.Y.; Siderovski, D.P. Minimal determinants for binding activated G alpha from the structure of a G alpha(i1)-peptide dimer. Biochemistry, 2006, 45(38), 11390-11400.
[http://dx.doi.org/10.1021/bi0613832] [PMID: 16981699]
[124]
Dai, S.A.; Hu, Q.; Gao, R.; Lazar, A.; Zhang, Z.; von Zastrow, M.; Suga, H.; Shokat, K.M. A GTP-state specific cyclic peptide inhibitor of the GTPase Gαs. bioRxiv, 2020, 2020, 054080.
[http://dx.doi.org/10.1101/2020.04.25.054080]
[125]
Higashijima, T.; Uzu, S.; Nakajima, T.; Ross, E.M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J. Biol. Chem., 1988, 263(14), 6491-6494.
[http://dx.doi.org/10.1016/S0021-9258(18)68669-7] [PMID: 3129426]
[126]
Leschke, C.; Storm, R.; Breitweg-Lehmann, E.; Exner, T.; Nürnberg, B.; Schunack, W. Alkyl-substituted amino acid amides and analogous di- and triamines: new non-peptide G protein activators. J. Med. Chem., 1997, 40(19), 3130-3139.
[http://dx.doi.org/10.1021/jm9703092] [PMID: 9301677]
[127]
Breitweg-Lehmann, E.; Czupalla, C.; Storm, R.; Kudlacek, O.; Schunack, W.; Freissmuth, M.; Nürnberg, B. Activation and inhibition of G proteins by lipoamines. Mol. Pharmacol., 2002, 61(3), 628-636.
[http://dx.doi.org/10.1124/mol.61.3.628] [PMID: 11854444]
[128]
Hagelüken, A.; Grünbaum, L.; Nürnberg, B.; Harhammer, R.; Schunack, W.; Seifert, R. Lipophilic β-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem. Pharmacol., 1994, 47(10), 1789-1795.
[http://dx.doi.org/10.1016/0006-2952(94)90307-7] [PMID: 7911302]
[129]
Hagelüken, A.; Nürnberg, B.; Harhammer, R.; Grünbaum, L.; Schunack, W.; Seifert, R. The class III antiarrhythmic drug amiodarone directly activates pertussis toxin-sensitive G proteins. Mol. Pharmacol., 1995, 47(2), 234-240.
[PMID: 7870030]
[130]
Sanchez, J.; Holmgren, J. Cholera toxin - a foe & a friend. Indian J. Med. Res., 2011, 133, 153-163.
[PMID: 21415489]
[131]
O’Brien, J.B.; Wilkinson, J.C.; Roman, D.L. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J. Biol. Chem., 2019, 294(49), 18571-18585.
[http://dx.doi.org/10.1074/jbc.REV119.007060] [PMID: 31636120]
[132]
Mangmool, S.; Kurose, H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins (Basel), 2011, 3(7), 884-899.
[http://dx.doi.org/10.3390/toxins3070884] [PMID: 22069745]
[133]
Johnston, C.A.; Willard, F.S.; Jezyk, M.R.; Fredericks, Z.; Bodor, E.T.; Jones, M.B.; Blaesius, R.; Watts, V.J.; Harden, T.K.; Sondek, J.; Ramer, J.K.; Siderovski, D.P. Structure of Galpha(i1) bound to a GDP-selective peptide provides insight into guanine nucleotide exchange. Structure, 2005, 13(7), 1069-1080.
[http://dx.doi.org/10.1016/j.str.2005.04.007] [PMID: 16004878]
[134]
Galés, C.; Rebois, R.V.; Hogue, M.; Trieu, P.; Breit, A.; Hébert, T.E.; Bouvier, M. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods, 2005, 2(3), 177-184.
[http://dx.doi.org/10.1038/nmeth743] [PMID: 15782186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy