Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of Novel Urea and Sulfonamide Derivatives of Isatin Schiff Bases as Potential Anti-cancer Agents

Author(s): Ural U. Demirel, Süreyya Ölgen*, Ecem F. Karaman, Mehmet Tanol, Sibel Özden and Hakan Göker

Volume 19, Issue 9, 2022

Published on: 26 April, 2022

Page: [847 - 857] Pages: 11

DOI: 10.2174/1570180819666220224115908

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Among the many types of chemical scaffolds, isatin derivatives, including their Schiff bases, have been extensively studied to find novel therapeutic agents against cancer. Amide or urea groups containing derivatives were also discovered to be tyrosine kinase inhibitors.

Objective: This study aims to find potent compounds by designing 16 novel urea and sulfonamide derivatives of isatin Schiff bases.

Methods: Compounds were tested against PC-3, HepG2, SH-SY5Y, A549 cancerous, and NIH/3T3 noncancerous cell lines using cell culture assay.

Results: Among the tested compounds 7a, 7b, 7c, 7d, 7h, 8a, and 8f presented potential inhibitions against cellular proliferation activities of HepG2 cells with average IC50 values of 31.97, 42.13, 31.50, 47.98, 32.59, 43.44, and 37.81 μM, respectively. They showed better inhibition potencies than the reference compound doxorubicin, and its value was measured as 51.15 μM in the same culture assay. The cytotoxic activities of the compounds in other cell lines were found to be less potent compared to doxorubicin.

Conclusion: In vitro experiments demonstrated that designed compounds have the first evidence that they might be active against hepatocellular carcinoma. According to ADME prediction results, all compounds presented drug-like and good metabolic properties.

Keywords: Urea and sulfonamide derivatives, isatin, schiff bases, cytotoxicity, ADME prediction, synthesis, molecular docking.

Graphical Abstract
[1]
Khan, F.A.; Maalik, A. Advances in pharmacology of isatin and its derivatives. A review. Trop. J. Pharm. Res., 2015, 14(10), 1937-1942.
[http://dx.doi.org/10.4314/tjpr.v14i10.28]
[2]
Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; Chen, I.; Bycott, P.W.; Baum, C.M.; Figlin, R.A. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med., 2007, 356(2), 115-124.
[http://dx.doi.org/10.1056/NEJMoa065044 ] [PMID: 17215529]
[3]
Xiang, Q.F.; Wang, F.; Su, X.D.; Liang, Y.J.; Zheng, L.S.; Mi, Y.J.; Chen, W.Q.; Fu, L.W. Effect of BIBF 1120 on reversal of ABCB1-mediated multidrug resistance. Cell Oncol. (Dordr.), 2011, 34(1), 33-44.
[http://dx.doi.org/10.1007/s13402-010-0003-7 ] [PMID: 21290212]
[4]
Krug, M.; Hilgeroth, A. Recent advances in the development of multi-kinase inhibitors. Mini Rev. Med. Chem., 2008, 8(13), 1312-1327.
[http://dx.doi.org/10.2174/138955708786369591 ] [PMID: 18991750]
[5]
Zhuo, H.; Zhang, Z.; Liu, Y.; Zhang, J.; Zhao, G. Design, synthesis and biological evaluation of novel 1,5-disubstituted isatin derivatives as antitumor agents. Med. Chem. Res., 2020, 29(12), 2170-2180.
[http://dx.doi.org/10.1007/s00044-020-02627-z]
[6]
Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver, L.K.; McMahon, G.; Tang, C. Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J. Med. Chem., 1999, 42(25), 5120-5130.
[http://dx.doi.org/10.1021/jm9904295 ] [PMID: 10602697]
[7]
Chu, W.; Zhang, J.; Zeng, C.; Rothfuss, J.; Tu, Z.; Chu, Y.; Reichert, D.E.; Welch, M.J.; Mach, R.H. N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: Synthesis, in vitro activity, and molecular modeling studies. J. Med. Chem., 2005, 48(24), 7637-7647.
[http://dx.doi.org/10.1021/jm0506625 ] [PMID: 16302804]
[8]
Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem., 2014, 74, 742-750.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.040 ] [PMID: 24176732]
[9]
Azizian, J.; Mohammadi, M.K.; Firuzi, O.; Razzaghi-asl, N.; Miri, R. Synthesis, biological activity and docking study of some new isatin Schiff base derivatives. Med. Chem. Res., 2011, 21(11), 3730-3740.
[http://dx.doi.org/10.1007/s00044-011-9896-6]
[10]
Wang, R.; Yin, X.; Zhang, Y.; Zhang, T.; Shi, W. Design, Synthesis, and in vitro anti-tumor activities of 1,2,3-triazole- tetraethylene glycol tethered heteronuclear bis-Schiff base derivatives of isatin. J. Heterocycl. Chem., 2018, 55(12), 3001-3005.
[http://dx.doi.org/10.1002/jhet.3341]
[11]
Solomon, V.R.; Hu, C.; Lee, H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem., 2009, 17(21), 7585-7592.
[http://dx.doi.org/10.1016/j.bmc.2009.08.068 ] [PMID: 19804979]
[12]
Yang, C.; Liu, X.; Xu, X.; Li, H.; Li, Z.; Zhao, H. Preparation of isatin-5-sulfonamide derivative for treating mixed lineage leukemia. Faming Zhuanli Shenqing. CN Patent CN108299280A20180720, 2018.
[13]
Magiatis, P.; Polychronopoulos, P.; Skaltsounis, A.L.; Lozach, O.; Meijer, L.; Miller, D.B.; O’Callaghan, J.P. Indirubins deplete striatal monoamines in the Intact and MPTP-treated mouse brain and block kainate-induced striatal astrogliosis. Neurotoxicol. Teratol., 2010, 32(2), 212-219.
[http://dx.doi.org/10.1016/j.ntt.2009.12.005 ] [PMID: 20034560]
[14]
Olgen, S. Design strategies structures and molecular interactions of small molecule Src inhibitors. Anticancer. Agents Med. Chem., 2016, 16(8), 992-1002.
[http://dx.doi.org/10.2174/1871520616666160223111800 ] [PMID: 26902603]
[15]
Li, P.; Tan, Y.; Liu, G.; Liu, Y.; Liu, J.; Yin, Y.; Zhao, G. Synthesis and biological evaluation of novel indoline-2,3-dione derivatives as antitumor agents. Drug Discov. Ther., 2014, 8(3), 110-116.
[http://dx.doi.org/10.5582/ddt.2014.01012 ] [PMID: 25031042]
[16]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4 ] [PMID: 6606682]
[17]
Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res., 1988, 48(3), 589-601.
[PMID: 3335022]
[18]
Karaman, E.F.; Ozden, S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res., 2019, 35(3), 309-320.
[http://dx.doi.org/10.1007/s12550-019-00358-8 ] [PMID: 30953299]
[19]
Swiss Institute of Bioinformatics. SwissADME , 2021. Available from: http://www.swissadme.ch/ (Accessed on: September 8, 2020).
[20]
Jones, B.C.; Middleton, D.S.; Youdim, K. Potential application of D-optimal designs in the efficient investigation of cytochrome P450 inhibition kinetic models. Prog. Med. Chem., 2009, 47, 239-263.
[http://dx.doi.org/10.1016/S0079-6468(08)00206-3 ] [PMID: 19328293]
[21]
Andrade, C.H.; Silva, D.C.; Braga, R.C. In silico prediction of drug metabolism by P450. Curr. Drug Metab., 2014, 15(5), 514-525.
[http://dx.doi.org/10.2174/1389200215666140908102530 ] [PMID: 25204822]
[22]
Kirchmair, J.; Göller, A.H.; Lang, D.; Kunze, J.; Testa, B.; Wilson, I.D.; Glen, R.C.; Schneider, G. Predicting drug metabolism: Experiment and/or computation? Nat. Rev. Drug Discov., 2015, 14(6), 387-404.
[http://dx.doi.org/10.1038/nrd4581 ] [PMID: 25907346]
[23]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0 ] [PMID: 11259830]
[24]
El-Adl, K.; Sakr, H.; El-Hddad, S.S.A.; El-Helby, A-G.A.; Nasser, M.; Abulkhai, H.S. Design, synthesis, docking, ADMET profile, and anti-cancer evaluations of novel thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Arch. Pharm., 2021, 2021e2000491
[http://dx.doi.org/10.1002/ardp.202000491.16]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy