Review Article

富含鞣花单宁的高纬度和高海拔浆果的营养潜力

卷 30, 期 19, 2023

发表于: 31 March, 2022

页: [2121 - 2140] 页: 20

弟呕挨: 10.2174/0929867329666220224151938

价格: $65

Open Access Journals Promotions 2
摘要

简介:这篇综述涉及三种浆果,即高纬度云莓 (Rubus chamaemorus) 和北极荆棘 (Rubus arcticus),以及高海拔黄树莓 (Rubus ellipticus)。这些植物大多在当地被用作食物或传统疗法,但由于富含鞣花单宁 (ET) 和其他酚类化合物,它们可以作为营养保健品得到更广泛的使用。 ET 是碳水化合物的六羟基二苯甲酸酯和最大的可水解单宁类。它们是明显的抗氧化剂和生物活性化合物,因此被认为是富含 ET 的浆果的生物学特性的主要原因。 ET 的健康益处主要是由于鞣花酸的释放以及肠道微生物群将其代谢转化为尿石素,其中包括抗炎、抗病毒、抗菌和抗癌作用。 方法:基于 Web of Science、Scopus 和 PubMed 数据库中的文献检索,涵盖了关于这三种浆果的民族植物学、药学、医学和营养学知识。这包括对传统制剂的经验使用,以及使用水果和其他植物部分的各种提取物和馏分进行的实验研究,涵盖体外、临床前和临床研究。 结果:数据揭示了广泛的医疗保健潜在用途,在某些情况下提供了对传统用途的实验确认。 结论:被检查的浆果物种可以作为营养食品,对普通消费者产生积极影响,但也可以通过更多技术方式利用富含 ET 的提取物生产食品补充剂。

关键词: 北极荆棘,云莓,鞣花单宁,保健,营养保健品,黄树莓。

Next »
[1]
Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J. Agric. Food Chem., 2007, 55(4), 1612-1619.
[http://dx.doi.org/10.1021/jf062897a] [PMID: 17261015]
[2]
Andre, A. Nan t'aih nakwits'inahtsih (The land gives us strength): The medicine plants used by Gwich'in people of Canada's western arctic to maintain good health and well being., University of Victoria, British Columbia, Canada, 2006.
[3]
Nilsen, G.S. Cloudberries–The Northern Gold. Int. J. Fruit Sci., 2005, 5(2), 45-60.
[http://dx.doi.org/10.1300/J492v05n02_06]
[4]
Jaakola, L.; Hohtola, A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ., 2010, 33(8), 1239-1247.
[http://dx.doi.org/10.1111/j.1365-3040.2010.02154.x] [PMID: 20374534]
[5]
Zeng, Q.; Dong, G.; Tian, L.; Wu, H.; Ren, Y.; Tamir, G.; Huang, W.; Yu, H. High altitude is beneficial for antioxidant components and sweetness accumulation of rabbiteye blueberry. Front. Plant Sci., 2020, 11(1492), 573531.
[http://dx.doi.org/10.3389/fpls.2020.573531] [PMID: 33101343]
[6]
Okuda, T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry, 2005, 66(17), 2012-2031.
[http://dx.doi.org/10.1016/j.phytochem.2005.04.023] [PMID: 15982679]
[7]
Alfei, S.; Turrini, F.; Catena, S.; Zunin, P.; Grilli, M.; Pittaluga, A.M.; Boggia, R. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. Eur. J. Med. Chem., 2019, 183, 111724.
[http://dx.doi.org/10.1016/j.ejmech.2019.111724] [PMID: 31563012]
[8]
Jaakkola, M.; Korpelainen, V.; Hoppula, K.; Virtanen, V. Chemical composition of ripe fruits of Rubus chamaemorus L. grown in different habitats. J. Sci. Food Agric., 2012, 92(6), 1324-1330.
[http://dx.doi.org/10.1002/jsfa.4705] [PMID: 22083544]
[9]
Gasperotti, M.; Masuero, D.; Mattivi, F.; Vrhovsek, U. Overall dietary polyphenol intake in a bowl of strawberries: The influence of Fragaria spp. in nutritional studies. J. Funct. Foods, 2015, 18, 1057-1069.
[http://dx.doi.org/10.1016/j.jff.2014.08.013]
[10]
Mullen, W.; Yokota, T.; Lean, M.E.; Crozier, A. Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC-MSn. Phytochemistry, 2003, 64(2), 617-624.
[http://dx.doi.org/10.1016/S0031-9422(03)00281-4] [PMID: 12943785]
[11]
Tomás-Barberán, F.A.; González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.A.; Selma, M.V.; García-Conesa, M.T.; Espín, J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res., 2017, 61(1), 1500901.
[http://dx.doi.org/10.1002/mnfr.201500901] [PMID: 27158799]
[12]
Kähkönen, M.; Kylli, P.; Ollilainen, V.; Salminen, J.P.; Heinonen, M. Antioxidant activity of isolated ellagitannins from red raspberries and cloudberries. J. Agric. Food Chem., 2012, 60(5), 1167-1174.
[http://dx.doi.org/10.1021/jf203431g] [PMID: 22229937]
[13]
Bakkalbaşi, E.; Menteş, O.; Artik, N. Food ellagitannins-occurrence, effects of processing and storage. Crit. Rev. Food Sci. Nutr., 2009, 49(3), 283-298.
[http://dx.doi.org/10.1080/10408390802064404] [PMID: 19093271]
[14]
Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem., 2011, 127(2), 807-821.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.156] [PMID: 23140740]
[15]
Larrosa, M.; García-Conesa, M.T.; Espín, J.C.; Tomás-Barberán, F.A. Ellagitannins, ellagic acid and vascular health. Mol. Aspects Med., 2010, 31(6), 513-539.
[http://dx.doi.org/10.1016/j.mam.2010.09.005] [PMID: 20837052]
[16]
Jia, X.; Luo, H.; Xu, M.; Zhai, M.; Guo, Z.; Qiao, Y.; Wang, L. Dynamic changes in phenolics and antioxidant capacity during pecan (Carya illinoinensis) kernel ripening and its phenolics profiles. Molecules, 2018, 23(2), E435.
[http://dx.doi.org/10.3390/molecules23020435] [PMID: 29462910]
[17]
Cerdá, B.; Tomás-Barberán, F.A.; Espín, J.C. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. J. Agric. Food Chem., 2005, 53(2), 227-235.
[http://dx.doi.org/10.1021/jf049144d] [PMID: 15656654]
[18]
Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry. Food Chem., 2014, 152, 340-348.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.158] [PMID: 24444946]
[19]
Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem., 2018, 261, 75-86.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.039] [PMID: 29739608]
[20]
Teixeira, L.L.; Costa, G.R.; Dörr, F.A.; Ong, T.P.; Pinto, E.; Lajolo, F.M.; Hassimotto, N.M.A. Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.). Food Funct., 2017, 8(6), 2266-2274.
[http://dx.doi.org/10.1039/C7FO00076F] [PMID: 28541359]
[21]
Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Fernández de Simón, B.; Hernández, T.; Estrella, I. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage. J. Agric. Food Chem., 2010, 58(17), 9631-9640.
[http://dx.doi.org/10.1021/jf102718t] [PMID: 20687564]
[22]
Kostryco, M.; Chwil, M. Health-enhancing activity of ellagic acid and ellagitannin of selected species from the genus Rubus – Review. Ann. Hortic., 2018, 28(2), 5-14.
[http://dx.doi.org/10.24326/ah.2018.2.1]
[23]
Djedjibegovic, J.; Marjanovic, A.; Panieri, E.; Saso, L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 5194508.
[http://dx.doi.org/10.1155/2020/5194508] [PMID: 32774676]
[24]
Espín, J.C.; González-Barrio, R.; Cerdá, B.; López-Bote, C.; Rey, A.I.; Tomás-Barberán, F.A. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J. Agric. Food Chem., 2007, 55(25), 10476-10485.
[http://dx.doi.org/10.1021/jf0723864] [PMID: 17990850]
[25]
Tomás-Barberán, F.A.; García-Villalba, R.; González-Sarrías, A.; Selma, M.V.; Espín, J.C. Ellagic acid metabolism by human gut microbiota: Consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J. Agric. Food Chem., 2014, 62(28), 6535-6538.
[http://dx.doi.org/10.1021/jf5024615] [PMID: 24976365]
[26]
Kujawska, M.; Jodynis-Liebert, J. Potential of the ellagic acid-derived gut microbiota metabolite - Urolithin A in gastrointestinal protection. World J. Gastroenterol., 2020, 26(23), 3170-3181.
[http://dx.doi.org/10.3748/wjg.v26.i23.3170] [PMID: 32684733]
[27]
Andreux, P.A.; Blanco-Bose, W.; Ryu, D.; Burdet, F.; Ibberson, M.; Aebischer, P.; Auwerx, J.; Singh, A.; Rinsch, C. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab., 2019, 1(6), 595-603.
[http://dx.doi.org/10.1038/s42255-019-0073-4] [PMID: 32694802]
[28]
D’Amico, D.; Andreux, P.A.; Valdés, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the natural compound urolithin a on health, disease, and aging. Trends Mol. Med., 2021, 27(7), 687-699.
[http://dx.doi.org/10.1016/j.molmed.2021.04.009] [PMID: 34030963]
[29]
Savi, M.; Bocchi, L.; Mena, P.; Dall’Asta, M.; Crozier, A.; Brighenti, F.; Stilli, D.; Del Rio, D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol., 2017, 16(1), 80.
[http://dx.doi.org/10.1186/s12933-017-0561-3] [PMID: 28683791]
[30]
Chen, P.; Chen, F.; Lei, J.; Wang, G.; Zhou, B. The gut microbiota metabolite urolithin b improves cognitive deficits by inhibiting Cyt C-mediated apoptosis and promoting the survival of neurons through the pi3k pathway in aging mice. Front. Pharmacol., 2021, 12, 768097.
[http://dx.doi.org/10.3389/fphar.2021.768097] [PMID: 34867396]
[31]
Lv, M.Y.; Shi, C.J.; Pan, F.F.; Shao, J.; Feng, L.; Chen, G.; Ou, C.; Zhang, J.F.; Fu, W.M. Urolithin B suppresses tumor growth in hepatocellular carcinoma through inducing the inactivation of Wnt/β-catenin signaling. J. Cell. Biochem., 2019, 120(10), 17273-17282.
[http://dx.doi.org/10.1002/jcb.28989] [PMID: 31218741]
[32]
Kang, I.; Kim, Y.; Tomás-Barberán, F.A.; Espín, J.C.; Chung, S.; Urolithin, A. Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol. Nutr. Food Res., 2016, 60(5), 1129-1138.
[http://dx.doi.org/10.1002/mnfr.201500796] [PMID: 26872561]
[33]
Toubal, S.; Oiry, C.; Bayle, M.; Cros, G.; Neasta, J. Urolithin C increases glucose-induced ERK activation which contributes to insulin secretion. Fundam. Clin. Pharmacol., 2020, 34(5), 571-580.
[http://dx.doi.org/10.1111/fcp.12551] [PMID: 32083757]
[34]
Cortés-Martín, A.; García-Villalba, R.; González-Sarrías, A.; Romo-Vaquero, M.; Loria-Kohen, V.; Ramírez-de-Molina, A.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food Funct., 2018, 9(8), 4100-4106.
[http://dx.doi.org/10.1039/C8FO00956B] [PMID: 30004553]
[35]
Small, E.; Catling, P.M. Poorly known economic plants of Canada - 27. Cloudberry, Rubus chamaemorus. Canadian Botan. Associat. Bull., 2000, 33, 43-47.
[36]
Walker, M. Wild plants of Eastern Canada: identifying, harvesting and using: includes recipes & medicinal uses; Nimbus Pub.: Halifax, Canada, 2008.
[37]
Thiem, B. Rubus chamaemorus L. – a boreal plant rich in biologically active metabolites: a review. BioLetters, 2003, 40(1), 313.
[38]
Kardell, L. Occurrence and berry production of Rubus chamaemorus L., Vaccinium oxycoccus L., Vaccinium macrocarpum Tucz. and Vaccinium vitisidaea L. on Swedish Peatlands. Scand. J. For. Res., 1986, 1(1-4), 125-140.
[http://dx.doi.org/10.1080/02827588609382406]
[39]
Häkkinen, S.H.; Kärenlampi, S.O.; Mykkänen, H.M.; Heinonen, I.M.; Törrönen, A.R. Ellagic acid content in berries: Influence of domestic processing and storage. Eur. Food Res. Technol., 2000, 212(1), 75-80.
[http://dx.doi.org/10.1007/s002170000184]
[40]
Bellemare, M.; Théroux Rancourt, G.; Lapointe, L.; Rochefort, L. Production of berries in peatlands. In: Guide produced under the supervision of Line Rochefort and Line Lapointe; Group, P.E.R., Ed.; Université Laval: Quebec, Canada, 2009; pp. 1-134.
[42]
USDA. Dr. Duke's Phytochemical and Ethnobotanical Databases. 2021. Available from: https://phytochem.nal.usda.gov/phytochem/search
[43]
Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem., 2001, 49(8), 4076-4082.
[http://dx.doi.org/10.1021/jf010152t] [PMID: 11513713]
[44]
Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Törrönen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem., 2004, 52(20), 6178-6187.
[http://dx.doi.org/10.1021/jf049450r] [PMID: 15453684]
[45]
Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem., 2012, 130(4), 785-796.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.022]
[46]
Kylli, P. Berry phenolics: isolation, analysis, identification, and antioxidant properties; University of Helsinki, Faculty of Agriculture and Forestry: Helsinki, Finland, 2010.
[47]
Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remón, A.; M’hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; Scalbert, A. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford), 2013, 2013(0), bat070.
[http://dx.doi.org/10.1093/database/bat070] [PMID: 24103452]
[48]
Porsild, A.E. Edible plants of the Arctic. Arctic, 1953, 6(1), 15-34.
[http://dx.doi.org/10.14430/arctic3863]
[49]
Kolosova, V.; Belichenko, O.; Rodionova, A.; Melnikov, D.; Sõukand, R. Foraging in boreal forest: Wild food plants of the Republic of Karelia, NW Russia. Foods, 2020, 9(8), 10-15.
[http://dx.doi.org/10.3390/foods9081015] [PMID: 32751145]
[50]
Ryvarden, L. Norges planter II; Cappelens Forlag: Oslo, 1993.
[51]
Karst, A.L. Conservation value of the North American boreal forest from an ethnobotanical perspective; Canadian Boreal Initiative, David Suzuki Foundation and Boreal Songbird Initiative: Ottawa, ON, Canada, 2010.
[52]
Arnason, T.; Hebda, R.J.; Timothy, J. Use of plants for food and medicine by native peoples of Eastern Canada. Can. J. Bot., 1981, 59(11), 2189-2325.
[http://dx.doi.org/10.1139/b81-287]
[53]
Boulanger-Lapointe, N.; Gérin-Lajoie, J.; Siegwart Collier, L.; Desrosiers, S.; Spiech, C.; Henry, G.H.R.; Hermanutz, L.; Lévesque, E.; Cuerrier, A. Berry plants and berry picking in Inuit Nunangat: Traditions in a changing socio-ecological landscape. Hum. Ecol. Interdiscip. J., 2019, 47(1), 81-93.
[http://dx.doi.org/10.1007/s10745-018-0044-5]
[54]
Karst, A.L.; Turner, N.J. Local ecological knowledge and importance of bakeapple (Rubus chamaemorus L.) in a Southeast Labrador Métis community. Ethnobiol. Lett., 2011, 2, 6-18.
[http://dx.doi.org/10.14237/ebl.2.2011.28]
[55]
Uprety, Y.; Asselin, H.; Dhakal, A.; Julien, N. Traditional use of medicinal plants in the boreal forest of Canada: Review and perspectives. J. Ethnobiol. Ethnomed., 2012, 8(1), 7.
[http://dx.doi.org/10.1186/1746-4269-8-7] [PMID: 22289509]
[56]
Sharma, B.B.; Gupta, D.N.; Vaishney, M.D.; Prakash, A.O. Rubus ellipticus – A potential antifertility plant. Indian Veter. Med. J., 1981, 5, 125-128.
[57]
Marles, R.J.; Clavelle, C.; Monteleone, L.; Tays, N.; Burns, D. Aboriginal plant use in Canada’s northwest boreal forest; UBC Press: Vancouver, BC, Canada, 2008.
[58]
Mylnikov, S.V.; Kokko, H.I.; Kärenlampi, S.O.; Oparina, T.I.; Davies, H.V.; Stewart, D. Rubus fruit juices affect lipid peroxidation in a Drosophila melanogaster model in vivo. J. Agric. Food Chem., 2005, 53(20), 7728-7733.
[http://dx.doi.org/10.1021/jf051303l] [PMID: 16190624]
[59]
Thiem, B.; Goślińska, O. Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia, 2004, 75(1), 93-95.
[http://dx.doi.org/10.1016/j.fitote.2003.08.014] [PMID: 14693229]
[60]
Puupponen-Pimiä, R.; Nohynek, L.; Alakomi, H.L.; Oksman-Caldentey, K.M. The action of berry phenolics against human intestinal pathogens. Biofactors, 2005, 23(4), 243-251.
[http://dx.doi.org/10.1002/biof.5520230410] [PMID: 16498212]
[61]
Nohynek, L.J.; Alakomi, H.L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer, 2006, 54(1), 18-32.
[http://dx.doi.org/10.1207/s15327914nc5401_4] [PMID: 16800770]
[62]
Puupponen-Pimiä, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol., 2005, 98(4), 991-1000.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02547.x] [PMID: 15752346]
[63]
Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol., 2001, 90(4), 494-507.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01271.x] [PMID: 11309059]
[64]
Puupponen-Pimiä, R.; Nohynek, L.; Alakomi, H.L.; Oksman-Caldentey, K.M. Bioactive berry compounds-novel tools against human pathogens. Appl. Microbiol. Biotechnol., 2005, 67(1), 8-18.
[http://dx.doi.org/10.1007/s00253-004-1817-x] [PMID: 15578177]
[65]
Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol., 2000, 56(1), 3-12.
[http://dx.doi.org/10.1016/S0168-1605(00)00218-X] [PMID: 10857921]
[66]
McDougall, G.J.; Ross, H.A.; Ikeji, M.; Stewart, D. Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro. J. Agric. Food Chem., 2008, 56(9), 3016-3023.
[http://dx.doi.org/10.1021/jf073469n] [PMID: 18412361]
[67]
Mutanen, M.; Pajari, A.M.; Paivarinta, E.; Misikangas, M.; Rajakangas, J.; Marttinen, M.; Oikarinen, S. Berries as chemopreventive dietary constituents--a mechanistic approach with the ApcMin/+ mouse. Asia Pac. J. Clin. Nutr., 2008, 17(Suppl. 1), 123-125.
[PMID: 18296318]
[68]
Päivärinta, E.; Pajari, A.M.; Törrönen, R.; Mutanen, M. Ellagic acid and natural sources of ellagitannins as possible chemopreventive agents against intestinal tumorigenesis in the Min mouse. Nutr. Cancer, 2006, 54(1), 79-83.
[http://dx.doi.org/10.1207/s15327914nc5401_9] [PMID: 16800775]
[69]
Pajari, A.M.; Päivärinta, E.; Paavolainen, L.; Vaara, E.; Koivumäki, T.; Garg, R.; Heiman-Lindh, A.; Mutanen, M.; Marjomäki, V.; Ridley, A.J. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice. Oncotarget, 2016, 7(28), 43907-43923.
[http://dx.doi.org/10.18632/oncotarget.9724] [PMID: 27270323]
[70]
Wu, Q.K.; Koponen, J.M.; Mykkänen, H.M.; Törrönen, A.R. Berry phenolic extracts modulate the expression of p21(WAF1) and Bax but not Bcl-2 in HT-29 colon cancer cells. J. Agric. Food Chem., 2007, 55(4), 1156-1163.
[http://dx.doi.org/10.1021/jf062320t] [PMID: 17243699]
[71]
Elven, R. Lids Norsk Flora, 7th; Det NorskeSamlaget: Oslo, Norway, 2005.
[72]
Stjernberg, T.; Carlsson, R.; Hæggström, C.A.; Hæggström, E.; Sundberg, K. A new record of Arctic Bramble, Rubus arcticus, in the Åland Islands, SW Finland. Memo. Soc. Fauna Flora Fenn., 2010, 86, 54-58.
[73]
Kallio, H.P. Historical review on the identification of mesifurane, 2,5-dimethyl-4-methoxy-3(2 h)-furanone, and its occurrence in berries and fruits. J. Agric. Food Chem., 2018, 66(11), 2553-2560.
[http://dx.doi.org/10.1021/acs.jafc.8b00519] [PMID: 29489353]
[74]
Sõukand, R.; Quave, C.L.; Pieroni, A.; Pardo-de-Santayana, M.; Tardío, J.; Kalle, R.; Łuczaj, Ł.; Svanberg, I.; Kolosova, V.; Aceituno-Mata, L.; Menendez-Baceta, G.; Kołodziejska-Degórska, I.; Pirożnikow, E.; Petkevičius, R.; Hajdari, A.; Mustafa, B. Plants used for making recreational tea in Europe: A review based on specific research sites. J. Ethnobiol. Ethnomed., 2013, 9(1), 58.
[http://dx.doi.org/10.1186/1746-4269-9-58] [PMID: 23941692]
[75]
Kostamo, K.; Toljamo, A.; Antonius, K.; Kokko, H.; Kärenlampi, S.O. Morphological and molecular identification to secure cultivar maintenance and management of self-sterile Rubus arcticus. Ann. Bot. (Lond.), 2013, 111(4), 713-721.
[http://dx.doi.org/10.1093/aob/mct029] [PMID: 23456688]
[76]
Häkkinen, S.; Kokko, H.; Kärenlampi, S.; Paasisalo, S. Sugars and organic acids in clones and cultivars of arctic bramble and hybrid. Sensory evaluation of juices and jellies. Agric. Food Sci., 1995, 4(4), 385-395.
[http://dx.doi.org/10.23986/afsci.72616]
[77]
Weisfeld, L.I.; Opalko, A.I.; Bekuzarova, S.A. Temperate horticulture for sustainable development and environment. In: Ecological Aspects; Routledge, Taylor & Francis Group: London, UK, 2018.
[http://dx.doi.org/10.1201/9781351249393]
[78]
Moerman, D.E. Native American Food Plants: An Ethnobotanical Dictionary; Timber Press, Inc.: Portland, OR, USA, 2010.
[79]
Grae, I. Nature’s colors - Dyes from plants; MacMillan Publishing Co.: New York, NY, USA, 1979.
[80]
Hartung, T. Cattail moonshine & milkweed medicine: The curious stories of 43 amazing North American native plants; Storrey Publishing: North Adams, MA, USA, 2016.
[81]
Lindvall, A.; Lindvall, G. Arcticberries. Arctic rasperry, 2021. Available from: http://www.arcticberries.se/arctic-raspberry.htm
[82]
Anthony, J.P.; Fyfe, L.; Stewart, D.; McDougall, G.J. Differential effectiveness of berry polyphenols as anti-giardial agents. Parasitology, 2011, 138(9), 1110-1116.
[http://dx.doi.org/10.1017/S0031182011000825] [PMID: 21813029]
[83]
Ockerman, P.A. Improvement of arterial stiffness by a natural antioxidant preparation. J. Orthomol. Med., 2015, 30(2), 103-106.
[84]
McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity In vitro. Food Chem., 2009, 115(1), 193-199.
[http://dx.doi.org/10.1016/j.foodchem.2008.11.093]
[85]
Wu, K.; Center, T.D.; Yang, C.; Zhang, J.; Zhang, J.; Ding, J. Potential classical biological control of invasive Himalayan yellow raspberry, Rubus ellipticus (Rosaceae). Pac. Sci., 2013, 67(1), 59-80.
[http://dx.doi.org/10.2984/67.1.5]
[86]
Maikhuri, R.K.; Semwal, R.L.; Singh, A.; Nautiyal, M.C. Wild fruits as contribution to sustainable rural development: A case study from the Garhwal Himalaya. Int. J. Sustain. Dev. World Ecol., 1994, 1(1), 56-68.
[http://dx.doi.org/10.1080/13504509409469861]
[87]
Pandey, Y.; Bhatt, S.S. Overview of Himalayan yellow raspberry (Rubus ellipticus Smith.): A nutraceutical plant. J. Appl. Nat. Sci., 2016, 8(1), 494-499.
[http://dx.doi.org/10.31018/jans.v8i1.824]
[88]
Badhani, A.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Variation in chemical constituents and antioxidant activity in yellow himalayan (Rubus ellipticus smith) and hill raspberry (Rubus niveus Thunb.). J. Food Biochem., 2015, 39(6), 663-672.
[http://dx.doi.org/10.1111/jfbc.12172]
[89]
Sharma, M.; Kaur, J.; Kumar, V.; Sharma, K.R. Nutraceutical potential of Rubus ellipticus: a critical review on phytochemical potential, health benefits, and utilization. Think India Journal, 2019, 22(37), 878-898.
[90]
Ahmad, M.; Masood, S.; Sultana, S.; Hadda, T.B.; Bader, A.; Zafar, M. Report: Antioxidant and nutraceutical value of wild medicinal Rubus berries. Pak. J. Pharm. Sci., 2015, 28(1), 241-247.
[PMID: 25553701]
[91]
Schulz, M.; Chim, J.F. Nutritional and bioactive value of Rubus berries. Food Biosci., 2019, 31, 100438.
[http://dx.doi.org/10.1016/j.fbio.2019.100438]
[92]
Saini, R.; Dangwal, K.; Singh, H.; Garg, V. Antioxidant and antiproliferative activities of phenolics isolated from fruits of Himalayan yellow raspberry (Rubus ellipticus). J. Food Sci. Technol., 2014, 51(11), 3369-3375.
[http://dx.doi.org/10.1007/s13197-012-0836-3] [PMID: 26396333]
[93]
Sasikumar, J.M.; Poulin, R.C.; Meseret, C.E.; Selvakumar, P. In vitro analysis of antioxidant capacity of Indian yellow raspberry (Rubus ellipticus Smith.). Int. Food Res. J., 2015, 22(4), 1338-1346.
[94]
Sójka, M.; Janowski, M.; Grzelak-Błaszczyk, K. Stability and transformations of raspberry (Rubus idaeus L.) ellagitannins in aqueous solutions. Eur. Food Res. Technol., 2019, 245(3), 1-10.
[http://dx.doi.org/10.1007/s00217-018-3212-3]
[95]
Rani, S.; Rana, J.C.; Rana, P.K. Ethnomedicinal plants of Chamba district, Himachal Pradesh, India. J. Med. Res., 2013, 7(42), 3147-3157.
[96]
Rana, D.; Bhatt, A.; Lal, B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari’s) of Churah subdivision, district Chamba, Western Himalaya. J. Ethnobiol. Ethnomed., 2019, 15(1), 10.
[http://dx.doi.org/10.1186/s13002-019-0286-3] [PMID: 30744678]
[97]
Pfoze, N.L.; Kumar, Y.; Myrboh, B. Survey and assessment of ethnomedicinal plants used in Senapati District of Manipur State, Northeast India. Phytopharmacology, 2012, 2012(2), 285-311.
[98]
Uprety, Y.; Poudel, R.C.; Asselin, H.; Boon, E. Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project, Western Nepal. Environ. Dev. Sustain., 2011, 13(3), 463-492.
[http://dx.doi.org/10.1007/s10668-010-9271-7]
[99]
Khanal, L.N.; Sharma, K.R.; Pokharel, Y.R.; Kalauni, S.K. Assessment of phytochemical, antioxidant and antimicrobial activities of some medicinal plants from Kaski district of Nepal. Am. J. Plant Sci., 2020, 11(9), 1383-1397.
[http://dx.doi.org/10.4236/ajps.2020.119099]
[100]
de Rus Jacquet, A.; Subedi, R.; Ghimire, S.K.; Rochet, J.C. Nepalese traditional medicine and symptoms related to Parkinson’s disease and other disorders: Patterns of the usage of plant resources along the Himalayan altitudinal range. J. Ethnopharmacol., 2014, 153(1), 178-189.
[http://dx.doi.org/10.1016/j.jep.2014.02.016] [PMID: 24556225]
[101]
Ambu, G.; Chaudhary, R.P.; Mariotti, M.; Cornara, L. Traditional uses of medicinal plants by ethnic people in the kavrepalanchok district, central Nepal. Plants, 2020, 9(6), E759.
[http://dx.doi.org/10.3390/plants9060759] [PMID: 32560543]
[102]
Pradhan, B.K.; Badola, H.K. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim, India. J. Ethnobiol. Ethnomed., 2008, 4(1), 22.
[http://dx.doi.org/10.1186/1746-4269-4-22] [PMID: 18826658]
[103]
Kirtikar, K.R.; Basu, B.D. Indian medicinal plants. Oriental enterprises, 2001, 5, 1487-1488.
[104]
Maity, D.; Pradhan, N.; Chauhan, A.S. Folk uses of some medicinal plants from North Sikkim. Indian J. Tradit. Knowl., 2004, 3, 66-71.
[105]
Vadivelan, R.; Bhadra, S.; Ravi, A.S.; Singh, K.; Shanish, A.; Elango, K.; Suresh, B. Evaluation of anti-inflammatory and membrane stabilizing property of ethanol root extract of Rubus ellipticus smith and albino rats. J. Nat. Rem., 2009, 9(1), 74-78.
[106]
Bhatia, H.; Sharma, Y.P.; Manhas, R.K.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol., 2014, 151(2), 1005-1018.
[http://dx.doi.org/10.1016/j.jep.2013.12.017] [PMID: 24365639]
[107]
Yaseen, G.; Ahmad, M.; Zafar, M.; Sultana, S.; Kayani, S.; Cetto, A.A.; Shaheen, S. Traditional management of diabetes in Pakistan: Ethnobotanical investigation from Traditional Health Practitioners. J. Ethnopharmacol., 2015, 174, 91-117.
[http://dx.doi.org/10.1016/j.jep.2015.07.041] [PMID: 26231447]
[108]
George, B.P.; Parimelazhagan, T.; Kumar, Y.T.; Sajeesh, T. Antitumor and wound healing properties of Rubus ellipticus smith. J. Acupunct. Meridian Stud., 2015, 8(3), 134-141.
[http://dx.doi.org/10.1016/j.jams.2013.10.002] [PMID: 26100067]
[109]
Rana, A.C.; Santani, D.D. Pharmacological screening of the alcoholic extract of the leaves of Rubus ellipticus. Indian J. Pharm. Sci., 1990, 52(4), 174-177.
[110]
George, B.P.; Parimelazhagan, P.; Saravanan, S. Anti-inflammatory, analgesic and antipyretic activities of Rubus ellipticus smith. leaf methanol extract. Int. J. Pharm. Pharm. Sci., 2013, 5, 220-224.
[111]
Latha, R.; Trayee, S.; Sagaya, J.R.; Agastian, P. Evaluation of antimicrobial efficiency and alpha-glucosidase inhibition of Rubus ellipticus smith. leaf extracts and its phytochemical analysis. Asian J. Pharm. Clin. Res., 2015, 8, 422-426.
[112]
Panda, S.K.; Padhi, L.; Leyssen, P.; Liu, M.; Neyts, J.; Luyten, W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the similipal biosphere reserve, Odisha, India. Front. Pharmacol., 2017, 8, 658.
[http://dx.doi.org/10.3389/fphar.2017.00658] [PMID: 29109684]
[113]
Saklani, S.; Chandra, S.; Badoni, P.P.; Dogra, S. Antimicrobial activity, nutritional profile and phytochemical screening of wild edible fruit of Rubus ellipticus. Int. J. Med. Aromat. Plants, 2012, 2(2), 269-274.
[114]
Sachdeva, C.; Mohanakrishnan, D.; Kumar, S.; Kaushik, N.K. Assessment of in vitro and in vivo antimalarial efficacy and GC-fingerprints of selected medicinal plant extracts. Exp. Parasitol., 2020, 219, 108011.
[http://dx.doi.org/10.1016/j.exppara.2020.108011] [PMID: 33010286]
[115]
Muniyandia, K.; George, E.; Sathyanarayanana, S.; George, B.P.; Abrahamse, H.; Thamburaj, S.; Thangaraj, P. Phenolics, tannins, flavonoids and anthocyanins contents influencedantioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Sci. Hum. Wellness, 2019, 8(1), 73-81.
[http://dx.doi.org/10.1016/j.fshw.2019.03.005]
[116]
Sharma, U.S.; Kumar, A. Anti-diabetic effect of Rubus ellipticus fruit extracts in alloxan induced diabetic rats. J. Diabetol., 2011, 2, 1-4.
[117]
Sharma, U.S.; Kumar, A. Therapeutic efficacy of Rubus ellipticus (Smith) fruits extracts in acute acetaminophen induced nephrotoxicity in rats. Pharmacologyonline, 2010, 3, 514-524.
[118]
EU Register. Nutrition and health claims. 2021. Available from: https://ec.europa.eu/food/safety/labelling_nutrition/claims/register/public/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy