Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Arginine Vasopressin, Synaptic Plasticity, and Brain Networks

Author(s): Anna B. Marcinkowska, Vinicia C. Biancardi and Pawel J. Winklewski*

Volume 20, Issue 12, 2022

Published on: 27 July, 2022

Page: [2292 - 2302] Pages: 11

DOI: 10.2174/1570159X20666220222143532

Price: $65

Open Access Journals Promotions 2
Abstract

The arginine vasopressin (AVP), a neurohypophysial hormone, is synthesized within specific sites of the central nervous system and axonally transported to multiple areas, acting as a neurotransmitter/ neuromodulator. In this context, AVP acts primarily through vasopressin receptors A and B and is involved in regulating complex social and cognition behaviors and basic autonomic function. Many earlier studies have shown that AVP as a neuromodulator affects synaptic plasticity. This review updates our current understanding of the underlying molecular mechanisms by which AVP affects synaptic plasticity. Moreover, we discuss AVP modulatory effects on event-related potentials and blood oxygen level-dependent responses in specific brain structures, and AVP effects on the network level oscillatory activity. We aimed at providing an overview of the AVP effects on the brain from the synaptic to the network level.

Keywords: Arginine-vasopressin, synaptic plasticity, brain networks, neuronal oscillatory activity, blood-oxygen-leveldependent activity, network-level oscillatory activity.

Graphical Abstract
[1]
Christ-Crain, M.; Fenske, W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat. Rev. Endocrinol., 2016, 12(3), 168-176.
[http://dx.doi.org/10.1038/nrendo.2015.224] [PMID: 26794439]
[2]
Trudel, E.; Bourque, C.W. Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat. Neurosci., 2010, 13(4), 467-474.
[http://dx.doi.org/10.1038/nn.2503] [PMID: 20190744]
[3]
Disturnal, J.E.; Veale, W.L.; Pittman, Q.J. Modulation by arginine vasopressin of glutamate excitation in the ventral septal area of the rat brain. Can. J. Physiol. Pharmacol., 1987, 65(1), 30-35.
[http://dx.doi.org/10.1139/y87-006] [PMID: 3567716]
[4]
Peters, S.; Kreulen, D.L. Vasopressin-mediated slow EPSPs in a mammalian sympathetic ganglion. Brain Res., 1985, 339(1), 126-129.
[http://dx.doi.org/10.1016/0006-8993(85)90630-4] [PMID: 2992691]
[5]
Ferris, C.F. Functional magnetic resonance imaging and the neurobiology of vasopressin and oxytocin. Prog. Brain Res., 2008, 170, 305-320.
[http://dx.doi.org/10.1016/S0079-6123(08)00425-1] [PMID: 18655891]
[6]
Stahnisch, F.W.; Nitsch, R. Santiago Ramón y Cajal’s concept of neuronal plasticity: The ambiguity lives on. Trends Neurosci., 2002, 25(11), 589-591.
[http://dx.doi.org/10.1016/S0166-2236(02)02251-8] [PMID: 12392934]
[7]
Konorski, J. Conditioned Reflexes and Neuron Organization; Cambridge University Press, 1948.
[8]
Hebb, D. The Organization of Behavior.A Neuropsychological Theory; John Wiley and Sons, Inc., 1949.
[9]
Bliss, T.V.P.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 1973, 232(2), 331-356.
[http://dx.doi.org/10.1113/jphysiol.1973.sp010273] [PMID: 4727084]
[10]
Nicoll, R.A. A brief history of long-term potentiation. Neuron, 2017, 93(2), 281-290.
[http://dx.doi.org/10.1016/j.neuron.2016.12.015] [PMID: 28103477]
[11]
Antoni, F.A. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front. Neuroendocrinol., 1993, 14(2), 76-122.
[http://dx.doi.org/10.1006/frne.1993.1004] [PMID: 8387436]
[12]
Whittington, M.A.; Traub, R.D.; Adams, N.E. A future for neuronal oscillation research. Brain Neurosci. Adv., 2019, 2, 2398212818794827.
[http://dx.doi.org/10.1177/2398212818794827] [PMID: 32166146]
[13]
Venkadesh, S.; Van Horn, J.D. Integrative models of brain structure and dynamics: Concepts, challenges, and methods. Front. Neurosci., 2021, 15, 752332.
[http://dx.doi.org/10.3389/fnins.2021.752332] [PMID: 34776853]
[14]
Logothetis, NK; Pauls, J; Augath, M; Trinath, T; Oeltermann, A Neurophysiological investigation of the basis of the fMRI signal Nat 2001 4126843, 2001, 412(6843), 150-157.
[http://dx.doi.org/10.1038/35084005]
[15]
Kringelbach, M.L.; Cruzat, J.; Cabral, J.; Knudsen, G.M.; Carhart-Harris, R.; Whybrow, P.C.; Logothetis, N.K.; Deco, G. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9566-9576.
[http://dx.doi.org/10.1073/pnas.1921475117] [PMID: 32284420]
[16]
Gizowski, C.; Zaelzer, C.; Bourque, C.W. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature, 2016, 537(7622), 685-688.
[http://dx.doi.org/10.1038/nature19756] [PMID: 27680940]
[17]
Sofroniew, M.V. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog. Brain Res., 1983, 60(C), 101-114.
[http://dx.doi.org/10.1016/S0079-6123(08)64378-2] [PMID: 6198686]
[18]
Buijs, R.M.; Swaab, D.F. Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Res., 1979, 204(3), 355-365.
[http://dx.doi.org/10.1007/BF00233648] [PMID: 527026]
[19]
Caffé, A.R.; van Leeuwen, F.W. Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tissue Res., 1983, 233(1), 23-33.
[http://dx.doi.org/10.1007/BF00222229] [PMID: 6616564]
[20]
van Leeuwen, F.; Caffé, R. Vasopressin-immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat. Cell Tissue Res., 1983, 228(3), 525-534.
[http://dx.doi.org/10.1007/BF00211473] [PMID: 6339062]
[21]
Buijs, R.M.; Wiegerink, M.A.H.M. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res., 1978, 192(3), 423-435.
[http://dx.doi.org/10.1007/BF00224932] [PMID: 699026]
[22]
Tobin, V.A.; Hashimoto, H.; Wacker, D.W.; Takayanagi, Y.; Langnaese, K.; Caquineau, C.; Noack, J.; Landgraf, R.; Onaka, T.; Leng, G.; Meddle, S.L.; Engelmann, M.; Ludwig, M. An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature, 2010, 464(7287), 413-417.
[http://dx.doi.org/10.1038/nature08826] [PMID: 20182426]
[23]
Brownstein, M.J.; Russell, J.T.; Gainer, H. Synthesis, transport, and release of posterior pituitary hormones. Science, 1980, 207(4429), 373-378.
[http://dx.doi.org/10.1126/science.6153132] [PMID: 6153132]
[24]
Leng, G.; Ludwig, M. Neurotransmitters and peptides: Whispered secrets and public announcements. J. Physiol., 2008, 586(23), 5625-5632.
[http://dx.doi.org/10.1113/jphysiol.2008.159103] [PMID: 18845614]
[25]
Ludwig, M.; Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci., 2006, 7(2), 126-136.
[http://dx.doi.org/10.1038/nrn1845] [PMID: 16429122]
[26]
Pow, D.V.; Morris, J.F. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience, 1989, 32(2), 435-439.
[http://dx.doi.org/10.1016/0306-4522(89)90091-2] [PMID: 2586758]
[27]
Son, S.J.; Filosa, J.A.; Potapenko, E.S.; Biancardi, V.C.; Zheng, H.; Patel, K.P.; Tobin, V.A.; Ludwig, M.; Stern, J.E. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron, 2013, 78(6), 1036-1049.
[http://dx.doi.org/10.1016/j.neuron.2013.04.025] [PMID: 23791197]
[28]
Kc, P.; Haxhiu, M.A.; Tolentino-Silva, F.P.; Wu, M.; Trouth, C.O.; Mack, S.O. Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites. Respir. Physiol. Neurobiol., 2002, 133(1-2), 75-88.
[http://dx.doi.org/10.1016/S1569-9048(02)00131-3] [PMID: 12385733]
[29]
Omura, T.; Nabekura, J.; Akaike, N. Intracellular pathways of V(1) and V(2) receptors activated by arginine vasopressin in rat hippocampal neurons. J. Biol. Chem., 1999, 274(46), 32762-32770.
[http://dx.doi.org/10.1074/jbc.274.46.32762] [PMID: 10551836]
[30]
Rae, M.; Lemos Duarte, M.; Gomes, I.; Camarini, R.; Devi, L.A. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. Br. J. Pharmacol., 2022, 179(8), 1544-1564.
[http://dx.doi.org/10.1111/bph.15481] [PMID: 33817785]
[31]
Loup, F.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res., 1991, 555(2), 220-232.
[http://dx.doi.org/10.1016/0006-8993(91)90345-V] [PMID: 1657300]
[32]
Campos-Lira, E.; Kelly, L.; Seifi, M.; Jackson, T.; Giesecke, T.; Mutig, K.; Koshimizu, T.A.; Hernandez, V.S.; Zhang, L.; Swinny, J.D. Dynamic modulation of mouse locus coeruleus neurons by vasopressin 1a and 1b receptors. Front. Neurosci., 2018, 12, 919.
[http://dx.doi.org/10.3389/fnins.2018.00919] [PMID: 30618551]
[33]
Hernández-Pérez, O.R.; Hernández, V.S.; Nava-Kopp, A.T.; Barrio, R.A.; Seifi, M.; Swinny, J.D.; Eiden, L.E.; Zhang, L. A synaptically connected hypothalamic magnocellular vasopressin-locus coeruleus neuronal circuit and its plasticity in response to emotional and physiological stress. Front. Neurosci., 2019, 13, 196.
[http://dx.doi.org/10.3389/fnins.2019.00196] [PMID: 30949017]
[34]
Mizuno, S.; Takahashi, Y.; Kato, Z.; Goto, H.; Kondo, N.; Hoshi, H. Magnetic resonance spectroscopy of tubers in patients with tuberous sclerosis. Acta Neurol. Scand., 2000, 102(3), 175-178.
[http://dx.doi.org/10.1034/j.1600-0404.2000.102003175.x] [PMID: 10987377]
[35]
Mühlethaler, M.; Dreifuss, J.J.; Gähwiler, B.H. Vasopressin excites hippocampal neurones. Nature, 1982, 296(5859), 749-751.
[http://dx.doi.org/10.1038/296749a0] [PMID: 6122162]
[36]
Tiberiis, B.E.; McLennan, H.; Wilson, N. Neurohypophysial peptides and the hippocampus. II. Excitation of rat hippocampal neurones by oxytocin and vasopressin applied in vitro. Neuropeptides, 1983, 4(1), 73-86.
[http://dx.doi.org/10.1016/0143-4179(83)90011-2] [PMID: 6669225]
[37]
Sakurai, E.; Maeda, T.; Kaneko, S.; Akaike, A.; Satoh, M. Inhibition by [Arg8]-vasopressin of long term potentiation in guinea pig hippocampal slice. Jpn. J. Pharmacol., 1998, 77(1), 103-105.
[http://dx.doi.org/10.1254/jjp.77.103] [PMID: 9639066]
[38]
Ramanathan, G.; Cilz, N.I.; Kurada, L.; Hu, B.; Wang, X.; Lei, S. Vasopressin facilitates GABAergic transmission in rat hippocampus via activation of V(1A) receptors. Neuropharmacology, 2012, 63(7), 1218-1226.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.043] [PMID: 22884625]
[39]
Hu, B.; Boyle, C.A.; Lei, S. Roles of PLCβ PIP2, and GIRK channels in arginine vasopressin-elicited excitation of CA1 pyramidal neurons. J. Cell. Physiol., 2022, 237(1), 660-674.
[http://dx.doi.org/10.1002/jcp.30535] [PMID: 34287874]
[40]
Pagani, J.H.; Zhao, M.; Cui, Z. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol. Psychiatry, 2014, 20(4), 490-499.
[http://dx.doi.org/10.1038/mp.2014.47]
[41]
Chevaleyre, V.; Siegelbaum, S.A. Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron, 2010, 66(4), 560-572.
[http://dx.doi.org/10.1016/j.neuron.2010.04.013] [PMID: 20510860]
[42]
Piskorowski, R.A.; Chevaleyre, V. Memory circuits: CA2. Curr. Opin. Neurobiol., 2018, 52, 54-59.
[http://dx.doi.org/10.1016/j.conb.2018.04.015] [PMID: 29705549]
[43]
Boyle, C.A.; Hu, B.; Quaintance, K.L.; Lei, S. Involvement of TRPC5 channels, inwardly rectifying K+ channels, PLCβ and PIP2 in vasopressin-mediated excitation of medial central amygdala neurons. J. Physiol., 2021, 599(12), 3101-3119.
[http://dx.doi.org/10.1113/JP281260] [PMID: 33871877]
[44]
Cragg, B.; Ji, G.; Neugebauer, V. Differential contributions of vasopressin V1A and oxytocin receptors in the amygdala to pain-related behaviors in rats. Mol. Pain, 2016, 12, 1744806916676491.
[http://dx.doi.org/10.1177/1744806916676491] [PMID: 27837170]
[45]
Bisetti, A.; Cvetkovic, V.; Serafin, M.; Bayer, L.; Machard, D.; Jones, B.E.; Mühlethaler, M. Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience, 2006, 142(4), 999-1004.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.018] [PMID: 16996221]
[46]
Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 2005, 308(5719), 245-248.
[http://dx.doi.org/10.1126/science.1105636] [PMID: 15821089]
[47]
Yang, C.; Zhang, X.; Gao, J.; Wang, M.; Yang, Z. Arginine vasopressin ameliorates spatial learning impairments in chronic cerebral hypoperfusion via V1a receptor and autophagy signaling partially. Transl. Psychiatry, 2017, 7(7), 1174.
[http://dx.doi.org/10.1038/tp.2017.121]
[48]
Kundu, M.; Thompson, C.B. Autophagy: Basic principles and relevance to disease. Annu. Rev. Pathol., 2008, 3, 427-455.
[http://dx.doi.org/10.1146/annurev.pathmechdis.2.010506.091842] [PMID: 18039129]
[49]
Dodt, C.; Pietrowsky, R.; Sewing, A.; Zabel, A.; Fehm, H.L.; Born, J. Effects of vasopressin on event-related potential indicators of cognitive stimulus processing in young and old humans. J. Gerontol., 1994, 49(4), M183-M188.
[http://dx.doi.org/10.1093/geronj/49.4.M183] [PMID: 8014393]
[50]
Thompson, R.R.; George, K.; Walton, J.C.; Orr, S.P.; Benson, J. Sex-specific influences of vasopressin on human social communication. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7889-7894.
[http://dx.doi.org/10.1073/pnas.0600406103] [PMID: 16682649]
[51]
Lee, R.J.; Coccaro, E.F.; Cremers, H.; McCarron, R.; Lu, S.F.; Brownstein, M.J.; Simon, N.G. A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: An fMRI study. Front. Syst. Neurosci., 2013, 7, 100.
[http://dx.doi.org/10.3389/fnsys.2013.00100] [PMID: 24376401]
[52]
Rilling, J.K.; DeMarco, A.C.; Hackett, P.D.; Chen, X.; Gautam, P.; Stair, S.; Haroon, E.; Thompson, R.; Ditzen, B.; Patel, R.; Pagnoni, G. Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology, 2014, 39(1), 237-248.
[http://dx.doi.org/10.1016/j.psyneuen.2013.09.022] [PMID: 24157401]
[53]
Wu, X.; Feng, C.; He, Z.; Gong, X.; Luo, Y.J.; Luo, Y. Gender-specific effects of vasopressin on human social communication: An ERP study. Horm. Behav., 2019, 113, 85-94.
[http://dx.doi.org/10.1016/j.yhbeh.2019.04.014] [PMID: 31059697]
[54]
Wu, X.; Xu, P.; Luo, Y.J.; Feng, C. Differential effects of intranasal vasopressin on the processing of adult and infant cues: An ERP study. Front. Hum. Neurosci., 2018, 12, 329.
[http://dx.doi.org/10.3389/fnhum.2018.00329] [PMID: 30158862]
[55]
Zink, C.F.; Stein, J.L.; Kempf, L.; Hakimi, S.; Meyer-Lindenberg, A. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J. Neurosci., 2010, 30(20), 7017-7022.
[http://dx.doi.org/10.1523/JNEUROSCI.4899-09.2010] [PMID: 20484643]
[56]
Costafreda, S.G.; Fu, C.H.Y.; Lee, L.; Everitt, B.; Brammer, M.J.; David, A.S. A systematic review and quantitative appraisal of fMRI studies of verbal fluency: Role of the left inferior frontal gyrus. Hum. Brain Mapp., 2006, 27(10), 799-810.
[http://dx.doi.org/10.1002/hbm.20221] [PMID: 16511886]
[57]
Kelly, E.A.; Thomas, V.K.; Indraghanty, A.; Fudge, J.L. Perigenual and subgenual anterior cingulate afferents converge on common pyramidal cells in amygdala subregions of the macaque. J. Neurosci., 2021, 41(47), 9742-9755.
[http://dx.doi.org/10.1523/JNEUROSCI.1056-21.2021] [PMID: 34649954]
[58]
Brunnlieb, C.; Nave, G.; Camerer, C.F.; Schosser, S.; Vogt, B.; Münte, T.F.; Heldmann, M. Vasopressin increases human risky cooperative behavior. Proc. Natl. Acad. Sci. USA, 2016, 113(8), 2051-2056.
[http://dx.doi.org/10.1073/pnas.1518825113] [PMID: 26858433]
[59]
Rubin, L.H.; Li, S.; Yao, L.; Keedy, S.K.; Reilly, J.L.; Hill, S.K.; Bishop, J.R.; Sue Carter, C.; Pournajafi-Nazarloo, H.; Drogos, L.L.; Gershon, E.; Pearlson, G.D.; Tamminga, C.A.; Clementz, B.A.; Keshavan, M.S.; Lui, S.; Sweeney, J.A. Peripheral oxytocin and vasopressin modulates regional brain activity differently in men and women with schizophrenia. Schizophr. Res., 2018, 202, 173-179.
[http://dx.doi.org/10.1016/j.schres.2018.07.003] [PMID: 30539769]
[60]
Wagner, S.; Sebastian, A.; Lieb, K.; Tüscher, O. Tadić A. A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects. BMC Neurosci., 2014, 15, 19.
[http://dx.doi.org/10.1186/1471-2202-15-19] [PMID: 24456150]
[61]
Wang, J.; Mathalon, D.H.; Roach, B.J.; Reilly, J.; Keedy, S.K.; Sweeney, J.A.; Ford, J.M. Action planning and predictive coding when speaking. Neuroimage, 2014, 91, 91-98.
[http://dx.doi.org/10.1016/j.neuroimage.2014.01.003] [PMID: 24423729]
[62]
Li, Q.; Yang, C.; Zhang, X.; Yang, Z.; Zhang, T. Arginine vasopressin attenuates dysfunction of hippocampal theta and gamma oscillations in chronic cerebral hypoperfusion via V1a receptor. Brain Res. Bull., 2019, 153, 84-92.
[http://dx.doi.org/10.1016/j.brainresbull.2019.08.012] [PMID: 31430514]
[63]
Tomasino, B; Gremese, M Effects of stimulus type and strategy on mental rotation network: An activation likelihood estimation metaanalysis Front Hum Neurosci, 2016, 9(JAN2016)
[64]
Chen, X.; Xu, Y.; Li, B.; Wu, X.; Li, T.; Wang, L.; Zhang, Y.; Lin, W.; Qu, C.; Feng, C. Intranasal vasopressin modulates resting state brain activity across multiple neural systems: Evidence from a brain imaging machine learning study. Neuropharmacology, 2021, 190, 108561.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108561] [PMID: 33852823]
[65]
Chaki, S. Vasopressin V1B receptor antagonists as potential antidepressants. Int. J. Neuropsychopharmacol., 2021, 24(6), 450-463.
[http://dx.doi.org/10.1093/ijnp/pyab013] [PMID: 33733667]
[66]
Zink, C.F.; Meyer-Lindenberg, A. Human neuroimaging of oxytocin and vasopressin in social cognition. Horm. Behav., 2012, 61(3), 400-409.
[http://dx.doi.org/10.1016/j.yhbeh.2012.01.016] [PMID: 22326707]
[67]
Urbach, J.; Goldsmith, S.R. Vasopressin antagonism in heart failure: A review of the hemodynamic studies and major clinical trials. Ther. Adv. Cardiovasc. Dis., 2021, 15, 1753944720977741.
[http://dx.doi.org/10.1177/1753944720977741] [PMID: 33435837]
[68]
Naganawa, M.; Nabulsi, N.B.; Matuskey, D.; Henry, S.; Ropchan, J.; Lin, S.F.; Gao, H.; Pracitto, R.; Labaree, D.; Zhang, M.R.; Suhara, T.; Nishino, I.; Sabia, H.; Ozaki, S.; Huang, Y.; Carson, R.E. Imaging pituitary vasopressin 1B receptor in humans with the PET radiotracer 11C-TASP699. J. Nucl. Med., 2022, 63(4), 609-614.
[http://dx.doi.org/10.2967/jnumed.121.262430] [PMID: 34385336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy