Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation

Author(s): Sophie I. Hamstra, Brian D. Roy, Peter Tiidus, Adam J. MacNeil, Panagiota Klentrou, Rebecca E.K. MacPherson and Val A. Fajardo*

Volume 21, Issue 4, 2023

Published on: 18 August, 2022

Page: [891 - 910] Pages: 20

DOI: 10.2174/1570159X20666220302151224

Price: $65

Open Access Journals Promotions 2
Abstract

Lithium is most well-known for its mood-stabilizing effects in the treatment of bipolar disorder. Due to its narrow therapeutic window (0.5-1.2 mM serum concentration), there is a stigma associated with lithium treatment and the adverse effects that can occur at therapeutic doses. However, several studies have indicated that doses of lithium under the predetermined therapeutic dose used in bipolar disorder treatment may have beneficial effects not only in the brain but across the body. Currently, literature shows that low-dose lithium (≤0.5 mM) may be beneficial for cardiovascular, musculoskeletal, metabolic, and cognitive function, as well as inflammatory and antioxidant processes of the aging body. There is also some evidence of low-dose lithium exerting a similar and sometimes synergistic effect on these systems. This review summarizes these findings with a focus on low-dose lithium’s potential benefits on the aging process and age-related diseases of these systems, such as cardiovascular disease, osteoporosis, sarcopenia, obesity and type 2 diabetes, Alzheimer’s disease, and the chronic low-grade inflammatory state known as inflammaging. Although lithium’s actions have been widely studied in the brain, the study of the potential benefits of lithium, particularly at a low dose, is still relatively novel. Therefore, this review aims to provide possible mechanistic insights for future research in this field.

Keywords: Cardiovascular disease, sarcopenia, osteoporosis, obesity, diabetes, Alzheimer’s disease, inflammaging, oxidative stress.

Graphical Abstract
[1]
Szklarska, D.; Rzymski, P. Is lithium a micronutrient? From biological activity and epidemiological observation to food fortification. Biol. Trace Elem. Res., 2019, 189(1), 18-27.
[http://dx.doi.org/10.1007/s12011-018-1455-2] [PMID: 30066063]
[2]
Medić B.; Stojanović M.; Stimec, B.V.; Divac, N.; Vujović K.S.; Stojanović R.; Čolović M.; Krstić D.; Prostran, M. Lithium - pharmacological and toxicological aspects: The current state of the art. Curr. Med. Chem., 2020, 27(3), 337-351.
[http://dx.doi.org/10.2174/0929867325666180904124733] [PMID: 30182841]
[3]
Dudev, T.; Mazmanian, K.; Weng, W.H.; Grauffel, C.; Lim, C. Free and bound therapeutic lithium in brain signaling. Acc. Chem. Res., 2019, 52(10), 2960-2970.
[http://dx.doi.org/10.1021/acs.accounts.9b00389] [PMID: 31556294]
[4]
Marmol, F. Lithium: Bipolar disorder and neurodegenerative diseases possible cellular mechanisms of the therapeutic effects of lithium. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(8), 1761-1771.
[http://dx.doi.org/10.1016/j.pnpbp.2008.08.012] [PMID: 18789369]
[5]
Oruch, R.; Elderbi, M.A.; Khattab, H.A.; Pryme, I.F.; Lund, A. Lithium: A review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol., 2014, 740, 464-473.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.042] [PMID: 24991789]
[6]
Schrauzer, G.N. Lithium: occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr., 2002, 21(1), 14-21.
[http://dx.doi.org/10.1080/07315724.2002.10719188] [PMID: 11838882]
[7]
Baranowski, B.J.; Hayward, G.C.; Fajardo, V.A.; MacPherson, R.E.K. Increased prevalence of obesity/type 2 diabetes and lower levels of lithium in rural texas counties may explain greater Alzheimer’s disease risk. J. Alzheimers Dis., 2018, 64(1), 303-308.
[http://dx.doi.org/10.3233/JAD-171150] [PMID: 29865052]
[8]
Fajardo, V.A.; Fajardo, V.A.; LeBlanc, P.J.; MacPherson, R.E.K. Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer’s disease mortality in texas. J. Alzheimers Dis., 2017, 61(1), 425-434.
[http://dx.doi.org/10.3233/JAD-170744] [PMID: 29103043]
[9]
Mauer, S.; Vergne, D.; Ghaemi, S.N. Standard and trace-dose lithium: A systematic review of dementia prevention and other behavioral benefits. Aust. N. Z. J. Psychiatry, 2014, 48(9), 809-818.
[http://dx.doi.org/10.1177/0004867414536932] [PMID: 24919696]
[10]
Fajardo, V.A.; LeBlanc, P.J.; Fajardo, V.A. Trace lithium in Texas tap water is negatively associated with all-cause mortality and premature death. Appl. Physiol. Nutr. Metab., 2018, 43(4), 412-414.
[http://dx.doi.org/10.1139/apnm-2017-0653] [PMID: 29206474]
[11]
Hamstra, S.I.; Kurgan, N.; Baranowski, R.W.; Qiu, L.; Watson, C.J.F.; Messner, H.N.; MacPherson, R.E.K.; MacNeil, A.J.; Roy, B.D.; Fajardo, V.A. Low‐dose lithium feeding increases the SERCA2a‐to‐phospholamban ratio, improving SERCA function in murine left ventricles. Exp. Physiol., 2020, 105(4), 666-675.
[http://dx.doi.org/10.1113/EP088061] [PMID: 32087034]
[12]
Ahmad, F.B.; Anderson, R.N. The leading causes of death in the US for 2020. JAMA, 2021, 325(18), 1829-1830.
[http://dx.doi.org/10.1001/jama.2021.5469] [PMID: 33787821]
[13]
Statistics Canada. Table 13-10-0394-01 Leading causes of death, total population, by age group. 2021. Available from: https://www150.statscan.gc.ca/t1/tbl1/en/tv.action?pid=1310039401 [Accessed on: 1st September, 2021].
[14]
Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol., 2018, 15(7), 387-407.
[http://dx.doi.org/10.1038/s41569-018-0007-y] [PMID: 29674714]
[15]
Mehta, N.; Vannozzi, R. Lithium-induced electrocardiographic changes: A complete review. Clin. Cardiol., 2017, 40(12), 1363-1367.
[http://dx.doi.org/10.1002/clc.22822] [PMID: 29247520]
[16]
Linask, K.K.; Huhta, J. Folate protection from congenital heart defects linked with canonical Wnt signaling and epigenetics. Curr. Opin. Pediatr., 2010, 22(5), 561-566.
[http://dx.doi.org/10.1097/MOP.0b013e32833e2723] [PMID: 20844350]
[17]
Patorno, E.; Huybrechts, K.F.; Bateman, B.T.; Cohen, J.M.; Desai, R.J.; Mogun, H.; Cohen, L.S.; Hernandez-Diaz, S. Lithium use in pregnancy and the risk of cardiac malformations. N. Engl. J. Med., 2017, 376(23), 2245-2254.
[http://dx.doi.org/10.1056/NEJMoa1612222] [PMID: 28591541]
[18]
Moradi, S.; Aminian, A.; Abdollahi, A.; Jazayeri, A.; Ghamami, G.; Nikoui, V.; Bakhtiarian, A.; Jazaeri, F. Cardiac chronotropic hypo-responsiveness and atrial fibrosis in rats chronically treated with lithium. Auton. Neurosci., 2019, 216, 46-50.
[http://dx.doi.org/10.1016/j.autneu.2018.09.002] [PMID: 30241725]
[19]
McMullen, J.R.; Jennings, G.L. Differences between pathological and physiological cardiac hypertrophy: Novel therapeutic strategies to treat heart failure. Clin. Exp. Pharmacol. Physiol., 2007, 34(4), 255-262.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04585.x] [PMID: 17324134]
[20]
Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol., 2016, 97, 245-262.
[http://dx.doi.org/10.1016/j.yjmcc.2016.06.001] [PMID: 27262674]
[21]
Molkentin, J.D.; Lu, J.R.; Antos, C.L.; Markham, B.; Richardson, J.; Robbins, J.; Grant, S.R.; Olson, E.N. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 1998, 93(2), 215-228.
[http://dx.doi.org/10.1016/S0092-8674(00)81573-1] [PMID: 9568714]
[22]
Ösby, U.; Brandt, L.; Correia, N.; Ekbom, A.; Sparén, P. Excess mortality in bipolar and unipolar disorder in Sweden. Arch. Gen. Psychiatry, 2001, 58(9), 844-850.
[http://dx.doi.org/10.1001/archpsyc.58.9.844] [PMID: 11545667]
[23]
Prosser, J.M.; Fieve, R.R. Patients receiving lithium therapy have a reduced prevalence of neurological and cardiovascular disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 71, 39-44.
[http://dx.doi.org/10.1016/j.pnpbp.2016.06.006] [PMID: 27328427]
[24]
Lee, T.M.; Lin, S.Z.; Chang, N.C. Effect of lithium on ventricular remodelling in infarcted rats via the Akt/mTOR signalling pathways. Biosci. Rep., 2017, 37(2), BSR20160257.
[http://dx.doi.org/10.1042/BSR20160257] [PMID: 28115595]
[25]
Milanesi, E.; Hadar, A.; Maffioletti, E.; Werner, H.; Shomron, N.; Gennarelli, M.; Schulze, T.G.; Costa, M.; Del Zompo, M.; Squassina, A.; Gurwitz, D. Insulin-like growth factor 1 differentially affects lithium sensitivity of lymphoblastoid cell lines from lithium responder and non-responder bipolar disorder patients. J. Mol. Neurosci., 2015, 56(3), 681-687.
[http://dx.doi.org/10.1007/s12031-015-0523-8] [PMID: 25740013]
[26]
Klein, P.S.; Melton, D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA, 1996, 93(16), 8455-8459.
[http://dx.doi.org/10.1073/pnas.93.16.8455] [PMID: 8710892]
[27]
Hermida, M.A.; Dinesh Kumar, J.; Leslie, N.R. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv. Biol. Regul., 2017, 65, 5-15.
[http://dx.doi.org/10.1016/j.jbior.2017.06.003] [PMID: 28712664]
[28]
Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther., 2015, 148, 114-131.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.016] [PMID: 25435019]
[29]
Freland, L.; Beaulieu, J-M. Inhibition of GSK3 by lithium, from single molecules to sig-naling networks. Front. Mol. Neurosci., 2012, 5, 14.
[http://dx.doi.org/10.3389/fnmol.2012.00014]
[30]
Hardt, S.E.; Sadoshima, J. Glycogen synthase kinase-3β a novel regulator of cardiac hypertrophy and development. Circ. Res., 2002, 90(10), 1055-1063.
[http://dx.doi.org/10.1161/01.RES.0000018952.70505.F1] [PMID: 12039794]
[31]
Badorff, C.; Ruetten, H.; Mueller, S.; Stahmer, M.; Gehring, D.; Jung, F.; Ihling, C.; Zeiher, A.M.; Dimmeler, S. Fas receptor signaling inhibits glycogen synthase kinase 3β and induces cardiac hypertrophy following pressure overload. J. Clin. Invest., 2002, 109(3), 373-381.
[http://dx.doi.org/10.1172/JCI13779] [PMID: 11827997]
[32]
Vetter, R.; Rehfeld, U.; Reissfelder, C.; Weiß, W.; Wagner, K.D.; Günther, J.; Hammes, A.; Tschöpe, C.; Dillmann, W.; Paul, M. Transgenic overexpression of the sarcoplasmic reticulum Ca 2+ ATPase improves reticular Ca 2+ handling in normal and diabetic rat hearts. FASEB J., 2002, 16(12), 1657-1659.
[http://dx.doi.org/10.1096/fj.01-1019fje] [PMID: 12206992]
[33]
Hamstra, S.I.; Whitley, K.C.; Baranowski, R.W.; Kurgan, N.; Braun, J.L.; Messner, H.N.; Fajardo, V.A. The role of phospholamban and GSK3 in regulating rodent cardiac SERCA function. Am. J. Physiol. Cell Physiol., 2020, 319(4), C694-C699.
[http://dx.doi.org/10.1152/ajpcell.00318.2020] [PMID: 32755452]
[34]
Lazzara, C.A.; Kim, Y.H. Potential application of lithium in Parkinson’s and other neurodegenerative diseases. Front. Neurosci., 2015, 9, 403.
[http://dx.doi.org/10.3389/fnins.2015.00403] [PMID: 26578864]
[35]
Teng, A.C.T.; Miyake, T.; Yokoe, S.; Zhang, L.; Rezende, L.M., Jr; Sharma, P.; MacLennan, D.H.; Liu, P.P.; Gramolini, A.O. Metformin increases degradation of phospholamban via autophagy in cardiomyocytes. Proc. Natl. Acad. Sci. USA, 2015, 112(23), 7165-7170.
[http://dx.doi.org/10.1073/pnas.1508815112] [PMID: 26040000]
[36]
Takahashi-Yanaga, F. Roles of glycogen synthase kinase-3 (GSK-3) in cardiac development and heart disease. J. UOEH, 2018, 40(2), 147-156.
[http://dx.doi.org/10.7888/juoeh.40.147] [PMID: 29925734]
[37]
Tateishi, A.; Matsushita, M.; Asai, T.; Masuda, Z.; Kuriyama, M.; Kanki, K.; Ishino, K.; Kawada, M.; Sano, S.; Matsui, H. Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload. Gen. Thorac. Cardiovasc. Surg., 2010, 58(6), 265-270.
[http://dx.doi.org/10.1007/s11748-009-0505-2] [PMID: 20549454]
[38]
Nedeljkovic, Z.S.; Gokce, N.; Loscalzo, J. Mechanisms of oxidative stress and vascular dysfunction. Postgrad. Med. J., 2003, 79(930), 195-200.
[http://dx.doi.org/10.1136/pmj.79.930.195] [PMID: 12743334]
[39]
Förstermann, U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(6), 338-349.
[http://dx.doi.org/10.1038/ncpcardio1211] [PMID: 18461048]
[40]
Mikhed, Y.; Daiber, A.; Steven, S. Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int. J. Mol. Sci., 2015, 16(7), 15918-15953.
[http://dx.doi.org/10.3390/ijms160715918] [PMID: 26184181]
[41]
Voors, A.W. Does lithium depletion cause atherosclerotic heart-disease? Lancet, 1969, 294(7634), 1337-1339.
[http://dx.doi.org/10.1016/S0140-6736(69)90868-X] [PMID: 4188097]
[42]
Voors, A.W. Lithium depletion and atherosclerotic heart-disease. Lancet, 1970, 296(7674), 670.
[http://dx.doi.org/10.1016/S0140-6736(70)91446-7] [PMID: 4195811]
[43]
Choi, S.E.; Jang, H.J.; Kang, Y.; Jung, J.G.; Han, S.J.; Kim, H.J.; Kim, D.J.; Lee, K.W. Atherosclerosis induced by a high-fat diet is alleviated by lithium chloride via reduction of VCAM expression in ApoE-deficient mice. Vascul. Pharmacol., 2010, 53(5-6), 264-272.
[http://dx.doi.org/10.1016/j.vph.2010.09.004] [PMID: 20888430]
[44]
Tabas, I. Cellular Cholesterol Metabolism in Health and Disease. In: Molecular basis of cardiovascular disease: A companion to Braunwald’s Heart Disease, 2nd ed; WB Saunders Company: Chien, K.R., 2004; pp. 414-431.
[45]
Seals, D.R.; Jablonski, K.L.; Donato, A.J. Aging and vascular endothelial function in humans. Clin. Sci. (Lond.), 2011, 120(9), 357-375.
[http://dx.doi.org/10.1042/CS20100476] [PMID: 21244363]
[46]
Bosche, B.; Molcanyi, M.; Rej, S.; Doeppner, T.R.; Obermann, M.; Müller, D.J.; Das, A.; Hescheler, J.; Macdonald, R.L.; Noll, T.; Härtel, F.V. Low-dose lithium stabilizes human endothelial barrier by decreasing MLC phosphorylation and universally augments cholinergic vasorelaxation capacity in a direct manner. Front. Physiol., 2016, 7, 593.
[http://dx.doi.org/10.3389/fphys.2016.00593] [PMID: 27999548]
[47]
Afsharimani, B.; Moezi, L.; Sadeghipour, H.; Rahimzadeh-Rofouyi, B.; Nobakht, M.; Sanatkar, M.; Ghahremani, M.H.; Dehpour, A.R. Effect of chronic lithium administration on endothelium-dependent relaxation of rat mesenteric bed: role of nitric oxide. Can. J. Physiol. Pharmacol., 2007, 85(10), 1038-1046.
[http://dx.doi.org/10.1139/Y07-095] [PMID: 18066105]
[48]
Rahimzadeh-Rofouyi, B.; Afsharimani, B.; Moezi, L.; Ebrahimi, F.; Mehr, S.E.; Mombeini, T.; Ghahremani, M.H.; Dehpour, A.R. Role of nitric oxide and prostaglandin systems in lithium modulation of acetylcholine vasodilation. J. Cardiovasc. Pharmacol., 2007, 50(6), 641-646.
[http://dx.doi.org/10.1097/FJC.0b013e318153f262] [PMID: 18091580]
[49]
Bosche, B.; Molcanyi, M.; Noll, T.; Rej, S.; Zatschler, B.; Doeppner, T.R.; Hescheler, J.; Müller, D.J.; Macdonald, R.L.; Härtel, F.V. A differential impact of lithium on endothelium-dependent but not on endothelium-independent vessel relaxation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 67, 98-106.
[http://dx.doi.org/10.1016/j.pnpbp.2016.02.004] [PMID: 26875501]
[50]
Aoyagi, M.; Arvai, A.S.; Tainer, J.A.; Getzoff, E.D. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J., 2003, 22(4), 766-775.
[http://dx.doi.org/10.1093/emboj/cdg078] [PMID: 12574113]
[51]
McGuigan, F.E.; Bartosch, P.; Åkesson, K.E. Musculoskeletal health and frailty. Best Pract. Res. Clin. Rheumatol., 2017, 31(2), 145-159.
[http://dx.doi.org/10.1016/j.berh.2017.11.002] [PMID: 29224693]
[52]
Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A review of treatment options. P&T, 2018, 43(2), 92-104.
[PMID: 29386866]
[53]
Armas, L.A.G.; Recker, R.R. Pathophysiology of Osteoporosis. Endocrinol. Metab. Clin. North Am., 2012, 41(3), 475-486.
[http://dx.doi.org/10.1016/j.ecl.2012.04.006] [PMID: 22877425]
[54]
Osteoporosis Facts and Statistics. Osteoporosis Canada. 2021. Available from: https://osteoporosis.ca/fast-facts/ [Accessed on: 20th November, 2021].
[55]
McGarry, K.A.; Kiel, D.P. Postmenopausal osteoporosis. Postgrad. Med., 2000, 108(3), 79-91, 85-88, 91.
[http://dx.doi.org/10.3810/pgm.2000.09.1.1206] [PMID: 11004937]
[56]
Ogawa, S.; Yakabe, M.; Akishita, M. Age-related sarcopenia and its pathophysiological bases. Inflamm. Regen., 2016, 36(1), 17.
[http://dx.doi.org/10.1186/s41232-016-0022-5] [PMID: 29259690]
[57]
Phillips, S.M. Nutritional supplements in support of resistance exercise to counter age-related sarcopenia. Adv. Nutr., 2015, 6(4), 452-460.
[http://dx.doi.org/10.3945/an.115.008367] [PMID: 26178029]
[58]
Marty, E.; Liu, Y.; Samuel, A.; Or, O.; Lane, J. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone, 2017, 105, 276-286.
[http://dx.doi.org/10.1016/j.bone.2017.09.008] [PMID: 28931495]
[59]
Cohen, O.; Rais, T.; Lepkifker, E.; Vered, I. Lithium carbonate therapy is not a risk factor for osteoporosis. Horm. Metab. Res., 1998, 30(9), 594-597.
[http://dx.doi.org/10.1055/s-2007-978939] [PMID: 9808330]
[60]
Lewicki, M.; Paez, H.; Mandalunis, P.M. Effect of lithium carbonate on subchondral bone in sexually mature Wistar rats. Exp. Toxicol. Pathol., 2006, 58(2-3), 197-201.
[http://dx.doi.org/10.1016/j.etp.2006.06.003] [PMID: 16846729]
[61]
Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. The skeletal-protecting action and mechanisms of action for mood-stabilizing drug lithium chloride: current evidence and future potential research areas. Front. Pharmacol., 2020, 11, 430.
[http://dx.doi.org/10.3389/fphar.2020.00430] [PMID: 32317977]
[62]
Kurgan, N.; Bott, K.N.; Helmeczi, W.E.; Roy, B.D.; Brindle, I.D.; Klentrou, P.; Fajardo, V.A. Low dose lithium supplementation activates Wnt/β-catenin signalling and increases bone OPG/RANKL ratio in mice. Biochem. Biophys. Res. Commun., 2019, 511(2), 394-397.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.066] [PMID: 30791983]
[63]
Kim, J.H.; Liu, X.; Wang, J.; Chen, X.; Zhang, H.; Kim, S.H.; Cui, J.; Li, R.; Zhang, W.; Kong, Y.; Zhang, J.; Shui, W.; Lamplot, J.; Rogers, M.R.; Zhao, C.; Wang, N.; Rajan, P.; Tomal, J.; Statz, J.; Wu, N.; Luu, H.H.; Haydon, R.C.; He, T.C. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther. Adv. Musculoskelet. Dis., 2013, 5(1), 13-31.
[http://dx.doi.org/10.1177/1759720X12466608] [PMID: 23514963]
[64]
Spencer, G.J.; Utting, J.C.; Etheridge, S.L.; Arnett, T.R.; Genever, P.G. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFκB ligand and inhibits osteoclastogenesis in vitro. J. Cell Sci., 2006, 119(7), 1283-1296.
[http://dx.doi.org/10.1242/jcs.02883] [PMID: 16522681]
[65]
Canalis, E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat. Rev. Endocrinol., 2013, 9(10), 575-583.
[http://dx.doi.org/10.1038/nrendo.2013.154] [PMID: 23938284]
[66]
Clément-Lacroix, P.; Ai, M.; Morvan, F.; Roman-Roman, S.; Vayssière, B.; Belleville, C.; Estrera, K.; Warman, M.L.; Baron, R.; Rawadi, G. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17406-17411.
[http://dx.doi.org/10.1073/pnas.0505259102] [PMID: 16293698]
[67]
Vachhani, K.; Whyne, C.; Wang, Y.; Burns, D.M.; Nam, D. Low-dose lithium regimen enhances endochondral fracture healing in osteoporotic rodent bone. J. Orthop. Res., 2018, 36(6), 1783-1789.
[http://dx.doi.org/10.1002/jor.23799] [PMID: 29106746]
[68]
Vachhani, K.; Pagotto, A.; Wang, Y.; Whyne, C.; Nam, D. Design of experiments confirms optimization of lithium administration parameters for enhanced fracture healing. J. Biomech., 2018, 66, 153-158.
[http://dx.doi.org/10.1016/j.jbiomech.2017.09.043] [PMID: 29162229]
[69]
Woo, J. Sarcopenia. Clin. Geriatr. Med., 2017, 33(3), 305-314.
[http://dx.doi.org/10.1016/j.cger.2017.02.003] [PMID: 28689564]
[70]
Rommel, C.; Bodine, S.C.; Clarke, B.A.; Rossman, R.; Nunez, L.; Stitt, T.N.; Yancopoulos, G.D.; Glass, D.J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol., 2001, 3(11), 1009-1013.
[http://dx.doi.org/10.1038/ncb1101-1009] [PMID: 11715022]
[71]
Verhees, K.J.P.; Schols, A.M.W.J.; Kelders, M.C.J.M.; Op den Kamp, C.M.H.; van der Velden, J.L.J.; Langen, R.C.J. Glycogen synthase kinase-3β is required for the induction of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol., 2011, 301(5), C995-C1007.
[http://dx.doi.org/10.1152/ajpcell.00520.2010] [PMID: 21832246]
[72]
Mirzoev, T.M.; Sharlo, K.A.; Shenkman, B.S. The role of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscle under disuse conditions. Int. J. Mol. Sci., 2021, 22(10), 5081.
[http://dx.doi.org/10.3390/ijms22105081] [PMID: 34064895]
[73]
Kurgan, N.; Whitley, K.C.; Maddalena, L.A.; Moradi, F.; Stoikos, J.; Hamstra, S.I.; Rubie, E.A.; Kumar, M.; Roy, B.D.; Woodgett, J.R.; Stuart, J.A.; Fajardo, V.A. A low-therapeutic dose of lithium inhibits GSK3 and enhances myoblast fusion in C2C12 cells. Cells, 2019, 8(11), 1340.
[http://dx.doi.org/10.3390/cells8111340] [PMID: 31671858]
[74]
Moustogiannis, A.; Philippou, A.; Taso, O.; Zevolis, E.; Pappa, M.; Chatzigeorgiou, A.; Koutsilieris, M. The effects of muscle cell aging on myogenesis. Int. J. Mol. Sci., 2021, 22(7), 3721.
[http://dx.doi.org/10.3390/ijms22073721] [PMID: 33918414]
[75]
Yang, Y.; Yang, J.; Liu, R.; Li, H.; Luo, X.; Yang, G. Accumulation of β-catenin by lithium chloride in porcine myoblast cultures accelerates cell differentiation. Mol. Biol. Rep., 2011, 38(3), 2043-2049.
[http://dx.doi.org/10.1007/s11033-010-0328-3] [PMID: 20857211]
[76]
Pansters, N.A.M.; van der Velden, J.L.J.; Kelders, M.C.J.M.; Laeremans, H.; Schols, A.M.W.J.; Langen, R.C.J. Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β. Cell. Mol. Life Sci., 2011, 68(3), 523-535.
[http://dx.doi.org/10.1007/s00018-010-0467-7] [PMID: 20694829]
[77]
van der Velden, J.L.J.; Schols, A.M.W.J.; Willems, J.; Kelders, M.C.J.M.; Langen, R.C.J. Glycogen synthase kinase 3 suppresses myogenic differentiation through negative regulation of NFATc3. J. Biol. Chem., 2008, 283(1), 358-366.
[http://dx.doi.org/10.1074/jbc.M707812200] [PMID: 17977834]
[78]
Pansters, N.A.M.; Schols, A.M.W.J.; Verhees, K.J.P.; de Theije, C.C.; Snepvangers, F.J.; Kelders, M.C.J.M.; Ubags, N.D.J.; Haegens, A.; Langen, R.C.J. Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(3), 490-506.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.006] [PMID: 25496993]
[79]
Whitley, K.C.; Watson, C.J.F.; Baranowski, R.W.; Qiu, L.; MacNeil, A.J.; Fajardo, V.A. Low dose lithium supplementation reduces muscle inflammation and serum creatine kinase in mdx mice. Appl. Physiol. Nutr. Metab., 2019, 44, S117.
[80]
Schiaffino, S.; Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev., 2011, 91(4), 1447-1531.
[http://dx.doi.org/10.1152/physrev.00031.2010] [PMID: 22013216]
[81]
Barrientos, G.; Alves, J.; Toro, V.; Robles, M.C.; Muñoz, D.; Maynar, M. Association between trace elements and body composition parameters in endurance runners. Int. J. Environ. Res. Public Health, 2020, 17(18), 6563.
[http://dx.doi.org/10.3390/ijerph17186563] [PMID: 32916939]
[82]
Bauer, J.; Morley, J.E.; Schols, A.M.W.J.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; Jatoi, A.; Kalantar-Zadeh, K.; Lainscak, M.; Landi, F.; Laviano, A.; Mancuso, M.; Muscaritoli, M.; Prado, C.M.; Strasser, F.; Haehling, S.; Coats, A.J.S.; Anker, S.D. Sarcopenia: A time for action. An SCWD position paper. J. Cachexia Sarcopenia Muscle, 2019, 10(5), 956-961.
[http://dx.doi.org/10.1002/jcsm.12483] [PMID: 31523937]
[83]
Dhillon, R.J.S.; Hasni, S. Pathogenesis and management of sarcopenia. Clin. Geriatr. Med., 2017, 33(1), 17-26.
[http://dx.doi.org/10.1016/j.cger.2016.08.002] [PMID: 27886695]
[84]
Pagnotti, G.M.; Styner, M.; Uzer, G.; Patel, V.S.; Wright, L.E.; Ness, K.K.; Guise, T.A.; Rubin, J.; Rubin, C.T. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat. Rev. Endocrinol., 2019, 15(6), 339-355.
[http://dx.doi.org/10.1038/s41574-019-0170-1] [PMID: 30814687]
[85]
Manolagas, S.C. Wnt signaling and osteoporosis. Maturitas, 2014, 78(3), 233-237.
[http://dx.doi.org/10.1016/j.maturitas.2014.04.013] [PMID: 24815296]
[86]
Camera, D.M.; Smiles, W.J.; Hawley, J.A. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic. Biol. Med., 2016, 98, 131-143.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.02.007] [PMID: 26876650]
[87]
Lang, T.; Streeper, T.; Cawthon, P.; Baldwin, K.; Taaffe, D.R.; Harris, T.B. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos. Int., 2010, 21(4), 543-559.
[http://dx.doi.org/10.1007/s00198-009-1059-y] [PMID: 19779761]
[88]
Bridge, A.D.; Brown, J.; Snider, H.; Ward, W.E.; Roy, B.D.; Josse, A.R. Consumption of Greek yogurt during 12 weeks of high-impact loading exercise increases bone formation in young, adult males – a secondary analysis from a randomized trial. Appl. Physiol. Nutr. Metab., 2020, 45(1), 91-100.
[http://dx.doi.org/10.1139/apnm-2019-0396] [PMID: 31652407]
[89]
Bridge, A.; Brown, J.; Snider, H.; Nasato, M.; Ward, W.E.; Roy, B.D.; Josse, A.R. Greek yogurt and 12 weeks of exercise training on strength, muscle thickness and body composition in lean, untrained, university-aged males. Front. Nutr., 2019, 6, 55.
[http://dx.doi.org/10.3389/fnut.2019.00055] [PMID: 31114790]
[90]
Nabrzyski, M.; Gajewska, R. Content of strontium, lithium and calcium in selected milk products and in some marine smoked fish. Food/Nahrung, 2002, 46(3), 204-208.
[91]
Baranowski, R.W.; Skelly, L.E.; Josse, A.R.; Fajardo, V.A. Exploring the effects of Greek yogurt supplementation and exercise training on serum lithium and its relationship with musculoskeletal outcomes in men. Front. Nutr., 2021, 8, 798036.
[http://dx.doi.org/10.3389/fnut.2021.798036] [PMID: 35004824]
[92]
Yap, C.Y.F.; Aw, T.C. Bone Turnover Markers. Proceedings of Singapore Healthcare, 2010, 19(3), 273-275.
[http://dx.doi.org/10.1177/201010581001900315]
[93]
Conway, B.; Rene, A. Obesity as a disease: No lightweight matter. Obes. Rev., 2004, 5(3), 145-151.
[http://dx.doi.org/10.1111/j.1467-789X.2004.00144.x] [PMID: 15245383]
[94]
Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol., 2019, 15(5), 288-298.
[http://dx.doi.org/10.1038/s41574-019-0176-8] [PMID: 30814686]
[95]
Pandey, A.; Chawla, S.; Guchhait, P. Type-2 diabetes: Current understanding and future perspectives. IUBMB Life, 2015, 67(7), 506-513.
[http://dx.doi.org/10.1002/iub.1396] [PMID: 26177573]
[96]
Yang, J.S.; Lu, C.C.; Kuo, S.C.; Hsu, Y.M.; Tsai, S.C.; Chen, S.Y.; Chen, Y.T.; Lin, Y.J.; Huang, Y.C.; Chen, C.J.; Lin, W.D.; Liao, W.L.; Lin, W.Y.; Liu, Y.H.; Sheu, J.C.; Tsai, F.J. Autophagy and its link to type II diabetes mellitus. Biomedicine (Taipei), 2017, 7(2), 8.
[http://dx.doi.org/10.1051/bmdcn/2017070201] [PMID: 28612706]
[97]
Peselow, E.D.; Dunner, D.L.; Fieve, R.R.; Lautin, A. Lithium carbonate and weight gain. J. Affect. Disord., 1980, 2(4), 303-310.
[http://dx.doi.org/10.1016/0165-0327(80)90031-2] [PMID: 6450789]
[98]
Mangge, H.; Bengesser, S.; Dalkner, N.; Birner, A.; Fellendorf, F.; Platzer, M.; Queissner, R.; Pilz, R.; Maget, A.; Reininghaus, B.; Hamm, C.; Bauer, K.; Rieger, A.; Zelzer, S.; Fuchs, D.; Reininghaus, E. Weight gain during treatment of bipolar disorder (BD)-facts and therapeutic options. Front. Nutr., 2019, 6, 76.
[http://dx.doi.org/10.3389/fnut.2019.00076] [PMID: 31245376]
[99]
Jung, S.; Koh, J.; Kim, S.; Kim, K. Effect of lithium on the mechanism of glucose transport in skeletal muscles. J. Nutr. Sci. Vitaminol. (Tokyo), 2017, 63(6), 365-371.
[http://dx.doi.org/10.3177/jnsv.63.365] [PMID: 29332897]
[100]
Gamu, D.; Juracic, E.S.; Fajardo, V.A.; Rietze, B.A.; Tran, K.; Bombardier, E.; Tupling, A.R. Phospholamban deficiency does not alter skeletal muscle SERCA pumping efficiency or predispose mice to diet-induced obesity. Am. J. Physiol. Endocrinol. Metab., 2019, 316(3), E432-E442.
[http://dx.doi.org/10.1152/ajpendo.00288.2018] [PMID: 30601702]
[101]
Lowell, B.B.; Spiegelman, B.M. Towards a molecular understanding of adaptive thermogenesis. Nature, 2000, 404(6778), 652-660.
[http://dx.doi.org/10.1038/35007527] [PMID: 10766252]
[102]
Gamu, D.; Juracic, E.S.; Hall, K.J.; Tupling, A.R. The sarcoplasmic reticulum and SERCA: a nexus for muscular adaptive thermogenesis. Appl. Physiol. Nutr. Metab., 2020, 45(1), 1-10.
[http://dx.doi.org/10.1139/apnm-2019-0067] [PMID: 31116956]
[103]
Gamu, D.; Bombardier, E.; Smith, I.C.; Fajardo, V.A.; Tupling, A.R. Sarcolipin provides a novel muscle-based mechanism for adaptive thermogenesis. Exerc. Sport Sci. Rev., 2014, 42(3), 136-142.
[http://dx.doi.org/10.1249/JES.0000000000000016] [PMID: 24949847]
[104]
Fuller-Jackson, J.P.; Henry, B.A. Adipose and skeletal muscle thermogenesis: studies from large animals. J. Endocrinol., 2018, 237(3), R99-R115.
[http://dx.doi.org/10.1530/JOE-18-0090] [PMID: 29703782]
[105]
Bal, N.C.; Maurya, S.K.; Sopariwala, D.H.; Sahoo, S.K.; Gupta, S.C.; Shaikh, S.A.; Pant, M.; Rowland, L.A.; Bombardier, E.; Goonasekera, S.A.; Tupling, A.R.; Molkentin, J.D.; Periasamy, M. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med., 2012, 18(10), 1575-1579.
[http://dx.doi.org/10.1038/nm.2897] [PMID: 22961106]
[106]
Bombardier, E.; Smith, I.C.; Gamu, D.; Fajardo, V.A.; Vigna, C.; Sayer, R.A.; Gupta, S.C.; Bal, N.C.; Periasamy, M.; Tupling, A.R. Sarcolipin trumps β‐adrenergic receptor signaling as the favored mechanism for muscle‐based diet‐induced thermogenesis. FASEB J., 2013, 27(9), 3871-3878.
[http://dx.doi.org/10.1096/fj.13-230631] [PMID: 23752204]
[107]
Bombardier, E.; Smith, I.C.; Vigna, C.; Fajardo, V.A.; Tupling, A.R. Ablation of sarcolipin decreases the energy requirements for Ca 2+ transport by sarco(endo)plasmic reticulum Ca 2+ -ATPases in resting skeletal muscle. FEBS Lett., 2013, 587(11), 1687-1692.
[http://dx.doi.org/10.1016/j.febslet.2013.04.019] [PMID: 23628781]
[108]
Fajardo, V.A.; Bombardier, E.; Irvine, T.; Metherel, A.H.; Stark, K.D.; Duhamel, T.; Rush, J.W.E.; Green, H.J.; Tupling, A.R. Dietary docosahexaenoic acid supplementation reduces SERCA Ca2+ transport efficiency in rat skeletal muscle. Chem. Phys. Lipids, 2015, 187, 56-61.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.03.001] [PMID: 25772907]
[109]
Funai, K.; Lodhi, I.J.; Spears, L.D.; Yin, L.; Song, H.; Klein, S.; Semenkovich, C.F. Skeletal muscle phospholipid metabolism regulates insulin sensitivity and contractile function. Diabetes, 2016, 65(2), 358-370.
[http://dx.doi.org/10.2337/db15-0659] [PMID: 26512026]
[110]
Braun, J.L.; Teng, A.C.T.; Geromella, M.S.; Ryan, C.R.; Fenech, R.K.; MacPherson, R.E.K.; Gramolini, A.O.; Fajardo, V.A. Neuronatin promotes SERCA uncoupling and its expression is altered in skeletal muscles of high‐fat diet‐fed mice. FEBS Lett., 2021, 595(22), 2756-2767.
[http://dx.doi.org/10.1002/1873-3468.14213] [PMID: 34693525]
[111]
Nedergaard, J.; Cannon, B. The browning of white adipose tissue: some burning issues. Cell Metab., 2014, 20(3), 396-407.
[http://dx.doi.org/10.1016/j.cmet.2014.07.005] [PMID: 25127354]
[112]
Damjanov, I.; Perry, A.M.; Perry, K. Pathology for the Health Professions-E-Book; Elsevier Health Sciences, 2021.
[113]
Saltiel, A.R.; Pessin, J.E. Insulin signaling pathways in time and space. Trends Cell Biol., 2002, 12(2), 65-71.
[http://dx.doi.org/10.1016/S0962-8924(01)02207-3] [PMID: 11849969]
[114]
Cheng, K.; Creacy, S.; Larner, J. Insulin-like effects of lithium ion on isolated rat adipocytes I. Stimulation of glycogenesis beyond glucose transport. Mol. Cell. Biochem., 1983, 56(2), 177-182.
[http://dx.doi.org/10.1007/BF00227218] [PMID: 6646115]
[115]
Macko, A.R.; Beneze, A.N.; Teachey, M.K.; Henriksen, E.J. Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle. Arch. Physiol. Biochem., 2008, 114(5), 331-339.
[http://dx.doi.org/10.1080/13813450802536067] [PMID: 19023684]
[116]
Rodriguezgil, J.E.; Guinovart, J.J.; Bosch, F. Lithium restores glycogen synthesis from glucose in hepatocytes from diabetic rats. Arch. Biochem. Biophys., 1993, 301(2), 411-415.
[http://dx.doi.org/10.1006/abbi.1993.1164] [PMID: 8460950]
[117]
van der Velde, C.D.; Gordon, M.W. Manic-depressive illness, diabetes mellitus, and lithium carbonate. Arch. Gen. Psychiatry, 1969, 21(4), 478-485.
[http://dx.doi.org/10.1001/archpsyc.1969.01740220094011] [PMID: 5807757]
[118]
Vendsborg, P.B.; Rafaelsen, O.J. Lithium in man: Effect on glucose tolerance and serum electrolytes. Acta Psychiatr. Scand., 1973, 49(5), 601-610.
[http://dx.doi.org/10.1111/j.1600-0447.1973.tb04451.x] [PMID: 4760957]
[119]
Mellerup, E.T.; Plenge, P.; Vendsborg, P.; Rafaelsen, O.J.; Kjeldsen, H.; Agerbæk, H. Antidiabetic effects of lithium. Lancet, 1972, 300(7791), 1367-1368.
[http://dx.doi.org/10.1016/S0140-6736(72)92811-5] [PMID: 4118232]
[120]
Okosieme, O.E.; Campbell, A.; Patton, K.; Evans, M.L. Transient diabetes associated with withdrawal of lithium therapy. Diabetes Care, 2006, 29(5), 1181.
[http://dx.doi.org/10.2337/dc06-0291] [PMID: 16644668]
[121]
Rossetti, L. Normalization of insulin sensitivity with lithium in diabetic rats. Diabetes, 1989, 38(5), 648-652.
[http://dx.doi.org/10.2337/diab.38.5.648] [PMID: 2653936]
[122]
Liberman, Z.; Eldar-Finkelman, H. Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. J. Biol. Chem., 2005, 280(6), 4422-4428.
[http://dx.doi.org/10.1074/jbc.M410610200] [PMID: 15574412]
[123]
Whitley, K.C.; Hamstra, S.I.; Baranowski, R.W.; Watson, C.J.F.; MacPherson, R.E.K.; MacNeil, A.J.; Roy, B.D.; Vandenboom, R.; Fajardo, V.A. GSK3 inhibition with low dose lithium supplementation augments murine muscle fatigue resistance and specific force production. Physiol. Rep., 2020, 8(14), e14517.
[http://dx.doi.org/10.14814/phy2.14517] [PMID: 32729236]
[124]
Zhang, J.; Anshul, F.; Malhotra, D.K.; Jaume, J.; Dworkin, L.D.; Gong, R. Microdose lithium protects against pancreatic islet destruction and renal impairment in streptozotocin-elicited diabetes. Antioxidants, 2021, 10(1), 138.
[http://dx.doi.org/10.3390/antiox10010138] [PMID: 33478120]
[125]
Ostrovskaya, R.U.; Ivanov, S.V.; Durnev, A.D. Neuroprotective lithium salts protect pancreatic β-cells from damage. Bull. Exp. Biol. Med., 2018, 165(6), 758-762.
[http://dx.doi.org/10.1007/s10517-018-4259-7] [PMID: 30353339]
[126]
Qiu, C.; Fratiglioni, L. Aging without dementia is achievable: Current evidence from epidemiological research. J. Alzheimers Dis., 2018, 62(3), 933-942.
[http://dx.doi.org/10.3233/JAD-171037] [PMID: 29562544]
[127]
Fan, L.; Mao, C.; Hu, X.; Zhang, S.; Yang, Z.; Hu, Z.; Sun, H.; Fan, Y.; Dong, Y.; Yang, J.; Shi, C.; Xu, Y. New insights into the pathogenesis of Alzheimer’s disease. Front. Neurol., 2020, 10, 1312.
[http://dx.doi.org/10.3389/fneur.2019.01312] [PMID: 31998208]
[128]
Stutzmann, G.E. The pathogenesis of Alzheimers disease is it a lifelong “calciumopathy”? Neuroscientist, 2007, 13(5), 546-559.
[http://dx.doi.org/10.1177/1073858407299730] [PMID: 17901262]
[129]
Sengoku, R. Aging and Alzheimer’s disease pathology. Neuropathology, 2020, 40(1), 22-29.
[http://dx.doi.org/10.1111/neup.12626] [PMID: 31863504]
[130]
Nunes, P.V.; Forlenza, O.V.; Gattaz, W.F. Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br. J. Psychiatry, 2007, 190(4), 359-360.
[http://dx.doi.org/10.1192/bjp.bp.106.029868] [PMID: 17401045]
[131]
Kessing, L.V.; Forman, J.L.; Andersen, P.K. Does lithium protect against dementia? Bipolar Disord., 2010, 12(1), 87-94.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00788.x] [PMID: 20148870]
[132]
Kessing, L.V.; Søndergård, L.; Forman, J.L.; Andersen, P.K. Lithium treatment and risk of dementia. Arch. Gen. Psychiatry, 2008, 65(11), 1331-1335.
[http://dx.doi.org/10.1001/archpsyc.65.11.1331] [PMID: 18981345]
[133]
Forlenza, O.V.; De-Paula, V.J.R.; Diniz, B.S.O. Neuroprotective effects of lithium: Implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci., 2014, 5(6), 443-450.
[http://dx.doi.org/10.1021/cn5000309] [PMID: 24766396]
[134]
Kerr, F.; Bjedov, I.; Sofola-Adesakin, O. Molecular mechanisms of lithium action: Switching the light on multiple targets for dementia using animal models. Front. Mol. Neurosci., 2018, 11, 297.
[http://dx.doi.org/10.3389/fnmol.2018.00297] [PMID: 30210290]
[135]
Yu, F.; Zhang, Y.; Chuang, D.M. Lithium reduces BACE1 overexpression, β amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J. Neurotrauma, 2012, 29(13), 2342-2351.
[http://dx.doi.org/10.1089/neu.2012.2449] [PMID: 22583494]
[136]
Wilson, E.N.; Do Carmo, S.; Iulita, M.F.; Hall, H.; Ducatenzeiler, A.; Marks, A.R.; Allard, S.; Jia, D.T.; Windheim, J.; Cuello, A.C. BACE1 inhibition by microdose lithium formulation NP03 rescues memory loss and early stage amyloid neuropathology. Transl. Psychiatry, 2017, 7(8), e1190.
[http://dx.doi.org/10.1038/tp.2017.169] [PMID: 28763060]
[137]
Wei, Y. Zhou, J.; Wu, J.; Huang, J. ERβ promotes Aβ degradation via the modulation of autophagy. Cell Death Dis., 2019, 10(8), 565.
[http://dx.doi.org/10.1038/s41419-019-1786-8] [PMID: 31332160]
[138]
Jayaraman, A.; Pike, C.J. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr. Diab. Rep., 2014, 14(4), 476-476.
[http://dx.doi.org/10.1007/s11892-014-0476-2] [PMID: 24526623]
[139]
Leszek, J.; Trypka, E.; Tarasov, V.; Ashraf, G.; Aliev, G. Type 3 Diabetes Mellitus: A novel implication of Alzheimers Disease. Curr. Top. Med. Chem., 2017, 17(12), 1331-1335.
[http://dx.doi.org/10.2174/1568026617666170103163403] [PMID: 28049395]
[140]
Forlenza, O.V.; Coutinho, A.M.N.; Aprahamian, I.; Prando, S.; Mendes, L.L.; Diniz, B.S.; Gattaz, W.F.; Buchpiguel, C.A. Long-term lithium treatment reduces glucose metabolism in the cerebellum and hippocampus of nondemented older adults: an [1⁸F]FDG-PET study. ACS Chem. Neurosci., 2014, 5(6), 484-489.
[http://dx.doi.org/10.1021/cn5000315] [PMID: 24730717]
[141]
Kohno, T.; Shiga, T.; Toyomaki, A.; Kusumi, I.; Matsuyama, T.; Inoue, T.; Katoh, C.; Koyama, T.; Tamaki, N. Effects of lithium on brain glucose metabolism in healthy men. J. Clin. Psychopharmacol., 2007, 27(6), 698-702.
[http://dx.doi.org/10.1097/jcp.0b013e31815a23c2] [PMID: 18004140]
[142]
Nunes, M.A.; Viel, T.A.; Buck, H.S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr. Alzheimer Res., 2013, 10(1), 104-107.
[PMID: 22746245]
[143]
Wilson, E.N.; Do Carmo, S.; Welikovitch, L.A.; Hall, H.; Aguilar, L.F.; Foret, M.K.; Iulita, M.F.; Jia, D.T.; Marks, A.R.; Allard, S.; Emmerson, J.T.; Ducatenzeiler, A.; Cuello, A.C. NP03, a Microdose lithium formulation, blunts early amyloid post-plaque neuropathology in McGill-R-Thy1-APP Alzheimer-like transgenic rats. J. Alzheimers Dis., 2020, 73(2), 723-739.
[http://dx.doi.org/10.3233/JAD-190862] [PMID: 31868669]
[144]
Kessing, L.V.; Gerds, T.A.; Knudsen, N.N.; Jørgensen, L.F.; Kristiansen, S.M.; Voutchkova, D.; Ernstsen, V.; Schullehner, J.; Hansen, B.; Andersen, P.K.; Ersbøll, A.K. Association of lithium in drinking water with the incidence of dementia. JAMA Psychiatry, 2017, 74(10), 1005-1010.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.2362] [PMID: 28832877]
[145]
Parker, W.F.; Gorges, R.J.; Gao, Y.N.; Zhang, Y.; Hur, K.; Gibbons, R.D. Association between groundwater lithium and the diagnosis of bipolar disorder and dementia in the united states. JAMA Psychiatry, 2018, 75(7), 751-754.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.1020] [PMID: 29799907]
[146]
Nunes, M.A.; Schöwe, N.M.; Monteiro-Silva, K.C.; Baraldi-Tornisielo, T.; Souza, S.I.G.; Balthazar, J.; Albuquerque, M.S.; Caetano, A.L.; Viel, T.A.; Buck, H.S. Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer’s disease. PLoS One, 2015, 10(11), e0142267.
[http://dx.doi.org/10.1371/journal.pone.0142267] [PMID: 26605788]
[147]
Pouladi, M.A.; Brillaud, E.; Xie, Y.; Conforti, P.; Graham, R.K.; Ehrnhoefer, D.E.; Franciosi, S.; Zhang, W.; Poucheret, P.; Compte, E.; Maurel, J.C.; Zuccato, C.; Cattaneo, E.; Néri, C.; Hayden, M.R. NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 2012, 48(3), 282-289.
[http://dx.doi.org/10.1016/j.nbd.2012.06.026] [PMID: 22796360]
[148]
Radak, Z.; Hart, N.; Sarga, L.; Koltai, E.; Atalay, M.; Ohno, H.; Boldogh, I. Exercise plays a preventive role against Alzheimer’s disease. J. Alzheimers Dis., 2010, 20(3), 777-783.
[http://dx.doi.org/10.3233/JAD-2010-091531] [PMID: 20182027]
[149]
Intlekofer, K.A.; Cotman, C.W. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis., 2013, 57, 47-55.
[http://dx.doi.org/10.1016/j.nbd.2012.06.011] [PMID: 22750524]
[150]
Baranowski, B.J.; Marko, D.M.; Fenech, R.K.; Yang, A.J.T.; MacPherson, R.E.K. Healthy brain, healthy life: A review of diet and exercise interventions to promote brain health and reduce Alzheimer’s disease risk. Appl. Physiol. Nutr. Metab., 2020, 45(10), 1055-1065.
[http://dx.doi.org/10.1139/apnm-2019-0910] [PMID: 32717151]
[151]
Jeong, J.H.; Koo, J.H.; Cho, J.Y.; Kang, E.B. Neuroprotective effect of treadmill exercise against blunted brain insulin signaling, NADPH oxidase, and Tau hyperphosphorylation in rats fed a high-fat diet. Brain Res. Bull., 2018, 142, 374-383.
[http://dx.doi.org/10.1016/j.brainresbull.2018.08.001] [PMID: 30081082]
[152]
Ruegsegger, G.N.; Vanderboom, P.M.; Dasari, S.; Klaus, K.A.; Kabiraj, P.; McCarthy, C.B.; Lucchinetti, C.F.; Nair, K.S. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight, 2019, 4(18), e130681.
[http://dx.doi.org/10.1172/jci.insight.130681] [PMID: 31534057]
[153]
Park, J.; Cheon, W.; Kim, K. Effects of long-term endurance exercise and lithium treatment on neuroprotective factors in hippocampus of obese rats. Int. J. Environ. Res. Public Health, 2020, 17(9), 3317.
[http://dx.doi.org/10.3390/ijerph17093317] [PMID: 32397675]
[154]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res. Rev., 2017, 37, 79-93.
[http://dx.doi.org/10.1016/j.arr.2017.05.004] [PMID: 28552719]
[155]
Nassar, A.; Azab, A.N. Effects of lithium on inflammation. ACS Chem. Neurosci., 2014, 5(6), 451-458.
[http://dx.doi.org/10.1021/cn500038f] [PMID: 24803181]
[156]
Khairova, R.; Pawar, R.; Salvadore, G.; Juruena, M.F.; de Sousa, R.T.; Soeiro-de-Souza, M.G.; Salvador, M.; Zarate, C.A.; Gattaz, W.F.; Machado-Vieira, R. Effects of lithium on oxidative stress parameters in healthy subjects. Mol. Med. Rep., 2012, 5(3), 680-682.
[PMID: 22200861]
[157]
Franceschi, C.; Garagnani, P.; Vitale, G.; Capri, M.; Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab., 2017, 28(3), 199-212.
[http://dx.doi.org/10.1016/j.tem.2016.09.005] [PMID: 27789101]
[158]
Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(Suppl. 1), S4-S9.
[http://dx.doi.org/10.1093/gerona/glu057] [PMID: 24833586]
[159]
Mau, T.; Yung, R. Adipose tissue inflammation in aging. Exp. Gerontol., 2018, 105, 27-31.
[http://dx.doi.org/10.1016/j.exger.2017.10.014] [PMID: 29054535]
[160]
van Deursen, J.M. The role of senescent cells in ageing. Nature, 2014, 509(7501), 439-446.
[http://dx.doi.org/10.1038/nature13193] [PMID: 24848057]
[161]
Olivieri, F.; Prattichizzo, F.; Grillari, J.; Balistreri, C.R. Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/9076485] [PMID: 29849499]
[162]
Schmeer, C.; Kretz, A.; Wengerodt, D.; Stojiljkovic, M.; Witte, O.W. Dissecting aging and senescence-current concepts and open lessons. Cells, 2019, 8(11), 1446.
[http://dx.doi.org/10.3390/cells8111446] [PMID: 31731770]
[163]
Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll-like receptor–mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol., 2005, 6(8), 777-784.
[http://dx.doi.org/10.1038/ni1221] [PMID: 16007092]
[164]
Viel, T.; Chinta, S.; Rane, A.; Chamoli, M.; Buck, H.; Andersen, J. Microdose lithium reduces cellular senescence in human astrocytes - a potential pharmacotherapy for COVID-19? Aging (Albany NY), 2020, 12(11), 10035-10040.
[http://dx.doi.org/10.18632/aging.103449] [PMID: 32534451]
[165]
Weidinger, A.; Kozlov, A. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules, 2015, 5(2), 472-484.
[http://dx.doi.org/10.3390/biom5020472] [PMID: 25884116]
[166]
Machado-Vieira, R.; Andreazza, A.C.; Viale, C.I.; Zanatto, V.; Cereser, V., Jr; Vargas, R.S.; Kapczinski, F.; Portela, L.V.; Souza, D.O.; Salvador, M.; Gentil, V. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: A possible role for lithium antioxidant effects. Neurosci. Lett., 2007, 421(1), 33-36.
[http://dx.doi.org/10.1016/j.neulet.2007.05.016] [PMID: 17548157]
[167]
Lundberg, M.; Millischer, V.; Backlund, L.; Martinsson, L.; Stenvinkel, P.; Sellgren, C.M.; Lavebratt, C.; Schalling, M. Lithium and the interplay between telomeres and mitochondria in bipolar disorder. Front. Psychiatry, 2020, 11, 586083-586083.
[http://dx.doi.org/10.3389/fpsyt.2020.586083] [PMID: 33132941]
[168]
Tam, Z.Y.; Gruber, J.; Ng, L.F.; Halliwell, B.; Gunawan, R. Effects of lithium on age-related decline in mitochondrial turnover and function in Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(7), 810-820.
[http://dx.doi.org/10.1093/gerona/glt210] [PMID: 24398558]
[169]
Chuang, D.M.; Wang, Z.; Chiu, C.T. GSK-3 as a target for lithium-induced neuroprotection against excitotoxicity in neuronal cultures and animal models of ischemic stroke. Front. Mol. Neurosci., 2011, 4, 15.
[http://dx.doi.org/10.3389/fnmol.2011.00015] [PMID: 21886605]
[170]
Albayrak, A.; Halici, Z.; Polat, B.; Karakus, E.; Cadirci, E.; Bayir, Y.; Kunak, S.; Karcioglu, S.S.; Yigit, S.; Unal, D.; Atamanalp, S.S. Protective effects of lithium: A new look at an old drug with potential antioxidative and anti-inflammatory effects in an animal model of sepsis. Int. Immunopharmacol., 2013, 16(1), 35-40.
[http://dx.doi.org/10.1016/j.intimp.2013.03.018] [PMID: 23542012]
[171]
Kim, Y.H.; Rane, A.; Lussier, S.; Andersen, J.K. Lithium protects against oxidative stress-mediated cell death in α-synuclein-overexpressing in vitro and in vivo models of Parkinson’s disease. J. Neurosci. Res., 2011, 89(10), 1666-1675.
[http://dx.doi.org/10.1002/jnr.22700] [PMID: 21710541]
[172]
Shao, L.; Cui, J.; Young, L.T.; Wang, J.F. The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes. Neuroscience, 2008, 151(2), 518-524.
[http://dx.doi.org/10.1016/j.neuroscience.2007.10.041] [PMID: 18082333]
[173]
Wang, J.F.; Shao, L.; Sun, X.; Young, L.T. Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons. J. Neurochem., 2004, 88(6), 1477-1484.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02276.x] [PMID: 15009649]
[174]
Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684.
[http://dx.doi.org/10.1007/s00018-004-4464-6] [PMID: 15770419]
[175]
Fu, M.H.; Tupling, A.R. Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK-293 cells during heat stress. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(4), H1175-H1183.
[http://dx.doi.org/10.1152/ajpheart.01276.2008] [PMID: 19252085]
[176]
Tupling, A.R.; Gramolini, A.O.; Duhamel, T.A.; Kondo, H.; Asahi, M.; Tsuchiya, S.C.; Borrelli, M.J.; Lepock, J.R.; Otsu, K.; Hori, M.; MacLennan, D.H.; Green, H.J. HSP70 binds to the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA1a) and prevents thermal inactivation. J. Biol. Chem., 2004, 279(50), 52382-52389.
[http://dx.doi.org/10.1074/jbc.M409336200] [PMID: 15371420]
[177]
Castillo-Quan, J.I.; Li, L.; Kinghorn, K.J.; Ivanov, D.K.; Tain, L.S.; Slack, C.; Kerr, F.; Nespital, T.; Thornton, J.; Hardy, J.; Bjedov, I.; Partridge, L. Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep., 2016, 15(3), 638-650.
[http://dx.doi.org/10.1016/j.celrep.2016.03.041] [PMID: 27068460]
[178]
Zarse, K.; Terao, T.; Tian, J.; Iwata, N.; Ishii, N.; Ristow, M. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur. J. Nutr., 2011, 50(5), 387-389.
[http://dx.doi.org/10.1007/s00394-011-0171-x] [PMID: 21301855]
[179]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[180]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Iavicoli, I.; Di Paola, R.; Koverech, A.; Cuzzocrea, S.; Rizzarelli, E.; Calabrese, E.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 753-783.
[http://dx.doi.org/10.1016/j.bbadis.2011.11.002] [PMID: 22108204]
[181]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[182]
Wang, W.Z. Investigation of reperfusion injury and ischemic preconditioning in microsurgery. Microsurgery, 2009, 29(1), 72-79.
[http://dx.doi.org/10.1002/micr.20587] [PMID: 18946882]
[183]
Liu, Z.; Gong, R. Remote ischemic preconditioning for kidney protection: GSK3β-centric insights into the mechanism of action. Am. J. Kidney Dis., 2015, 66(5), 846-856.
[http://dx.doi.org/10.1053/j.ajkd.2015.06.026] [PMID: 26271146]
[184]
Li, Q.; Li, H.; Roughton, K.; Wang, X.; Kroemer, G.; Blomgren, K.; Zhu, C. Lithium reduces apoptosis and autophagy after neonatal hypoxia–ischemia. Cell Death Dis., 2010, 1(7), e56-e56.
[http://dx.doi.org/10.1038/cddis.2010.33] [PMID: 21364661]
[185]
Xu, J.; Culman, J.; Blume, A.; Brecht, S.; Gohlke, P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke, 2003, 34(5), 1287-1292.
[http://dx.doi.org/10.1161/01.STR.0000066308.25088.64] [PMID: 12677021]
[186]
Talab, S.S.; Elmi, A.; Emami, H.; Nezami, B.G.; Assa, S.; Ghasemi, M.; Tavangar, S.M.; Dehpour, A.R. Protective effects of acute lithium preconditioning against renal ischemia/reperfusion injury in rat: Role of nitric oxide and cyclooxygenase systems. Eur. J. Pharmacol., 2012, 681(1-3), 94-99.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.042] [PMID: 22342279]
[187]
Faghihi, M.; Mirershadi, F.; Dehpour, A.R.; Bazargan, M. Preconditioning with acute and chronic lithium administration reduces ischemia/reperfusion injury mediated by cyclooxygenase not nitric oxide synthase pathway in isolated rat heart. Eur. J. Pharmacol., 2008, 597(1-3), 57-63.
[http://dx.doi.org/10.1016/j.ejphar.2008.08.010] [PMID: 18789320]
[188]
Ren, M.; Senatorov, V.V.; Chen, R.W.; Chuang, D.M. Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6210-6215.
[http://dx.doi.org/10.1073/pnas.0937423100] [PMID: 12732732]
[189]
Talab, S.S.; Emami, H.; Elmi, A.; Nezami, B.G.; Assa, S.; Deroee, A.F.; Daneshmand, A.; Tavangar, S.M.; Dehpour, A.R. Chronic lithium treatment protects the rat kidney against ischemia/reperfusion injury: The role of nitric oxide and cyclooxygenase pathways. Eur. J. Pharmacol., 2010, 647(1-3), 171-177.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.036] [PMID: 20826134]
[190]
Liu, A.; Fang, H.; Dahmen, U.; Dirsch, O. Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats. Liver Transpl., 2013, 19(7), 762-772.
[http://dx.doi.org/10.1002/lt.23666] [PMID: 23696274]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy