Review Article

含硒肽及其生物学应用

卷 29, 期 42, 2022

发表于: 30 March, 2022

页: [6379 - 6421] 页: 43

弟呕挨: 10.2174/0929867329666220214104010

价格: $65

conference banner
摘要

硒(Se)多年来一直以其有益的生物作用而闻名,在过去的几十年里,人们对这种微量元素的兴趣显着增加。据报道,它是重要的生物活性有机化合物的一部分, 如硒蛋白和氨基酸, 包括硒代半胱氨酸 (SeCys), 硒代蛋氨酸 (SeMet), 硒唑烷 (SeAzo), 和麦角硒因。传统的硒补充剂(主要是亚硒酸盐和硒代蛋氨酸)虽然已被证明具有一些益处,但也具有相关的毒性,从而为有机硒化合物铺平了道路,特别是硒蛋白和肽(SePs/SePPs),除了满足基本的营养硒需求外,还提供多种健康益处。本综述旨在展示近几十年来报道的含硒肽的应用。本文总结了它们的生物活性,包括神经保护、抗炎、抗癌、抗氧化、保肝和免疫调节作用。这将使读者先睹为快,以促进这一新兴研究领域的进一步发展。

关键词: 硒,硒氨基酸,含硒肽,有机硒化合物,生物活性,拟肽化合物

[1]
Hanessian, S.; McNaughton-Smith, G.; Lombart, H-G.; Lubell, W.D. Design and synthesis of conformationally constrained amino acids as versatile scaffolds and peptide mimetics. Tetrahedron, 1997, 53(38), 12789-12854.
[http://dx.doi.org/10.1016/S0040-4020(97)00476-6]
[2]
Rainaldi, M.; Moretto, V.; Crisma, M.; Peggion, E.; Mammi, S.; Toniolo, C.; Cavicchioni, G. Peptoid residues and beta-turn formation. J. Pept. Sci., 2002, 8(6), 241-252.
[http://dx.doi.org/10.1002/psc.392] [PMID: 12093001]
[3]
Saitton, S.; Del Tredici, A.L.; Mohell, N.; Vollinga, R.C.; Boström, D.; Kihlberg, J.; Luthman, K. Design, synthesis and evaluation of a PLG tripeptidomimetic based on a pyridine scaffold. J. Med. Chem., 2004, 47(26), 6595-6602.
[http://dx.doi.org/10.1021/jm049484q] [PMID: 15588094]
[4]
Lu, Y. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors. Curr. Opin. Chem. Biol., 2005, 9(2), 118-126.
[http://dx.doi.org/10.1016/j.cbpa.2005.02.017] [PMID: 15811795]
[5]
Giannis, A.; Rübsam, F., Eds.; Advances in Drug Research; Academic Press: London, 1997.
[6]
Stadtman, T.C. Biosynthesis and function of selenocysteine-containing enzymes. J. Biol. Chem., 1991, 266(25), 16257-16260.
[http://dx.doi.org/10.1016/S0021-9258(18)55285-6] [PMID: 1832153]
[7]
Stadtman, T.C. Discoveries of vitamin B12 and selenium enzymes. Annu. Rev. Biochem., 2002, 71(1), 1-16.
[http://dx.doi.org/10.1146/annurev.biochem.71.083101.134224] [PMID: 12045088]
[8]
Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide antibiotics. Chem. Rev., 2005, 105(2), 685-714.
[http://dx.doi.org/10.1021/cr0300441] [PMID: 15700961]
[9]
Roy, G.; Sarma, B.K.; Phadnis, P.P.; Mugesh, G. Selenium-containing enzymes in mammals: chemical perspectives. J. Chem. Sci., 2005, 117(4), 287-303.
[http://dx.doi.org/10.1007/BF02708441]
[10]
Arnér, E.S.; Sarioglu, H.; Lottspeich, F.; Holmgren, A.; Böck, A. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. J. Mol. Biol., 1999, 292(5), 1003-1016.
[http://dx.doi.org/10.1006/jmbi.1999.3085] [PMID: 10512699]
[11]
Mukai, T.; Englert, M.; Tripp, H.J.; Miller, C.; Ivanova, N.N.; Rubin, E.M.; Kyrpides, N.C.; Söll, D. Facile recoding of selenocysteine in nature. Angew. Chem. Int. Ed. Engl., 2016, 55(17), 5337-5341.
[http://dx.doi.org/10.1002/anie.201511657] [PMID: 26991476]
[12]
Iwaoka, M.; Arai, K. From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr. Chem. Biol., 2013, 7(1), 2-24.
[http://dx.doi.org/10.2174/2212796811307010002]
[13]
Moroder, L. Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J. Pept. Sci., 2005, 11(4), 187-214.
[http://dx.doi.org/10.1002/psc.654] [PMID: 15782428]
[14]
Frank, W. Syntheses of selenium-containing peptides. II. Preparation of Se-analogous oxidated glutathionee (Se-Se-glutathion). Hoppe Seylers Z. Physiol. Chem., 1964, 339(1), 214-221.
[http://dx.doi.org/10.1515/bchm2.1964.339.1.214] [PMID: 5829229]
[15]
Tamura, T.; Oikawa, T.; Ohtaka, A.; Fujii, N.; Esaki, N.; Soda, K. Synthesis and characterization of the selenium analog of glutathione disulfide. Anal. Biochem., 1993, 208(1), 151-154.
[http://dx.doi.org/10.1006/abio.1993.1021] [PMID: 8434784]
[16]
Walter, R.; Du Vigneaud, V. 6-Hemi-L-selenocystine-oxytocin and 1-deamino-6-hemi-L-selenocystine-oxytocin, highly potent isologs of oxytocin and 1-deamino-oxytocin. J. Am. Chem. Soc., 1965, 87(18), 4192-4193.
[http://dx.doi.org/10.1021/ja01096a036] [PMID: 5845279]
[17]
Theodoropoulos, D.; Schwartz, I.L.; Walter, R. Synthesis of selenium-containing peptides. Biochemistry, 1967, 6(12), 3927-3932.
[http://dx.doi.org/10.1021/bi00864a039] [PMID: 6076637]
[18]
Walter, R.; Chan, W-Y. Syntheses and pharmacological properties of selenium isologs of oxytocin and deamino-oxytocin. J. Am. Chem. Soc., 1967, 89(15), 3892-3898.
[http://dx.doi.org/10.1021/ja00991a037] [PMID: 6068786]
[19]
Walter, R.; du Vigneaud, V. 1-Deamino-1, 6-L-selenocystine-oxytocin, a highly potent isolog of 1-Deamino-oxytocin1. J. Am. Chem. Soc., 1966, 88(6), 1331-1332.
[http://dx.doi.org/10.1021/ja00958a053]
[20]
Wu, Z.P.; Hilvert, D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc., 1990, 112(14), 5647-5648.
[http://dx.doi.org/10.1021/ja00170a043]
[21]
Wu, Z.P.; Hilvert, D. Conversion of a protease into an acyl transferase: Selenolsubtilisin. J. Am. Chem. Soc., 1989, 111(12), 4513-4514.
[http://dx.doi.org/10.1021/ja00194a064]
[22]
Oikawa, T.; Esaki, N.; Tanaka, H.; Soda, K. Metalloselenonein, the selenium analogue of metallothionein: synthesis and characterization of its complex with copper ions. Proc. Natl. Acad. Sci. USA, 1991, 88(8), 3057-3059.
[http://dx.doi.org/10.1073/pnas.88.8.3057] [PMID: 1826562]
[23]
Moroder, L.; Besse, D.; Musiol, H.J.; Rudolph-Böhner, S.; Siedler, F. Oxidative folding of cystine-rich peptides vs. regioselective cysteine pairing strategies. Biopolymers, 1996, 40(2), 207-234.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1996)40:2<207::AID-BIP2>3.0.CO;2-#] [PMID: 8785364]
[24]
Besse, D.; Siedler, F.; Diercks, T.; Kessler, H.; Moroder, L. The redox potential of selenocystine in unconstrained cyclic peptides. Angew. Chem. Int. Ed. Engl., 1997, 36(8), 883-885.
[http://dx.doi.org/10.1002/anie.199708831]
[25]
Pegoraro, S.; Fiori, S.; Rudolph-Böhner, S.; Watanabe, T.X.; Moroder, L. Isomorphous replacement of cystine with selenocystine in endothelin: Oxidative refolding, biological and conformational properties of [Sec3,Sec11,Nle7]-endothelin-1. J. Mol. Biol., 1998, 284(3), 779-792.
[http://dx.doi.org/10.1006/jmbi.1998.2189] [PMID: 9826515]
[26]
Pegoraro, S.; Fiori, S.; Cramer, J.; Rudolph-Böhner, S.; Moroder, L. The disulfide-coupled folding pathway of apamin as derived from diselenide-quenched analogs and intermediates. Protein Sci., 1999, 8(8), 1605-1613.
[http://dx.doi.org/10.1110/ps.8.8.1605] [PMID: 10452604]
[27]
Fiori, S.; Pegoraro, S.; Rudolph-Böhner, S.; Cramer, J.; Moroder, L. Synthesis and conformational analysis of apamin analogues with natural and non-natural cystine/selenocystine connectivities. Biopolymers, 2000, 53(7), 550-564.
[http://dx.doi.org/10.1002/(SICI)1097-0282(200006)53:7<550::AID-BIP3>3.0.CO;2-O] [PMID: 10766951]
[28]
Rajarathnam, K.; Sykes, B.D.; Dewald, B.; Baggiolini, M.; Clark-Lewis, I. Disulfide bridges in interleukin-8 probed using non-natural disulfide analogues: dissociation of roles in structure from function. Biochemistry, 1999, 38(24), 7653-7658.
[http://dx.doi.org/10.1021/bi990033v] [PMID: 10387004]
[29]
Metanis, N.; Keinan, E.; Dawson, P.E. Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J. Am. Chem. Soc., 2006, 128(51), 16684-16691.
[http://dx.doi.org/10.1021/ja0661414] [PMID: 17177418]
[30]
Beld, J.; Woycechowsky, K.J.; Hilvert, D. Selenoglutathione: Efficient oxidative protein folding by a diselenide. Biochemistry, 2007, 46(18), 5382-5390.
[http://dx.doi.org/10.1021/bi700124p] [PMID: 17419591]
[31]
Casi, G.; Hilvert, D. Reinvestigation of a selenopeptide with purportedly high glutathione peroxidase activity. J. Biol. Chem., 2007, 282(42), 30518-30522.
[http://dx.doi.org/10.1074/jbc.M705528200] [PMID: 17724019]
[32]
Schroll, A.L.; Hondal, R.J. Further development of new deprotection chemistry for cysteine and selenocysteine side chain protecting groups. In: Peptides for Youth; Springer, 2009; pp. 135-136.
[http://dx.doi.org/10.1007/978-0-387-73657-0_60]
[33]
Flemer, S., Jr.; Lacey, B. M.; Hondal, R. J. Synthesis of peptide substrates for mammalian thioredoxin reductase. J. Peptide Sci., 2008, 14(5), 637-647.
[34]
Berzelius, J.J. Försök att, genom användandet af den electrokemiska theorien och de kemiska proportionerna: Grundlägga ett rent vettensk. system för mineralogien. 1814. Available from: https://www.europeana.eu/en/item/358/item_BHDBBRT7T5HSZVBT7CANBCNHLHAQY2GC
[35]
Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[36]
Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79(12), 3292-3293.
[http://dx.doi.org/10.1021/ja01569a087]
[37]
Andreesen, J.R.; Ljungdahl, L.G. Formate dehydrogenase of Clostridium thermoaceticum: Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J. Bacteriol., 1973, 116(2), 867-873.
[http://dx.doi.org/10.1128/jb.116.2.867-873.1973] [PMID: 4147651]
[38]
Cone, J.E.; Del Río, R.M.; Davis, J.N.; Stadtman, T.C. Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA, 1976, 73(8), 2659-2663.
[http://dx.doi.org/10.1073/pnas.73.8.2659] [PMID: 1066676]
[39]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[40]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[41]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[42]
Bodnar, M.; Szczyglowska, M.; Konieczka, P.; Namiesnik, J. Methods of selenium supplementation: Bioavailability and determination of selenium compounds. Crit. Rev. Food Sci. Nutr., 2016, 56(1), 36-55.
[http://dx.doi.org/10.1080/10408398.2012.709550] [PMID: 24987868]
[43]
Köhrle, J. The trace element selenium and the thyroid gland. Biochimie, 1999, 81(5), 527-533.
[http://dx.doi.org/10.1016/S0300-9084(99)80105-9] [PMID: 10403185]
[44]
Ganther, H.E. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: Complexities with thioredoxin reductase. Carcinogenesis, 1999, 20(9), 1657-1666.
[http://dx.doi.org/10.1093/carcin/20.9.1657] [PMID: 10469608]
[45]
Burk, R.F. Selenium in biology and human health; Springer, 1994.
[http://dx.doi.org/10.1007/978-1-4612-2592-8]
[46]
Levander, O.A. A global view of human selenium nutrition. Annu. Rev. Nutr., 1987, 7(1), 227-250.
[http://dx.doi.org/10.1146/annurev.nu.07.070187.001303] [PMID: 3300734]
[47]
Nève, J. Physiological and nutritional importance of selenium. Experientia, 1991, 47(2), 187-193.
[http://dx.doi.org/10.1007/BF01945424] [PMID: 2001724]
[48]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[49]
Boyington, J.C.; Gladyshev, V.N.; Khangulov, S.V.; Stadtman, T.C.; Sun, P.D. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science, 1997, 275(5304), 1305-1308.
[http://dx.doi.org/10.1126/science.275.5304.1305] [PMID: 9036855]
[50]
Wilting, R.; Schorling, S.; Persson, B.; Böck, A. Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion; Elsevier, 1997.
[51]
Garcin, E.; Vernede, X.; Hatchikian, E.C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J.C. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure, 1999, 7(5), 557-566.
[http://dx.doi.org/10.1016/S0969-2126(99)80072-0] [PMID: 10378275]
[52]
Pfeiffer, M.; Bingemann, R.; Klein, A. Fusion of two subunits does not impair the function of a [NiFeSe]-hydrogenase in the archaeon Methanococcus voltae. Eur. J. Biochem., 1998, 256(2), 447-452.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2560447.x] [PMID: 9760186]
[53]
Andreesen, J.R.; Wagner, M.; Sonntag, D.; Kohlstock, M.; Harms, C.; Gursinsky, T.; Jäger, J.; Parther, T.; Kabisch, U.; Gräntzdörffer, A.; Pich, A.; Söhling, B. Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria. Biofactors, 1999, 10(2-3), 263-270.
[http://dx.doi.org/10.1002/biof.5520100226] [PMID: 10609892]
[54]
Dobbek, H.; Gremer, L.; Meyer, O.; Huber, R. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 8884-8889.
[http://dx.doi.org/10.1073/pnas.96.16.8884] [PMID: 10430865]
[55]
Behne, D.; Kyriakopoulos, A.; Meinhold, H.; Köhrle, J. Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun., 1990, 173(3), 1143-1149.
[http://dx.doi.org/10.1016/S0006-291X(05)80905-2] [PMID: 2268318]
[56]
Arthur, J.R.; Nicol, F.; Beckett, G.J. Hepatic iodothyronine 5′-deiodinase. The role of selenium. Biochem. J., 1990, 272(2), 537-540.
[http://dx.doi.org/10.1042/bj2720537] [PMID: 2268281]
[57]
Williams, C.H., Jr; Arscott, L.D.; Müller, S.; Lennon, B.W.; Ludwig, M.L.; Wang, P.F.; Veine, D.M.; Becker, K.; Schirmer, R.H. Thioredoxin reductase two modes of catalysis have evolved. Eur. J. Biochem., 2000, 267(20), 6110-6117.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01702.x] [PMID: 11012662]
[58]
Lescure, A.; Gautheret, D.; Carbon, P.; Krol, A. Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J. Biol. Chem., 1999, 274(53), 38147-38154.
[http://dx.doi.org/10.1074/jbc.274.53.38147] [PMID: 10608886]
[59]
Lee, S.R.; Kim, J.R.; Kwon, K.S.; Yoon, H.W.; Levine, R.L.; Ginsburg, A.; Rhee, S.G. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem., 1999, 274(8), 4722-4734.
[http://dx.doi.org/10.1074/jbc.274.8.4722] [PMID: 9988709]
[60]
Mustacich, D.; Powis, G. Thioredoxin reductase. Biochem. J., 2000, 346 Pt 1(1), 1-8.
[http://dx.doi.org/10.1042/bj3460001]
[61]
Motsenbocker, M.A.; Tappel, A.L. Effect of dietary selenium on plasma selenoprotein P, selenoprotein P1 and glutathione peroxidase in the rat. J. Nutr., 1984, 114(2), 279-285.
[http://dx.doi.org/10.1093/jn/114.2.279] [PMID: 6693989]
[62]
Ursini, F.; Maiorino, M.; Valente, M.; Ferri, L.; Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta, 1982, 710(2), 197-211.
[http://dx.doi.org/10.1016/0005-2760(82)90150-3] [PMID: 7066358]
[63]
Chu, F.F.; Doroshow, J.H.; Esworthy, R.S. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J. Biol. Chem., 1993, 268(4), 2571-2576.
[http://dx.doi.org/10.1016/S0021-9258(18)53812-6] [PMID: 8428933]
[64]
Mills, G.C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem., 1957, 229(1), 189-197.
[http://dx.doi.org/10.1016/S0021-9258(18)70608-X] [PMID: 13491573]
[65]
Letavayová, L.; Vlcková, V.; Brozmanová, J. Selenium: From cancer prevention to DNA damage. Toxicology, 2006, 227(1-2), 1-14.
[http://dx.doi.org/10.1016/j.tox.2006.07.017] [PMID: 16935405]
[66]
Zhu, Y.G.; Pilon-Smits, E.A.; Zhao, F.J.; Williams, P.N.; Meharg, A.A. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci., 2009, 14(8), 436-442.
[http://dx.doi.org/10.1016/j.tplants.2009.06.006] [PMID: 19665422]
[67]
Coppinger, R.J.; Diamond, A.M. Selenium deficiency and human disease. In: Selenium; Springer, 2001; pp. 219-233.
[http://dx.doi.org/10.1007/978-1-4615-1609-5_18]
[68]
Vinceti, M.; Filippini, T.; Wise, L.A. Environmental selenium and human health: An update. Curr. Environ. Health Rep., 2018, 5(4), 464-485.
[http://dx.doi.org/10.1007/s40572-018-0213-0] [PMID: 30280317]
[69]
Ge, K.; Yang, G. The epidemiology of selenium deficiency in the etiological study of endemic diseases in China. Am. J. Clin. Nutr., 1993, 57(2)(Suppl.), 259S-263S.
[http://dx.doi.org/10.1093/ajcn/57.2.259S] [PMID: 8427200]
[70]
Yao, Y.; Pei, F.; Kang, P. Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition, 2011, 27(11-12), 1095-1100.
[http://dx.doi.org/10.1016/j.nut.2011.03.002] [PMID: 21967994]
[71]
Contempre, B.; Dumont, J.E.; Ngo, B.; Thilly, C.H.; Diplock, A.T.; Vanderpas, J. Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area: the possible danger of indiscriminate supplementation of iodine-deficient subjects with selenium. J. Clin. Endocrinol. Metab., 1991, 73(1), 213-215.
[http://dx.doi.org/10.1210/jcem-73-1-213] [PMID: 2045471]
[72]
Moghaddam, A.; Heller, R.A.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; Bachmann, M.; Minich, W.B.; Schomburg, L. Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 2020, 12(7), 2098.
[http://dx.doi.org/10.3390/nu12072098] [PMID: 32708526]
[73]
Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr., 2020, 111(6), 1297-1299.
[http://dx.doi.org/10.1093/ajcn/nqaa095] [PMID: 32342979]
[74]
Beck, M.A.; Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J., 2001, 15(8), 1481-1483.
[http://dx.doi.org/10.1096/fj.00-0721fje] [PMID: 11387264]
[75]
Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A.; Beck, M.A. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J., 2001, 15(10), 1727-1738.
[http://dx.doi.org/10.1096/fj.01-0108com] [PMID: 11481250]
[76]
Beck, M.A.; Shi, Q.; Morris, V.C.; Levander, O.A. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat. Med., 1995, 1(5), 433-436.
[http://dx.doi.org/10.1038/nm0595-433] [PMID: 7585090]
[77]
Ahmad, H.; Tian, J.; Wang, J.; Khan, M.A.; Wang, Y.; Zhang, L.; Wang, T. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. J. Agric. Food Chem., 2012, 60(29), 7111-7120.
[http://dx.doi.org/10.1021/jf3017207] [PMID: 22732007]
[78]
Fang, Y.; Zhang, Y.; Catron, B.; Chan, Q.; Hu, Q.; Caruso, J.A. Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J. Anal. At. Spectrom., 2009, 24(12), 1657-1664.
[http://dx.doi.org/10.1039/b912538h]
[79]
Hu, J.; Zhao, Q.; Cheng, X.; Selomulya, C.; Bai, C.; Zhu, X.; Li, X.; Xiong, H. Antioxidant activities of Se-SPI produced from soybean as accumulation and biotransformation reactor of natural selenium. Food Chem., 2014, 146, 531-537.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.087] [PMID: 24176378]
[80]
Liu, K.; Gu, Z. Selenium accumulation in different brown rice cultivars and its distribution in fractions. J. Agric. Food Chem., 2009, 57(2), 695-700.
[http://dx.doi.org/10.1021/jf802948k] [PMID: 19154168]
[81]
Maseko, T.; Howell, K.; Dunshea, F.R.; Ng, K. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem., 2014, 146, 327-333.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.074] [PMID: 24176350]
[82]
Li, C.P.; He, Z.; Wang, X.; Yang, L.; Yin, C.; Zhang, N.; Lin, J.; Zhao, H. Selenization of ovalbumin by dry-heating in the presence of selenite: Effect on protein structure and antioxidant activity. Food Chem., 2014, 148, 209-217.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.033] [PMID: 24262548]
[83]
Li, F.; Wang, F.; Yu, F.; Fang, Y.; Xin, Z.; Yang, F.; Xu, J.; Zhao, L.; Hu, Q. In vitro antioxidant and anticancer activities of ethanolic extract of selenium-enriched green tea. Food Chem., 2008, 111(1), 165-170.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.057]
[84]
Molan, A.L. Antioxidant and prebiotic activities of selenium-containing green tea. Nutrition, 2013, 29(2), 476-477.
[http://dx.doi.org/10.1016/j.nut.2012.08.003] [PMID: 23085011]
[85]
Alhasan, R.; Nasim, M.J.; Jacob, C.; Gaucher, C. Selenoneine: A unique Reactive Selenium Species from the blood of tuna with implications for human diseases. Curr. Pharmacol. Rep., 2019, 5(3), 163-173.
[http://dx.doi.org/10.1007/s40495-019-00175-8]
[86]
Ečimović, S.; Velki, M.; Vuković, R.; Štolfa Čamagajevac, I.; Petek, A.; Bošnjaković, R.; Grgić, M.; Engelmann, P.; Bodó, K.; Filipović-Marijić, V.; Ivanković, D.; Erk, M.; Mijošek, T.; Lončarić, Z. Acute toxicity of selenate and selenite and their impacts on oxidative status, efflux pump activity, cellular and genetic parameters in earthworm Eisenia andrei. Chemosphere, 2018, 212, 307-318.
[http://dx.doi.org/10.1016/j.chemosphere.2018.08.095] [PMID: 30145422]
[87]
Burk, R.F.; Norsworthy, B.K.; Hill, K.E.; Motley, A.K.; Byrne, D.W. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomarkers Prev., 2006, 15(4), 804-810.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0950] [PMID: 16614127]
[88]
Löwig, C. Constitution of the organic compounds and comparison with the inorganics. Poggendorff’s Ann. Phys., 1836, 37, 552-561.
[89]
Klayman, D.L.; Günther, W.H. Organic selenium compounds: their chemistry and biology; John Wiley & Sons, 1973.
[90]
Shamberger, R.J. Selenium in health and disease. In: Biochemistry of selenium; Springer, 1983; pp. 207-271.
[http://dx.doi.org/10.1007/978-1-4684-4313-4_8]
[91]
Parnham, M.J.; Graf, E. Pharmacology of synthetic organic selenium compounds. Prog. Drug Res., 1991, 36, 9-47.
[PMID: 1876711]
[92]
Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in Higher Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51(1), 401-432.
[http://dx.doi.org/10.1146/annurev.arplant.51.1.401] [PMID: 15012198]
[93]
Kyriakopoulos, A.; Behne, D. Selenium-containing proteins in mammals and other forms of life. Rev. Physiol. Biochem. Pharmacol., 2002, 145, 1-46.
[http://dx.doi.org/10.1007/BFb0116430] [PMID: 12224526]
[94]
Eustice, D.C.; Foster, I.; Kull, F.J.; Shrift, A. In vitro incorporation of selenomethionine into protein by Vigna radiata polysomes. Plant Physiol., 1980, 66(1), 182-186.
[http://dx.doi.org/10.1104/pp.66.1.182] [PMID: 16661384]
[95]
Shelar, A.; Singh, A.V.; Maharjan, R.S.; Laux, P.; Luch, A.; Gemmati, D.; Tisato, V.; Singh, S.P.; Santilli, M.F.; Shelar, A.; Chaskar, M.; Patil, R. Sustainable agriculture through multidisciplinary seed nanopriming: Prospects of opportunities and challenges. Cells, 2021, 10(9), 2428.
[http://dx.doi.org/10.3390/cells10092428] [PMID: 34572078]
[96]
Tastet, L.; Schaumlöffel, D.; Lobinski, R. ICP-MS-assisted proteomics approach to the identification of selenium-containing proteins in selenium-rich yeast. J. Anal. At. Spectrom., 2008, 23(3), 309-317.
[http://dx.doi.org/10.1039/B713805A]
[97]
Tastet, L.; Schaumlöffel, D.; Bouyssiere, B.; Lobinski, R. Identification of selenium-containing proteins in selenium-rich yeast aqueous extract by 2D gel electrophoresis, nanoHPLC-ICP MS and nanoHPLC-ESI MS/MS. Talanta, 2008, 75(4), 1140-1145.
[http://dx.doi.org/10.1016/j.talanta.2008.01.003] [PMID: 18585195]
[98]
Giusti, P.; Schaumlöffel, D.; Preud’homme, H.; Szpunar, J.; Lobinski, R. Selenopeptide mapping in a selenium–yeast protein digest by parallel nanoHPLC-ICP-MS and nanoHPLC-electrospray-MS/MS after on-line preconcentration. J. Anal. At. Spectrom., 2006, 21(1), 26-32.
[http://dx.doi.org/10.1039/B511288E]
[99]
Encinar, J.R.; Ouerdane, L.; Buchmann, W.; Tortajada, J.; Lobinski, R.; Szpunar, J. Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICPMS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry. Anal. Chem., 2003, 75(15), 3765-3774.
[http://dx.doi.org/10.1021/ac034103m] [PMID: 14572042]
[100]
Balakrishnan, R.; Parthasarathy, R.; Sulkowski, E. Alzheimer’s beta-amyloid peptide: affinity for metal chelates. J. Pept. Res., 1998, 51(2), 91-95.
[http://dx.doi.org/10.1111/j.1399-3011.1998.tb00624.x] [PMID: 9516042]
[101]
Li, M.; Meares, C.F. Synthesis, metal chelate stability studies, and enzyme digestion of a peptide-linked DOTA derivative and its corresponding radiolabeled immunoconjugates. Bioconjug. Chem., 1993, 4(4), 275-283.
[http://dx.doi.org/10.1021/bc00022a005] [PMID: 8218484]
[102]
Zhou, Z.; Wu, X.; Kresak, A.; Griswold, M.; Lu, Z.R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials, 2013, 34(31), 7683-7693.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.057] [PMID: 23863450]
[103]
Bao, Y-h.; Wang, F.; Wang, W-q. Preparation and antioxidant activity of selenium-chelating soybean peptides. Food Sci., 2013, 34(16), 27-32.
[104]
Ye, Q.; Wu, X.; Zhang, X.; Wang, S. Organic selenium derived from chelation of soybean peptide-selenium and its functional properties in vitro and in vivo. Food Funct., 2019, 10(8), 4761-4770.
[http://dx.doi.org/10.1039/C9FO00729F] [PMID: 31309961]
[105]
Zhang, Z.; Kolodziej, A.F.; Qi, J.; Nair, S.A.; Wang, X.; Case, A.W.; Greenfield, M.T.; Graham, P.B.; McMurry, T.J.; Caravan, P. Effect of peptide-chelate architecture on metabolic stability of peptide-based MRI contrast agents. New J. Chem., 2010, 2010(34), 611-616.
[http://dx.doi.org/10.1039/b9nj00787c] [PMID: 20526382]
[106]
Qin, X-Y.; Zhang, J-T.; Li, G-M.; Zhou, M.; Gu, R-Z.; Lu, J.; Liu, W-Y. Structure and composition of a potential antioxidant obtained from the chelation of pea oligopeptide and sodium selenite. J. Funct. Foods, 2020, 64, 103619.
[http://dx.doi.org/10.1016/j.jff.2019.103619]
[107]
Fredga, A. Synthesis of α, α-diaminodiseleniumdihydroacrylic acid. Svensk Kemisk Tidskrift, 1936, 48, 160-165.
[108]
Tanaka, H.; Soda, K. Selenocysteine. Methods Enzymol., 1987, 143, 240-243.
[http://dx.doi.org/10.1016/0076-6879(87)43045-0] [PMID: 2958675]
[109]
Zinoni, F.; Birkmann, A.; Stadtman, T.C.; Böck, A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4650-4654.
[http://dx.doi.org/10.1073/pnas.83.13.4650] [PMID: 2941757]
[110]
Chambers, I.; Frampton, J.; Goldfarb, P.; Affara, N.; McBain, W.; Harrison, P.R. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA. EMBO J., 1986, 5(6), 1221-1227.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04350.x] [PMID: 3015592]
[111]
Conrad, M.; Schneider, M.; Seiler, A.; Bornkamm, G.W. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol. Chem., 2007, 388(10), 1019-1025.
[http://dx.doi.org/10.1515/BC.2007.130] [PMID: 17937615]
[112]
Tamura, T.; Stadtman, T.C. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1006-1011.
[http://dx.doi.org/10.1073/pnas.93.3.1006] [PMID: 8577704]
[113]
Arnold, A.P.; Tan, K.S.; Rabenstein, D.L. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 23. Complexation of methylmercury by selenohydryl-containing amino acids and related molecules. Inorg. Chem., 1986, 25(14), 2433-2437.
[http://dx.doi.org/10.1021/ic00234a030]
[114]
Byun, B.J.; Kang, Y.K. Conformational preferences and pK(a) value of selenocysteine residue. Biopolymers, 2011, 95(5), 345-353.
[http://dx.doi.org/10.1002/bip.21581] [PMID: 21213257]
[115]
Reddy, K.M.; Mugesh, G. Application of dehydroalanine as a building block for the synthesis of selenocysteine-containing peptides. RSC Advances, 2019, 9(1), 34-43.
[http://dx.doi.org/10.1039/C8RA09880H]
[116]
Leinfelder, W.; Zehelein, E.; Mandrand-Berthelot, M.A.; Böck, A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature, 1988, 331(6158), 723-725.
[http://dx.doi.org/10.1038/331723a0] [PMID: 2963963]
[117]
Masters, P.M. In vivo decomposition of phosphoserine and serine in noncollagenous protein from human dentin. Calcif. Tissue Int., 1985, 37(3), 236-241.
[http://dx.doi.org/10.1007/BF02554869] [PMID: 3926273]
[118]
Knerr, P.J.; van der Donk, W.A. Discovery, biosynthesis, and engineering of lantipeptides. Annu. Rev. Biochem., 2012, 81, 479-505.
[http://dx.doi.org/10.1146/annurev-biochem-060110-113521] [PMID: 22404629]
[119]
Palioura, S.; Sherrer, R.L.; Steitz, T.A.; Söll, D.; Simonovic, M. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science, 2009, 325(5938), 321-325.
[http://dx.doi.org/10.1126/science.1173755] [PMID: 19608919]
[120]
Mousa, R.; Notis Dardashti, R.; Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 15818-15827.
[http://dx.doi.org/10.1002/anie.201706876] [PMID: 28857389]
[121]
Yang, A.; Ha, S.; Ahn, J.; Kim, R.; Kim, S.; Lee, Y.; Kim, J.; Söll, D.; Lee, H-Y.; Park, H-S. A chemical biology route to site-specific authentic protein modifications. Science, 2016, 354(6312), 623-626.
[http://dx.doi.org/10.1126/science.aah4428] [PMID: 27708052]
[122]
Wright, T.H.; Bower, B.J.; Chalker, J.M.; Bernardes, G.J.; Wiewiora, R.; Ng, W-L.; Raj, R.; Faulkner, S.; Vallée, M.R.J.; Phanumartwiwath, A.; Coleman, O.D.; Thézénas, M.L.; Khan, M.; Galan, S.R.; Lercher, L.; Schombs, M.W.; Gerstberger, S.; Palm-Espling, M.E.; Baldwin, A.J.; Kessler, B.M.; Claridge, T.D.; Mohammed, S.; Davis, B.G. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science, 2016, 354(6312), aag1465.
[http://dx.doi.org/10.1126/science.aag1465] [PMID: 27708059]
[123]
Nathani, R.; Moody, P.; Smith, M.E.; Fitzmaurice, R.J.; Caddick, S. Bioconjugation of green fluorescent protein via an unexpectedly stable cyclic sulfonium intermediate. ChemBioChem, 2012, 13(9), 1283-1285.
[http://dx.doi.org/10.1002/cbic.201200231] [PMID: 22639110]
[124]
Okeley, N.M.; Zhu, Y.; van Der Donk, W.A. Facile chemoselective synthesis of dehydroalanine-containing peptides. Org. Lett., 2000, 2(23), 3603-3606.
[http://dx.doi.org/10.1021/ol006485d] [PMID: 11073655]
[125]
Levengood, M.R.; van der Donk, W.A. Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat. Protoc., 2006, 1(6), 3001-3010.
[http://dx.doi.org/10.1038/nprot.2006.470] [PMID: 17406561]
[126]
Lin, Y.A.; Boutureira, O.; Lercher, L.; Bhushan, B.; Paton, R.S.; Davis, B.G. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc., 2013, 135(33), 12156-12159.
[http://dx.doi.org/10.1021/ja403191g] [PMID: 23889088]
[127]
Thapa, P.; Zhang, R.Y.; Menon, V.; Bingham, J.P. Native chemical ligation: a boon to peptide chemistry. Molecules, 2014, 19(9), 14461-14483.
[http://dx.doi.org/10.3390/molecules190914461] [PMID: 25221869]
[128]
Chalker, J.M.; Bernardes, G.J.; Lin, Y.A.; Davis, B.G. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology. Chem. Asian J., 2009, 4(5), 630-640.
[http://dx.doi.org/10.1002/asia.200800427] [PMID: 19235822]
[129]
Yamashita, K.; Inoue, K.; Kinoshita, K.; Ueda, Y.; Murao, H. Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof. Google Patents, US6372941B1, 2002.
[130]
Hondal, R.J.; Nilsson, B.L.; Raines, R.T. Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc., 2001, 123(21), 5140-5141.
[http://dx.doi.org/10.1021/ja005885t] [PMID: 11457362]
[131]
Dery, S.; Reddy, P.S.; Dery, L.; Mousa, R.; Dardashti, R.N.; Metanis, N. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci. (Camb.), 2015, 6(11), 6207-6212.
[http://dx.doi.org/10.1039/C5SC02528A] [PMID: 30090236]
[132]
Malins, L.R.; Mitchell, N.J.; McGowan, S.; Payne, R.J. Oxidative deselenization of selenocysteine: Applications for programmed ligation at serine. Angew. Chem. Int. Ed. Engl., 2015, 54(43), 12716-12721.
[http://dx.doi.org/10.1002/anie.201504639] [PMID: 26384718]
[133]
Gieselman, M.D.; Xie, L.; van Der Donk, W.A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett., 2001, 3(9), 1331-1334.
[http://dx.doi.org/10.1021/ol015712o] [PMID: 11348227]
[134]
Quaderer, R.; Sewing, A.; Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta, 2001, 84(5), 1197-1206.
[http://dx.doi.org/10.1002/1522-2675(20010516)84:5<1197::AID-HLCA1197>3.0.CO;2-#]
[135]
Quaderer, R.; Hilvert, D. Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem. Commun. (Camb.), 2002, (22), 2620-2621.
[http://dx.doi.org/10.1039/b208288h] [PMID: 12510266]
[136]
Muttenthaler, M.; Alewood, P.F. Selenopeptide chemistry. J. Pept. Sci., 2008, 14(12), 1223-1239.
[http://dx.doi.org/10.1002/psc.1075] [PMID: 18951416]
[137]
Gieselman, M.D.; Zhu, Y.; Zhou, H.; Galonic, D.; van der Donk, W.A. Selenocysteine derivatives for chemoselective ligations. ChemBioChem, 2002, 3(8), 709-716.
[http://dx.doi.org/10.1002/1439-7633(20020802)3:8<709::AID-CBIC709>3.0.CO;2-8] [PMID: 12203969]
[138]
Chocat, P.; Esaki, N.; Tanaka, H.; Soda, K. Synthesis of L-selenodjenkolate and its degradation with methionine gamma-lyase. Anal. Biochem., 1985, 148(2), 485-489.
[http://dx.doi.org/10.1016/0003-2697(85)90256-8] [PMID: 4061824]
[139]
Siebum, A.H.; Woo, W.S.; Raap, J.; Lugtenburg, J. Access to any site-directed isotopomer of methionine, selenomethionine, cysteine, and selenocysteine− use of simple, efficient modular synthetic reaction schemes for isotope incorporation. Eur. J. Org. Chem., 2004, 2004(13), 2905-2913.
[http://dx.doi.org/10.1002/ejoc.200400063]
[140]
Stocking, E.M.; Schwarz, J.N.; Senn, H.; Salzmann, M.; Silks, L.A. Synthesis of L-selenocystine, L-[77 Se] selenocystine and L-tellurocystine. J. Chem. Soc., Perkin Trans. 1, 1997, (16), 2443-2448.
[http://dx.doi.org/10.1039/a600180g]
[141]
Armishaw, C.J.; Daly, N.L.; Nevin, S.T.; Adams, D.J.; Craik, D.J.; Alewood, P.F. Alpha-selenoconotoxins, a new class of potent alpha7 neuronal nicotinic receptor antagonists. J. Biol. Chem., 2006, 281(20), 14136-14143.
[http://dx.doi.org/10.1074/jbc.M512419200] [PMID: 16500898]
[142]
Tian, F.; Yu, Z.; Lu, S. Efficient reductive selenation of aromatic aldehydes to symmetrical diselenides with Se/CO/H(2)O under atmospheric pressure. J. Org. Chem., 2004, 69(13), 4520-4523.
[http://dx.doi.org/10.1021/jo049733i] [PMID: 15202911]
[143]
Nicolaou, K.C.; Estrada, A.A.; Zak, M.; Lee, S.H.; Safina, B.S. A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. Angew. Chem. Int. Ed., 2005, 44(9), 1378-1382.
[http://dx.doi.org/10.1002/anie.200462207] [PMID: 15674985]
[144]
Roy, J.; Gordon, W.; Schwartz, I.L.; Walter, R. Optically active selenium-containing amino acids. The synthesis of L-selenocystine and L-selenolanthionine. J. Org. Chem., 1970, 35(2), 510-513.
[http://dx.doi.org/10.1021/jo00827a052] [PMID: 5412141]
[145]
Hashimoto, K.; Sakai, M.; Okuno, T.; Shirahama, H. β-Phenylselenoalanine as a dehydroalanine precursor–efficient synthesis of alternariolide (AM-toxin I). Chem. Commun., 1996, (10), 1139-1140.
[http://dx.doi.org/10.1039/CC9960001139]
[146]
Sakai, M.; Hashimoto, K.; Shirahama, H. Synthesis of optically pure β-phenylselenoalanine through serine-β-lactone: A useful precursor of dehydroalanine. Heterocycles, 1997, 1(44), 319-324.
[147]
Koide, T.; Itoh, H.; Otaka, A.; Yasui, H.; Kuroda, M.; Esaki, N.; Fujii, N. Synthetic study on selenocystine-contaning peptides. Chem. Pharm. Bull. (Tokyo), 1993, 41(3), 502-506.
[PMID: 8477500]
[148]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14), 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[149]
Amblard, M.; Fehrentz, J.A.; Martinez, J.; Subra, G. Methods and protocols of modern solid phase Peptide synthesis. Mol. Biotechnol., 2006, 33(3), 239-254.
[http://dx.doi.org/10.1385/MB:33:3:239] [PMID: 16946453]
[150]
Müller, P.; Müller-Dolezal, H.; Stoltz, R.; Söll, H.; Wünsch, E. Houben-Weyl Methods of Organic Chemistry Vol. XV/2: Synthesis of Peptides (including the Chemistry of Protection Groups) II; Georg Thieme: Verlag, 2014.
[151]
Zhang, X. Allium organoselenium chemistry and synthesis and photochemistry of 1, 2-dithiins; State University of New York at Albany, 1997.
[152]
Kamber, B.; Hartmann, A.; Eisler, K.; Riniker, B.; Rink, H.; Sieber, P.; Rittel, W. The synthesis of cystine peptides by iodine oxidation of S-trityl-cysteine and S-acetamidomethyl-cysteine peptides. Helv. Chim. Acta, 1980, 63(4), 899-915.
[http://dx.doi.org/10.1002/hlca.19800630418]
[153]
Shin, Y.; Winans, K.A.; Backes, B.J.; Kent, S.B.; Ellman, J.A.; Bertozzi, C.R. Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc., 1999, 121(50), 11684-11689.
[http://dx.doi.org/10.1021/ja992881j]
[154]
Gokula, R.P.; Mahato, J.; Singh, H.B.; Chowdhury, A. Self-assembly of penta-selenopeptides into amyloid fibrils. Chem. Commun. (Camb.), 2018, 54(83), 11697-11700.
[http://dx.doi.org/10.1039/C8CC06528D] [PMID: 30255865]
[155]
Harris, K.M.; Flemer, S., Jr; Hondal, R.J. Studies on deprotection of cysteine and selenocysteine side-chain protecting groups. J. Pept. Sci., 2007, 13(2), 81-93.
[http://dx.doi.org/10.1002/psc.795] [PMID: 17031870]
[156]
Ste Marie, E.J.; Ruggles, E.L.; Hondal, R.J. Removal of the 5-nitro-2-pyridine-sulfenyl protecting group from selenocysteine and cysteine by ascorbolysis. J. Pept. Sci., 2016, 22(9), 571-576.
[http://dx.doi.org/10.1002/psc.2908] [PMID: 27480992]
[157]
Reddy, P.S.; Dery, S.; Metanis, N. Chemical synthesis of proteins with non-strategically placed cysteines using selenazolidine and selective deselenization. Angew. Chem. Int. Ed. Engl., 2016, 55(3), 992-995.
[http://dx.doi.org/10.1002/anie.201509378] [PMID: 26636774]
[158]
Whedon, S.D.; Markandeya, N.; Rana, A.S.J.B.; Senger, N.A.; Weller, C.E.; Tureček, F.; Strieter, E.R.; Chatterjee, C. Selenocysteine as a latent bioorthogonal electrophilic probe for deubiquitylating enzymes. J. Am. Chem. Soc., 2016, 138(42), 13774-13777.
[http://dx.doi.org/10.1021/jacs.6b05688] [PMID: 27723317]
[159]
Dery, L.; Reddy, P.S.; Dery, S.; Mousa, R.; Ktorza, O.; Talhami, A.; Metanis, N. Accessing human selenoproteins through chemical protein synthesis. Chem. Sci. (Camb.), 2017, 8(3), 1922-1926.
[http://dx.doi.org/10.1039/C6SC04123J] [PMID: 28451306]
[160]
Poerschke, R.L.; Franklin, M.R.; Moos, P.J. Modulation of redox status in human lung cell lines by organoselenocompounds: selenazolidines, selenomethionine, and methylseleninic acid. Toxicol. In vitro, 2008, 22(7), 1761-1767.
[http://dx.doi.org/10.1016/j.tiv.2008.08.003] [PMID: 18768157]
[161]
Franklin, M.R.; Moos, P.J.; El-Sayed, W.M.; Aboul-Fadl, T.; Roberts, J.C. Pre- and post-initiation chemoprevention activity of 2-alkyl/aryl selenazolidine-4(R)-carboxylic acids against tobacco-derived nitrosamine (NNK)-induced lung tumors in the A/J mouse. Chem. Biol. Interact., 2007, 168(3), 211-220.
[http://dx.doi.org/10.1016/j.cbi.2007.04.012] [PMID: 17543294]
[162]
Nagasawa, H.T.; Goon, D.J.; Zera, R.T.; Yuzon, D.L. Prodrugs of L-cysteine as liver-protective agents. 2(RS)-Methylthiazolidine-4(R)-carboxylic acid, a latent cysteine. J. Med. Chem., 1982, 25(5), 489-491.
[http://dx.doi.org/10.1021/jm00347a001] [PMID: 7086831]
[163]
Roberts, J.C.; Nagasawa, H.T.; Zera, R.T.; Fricke, R.F.; Goon, D.J. Prodrugs of L-cysteine as protective agents against acetaminophen-induced hepatotoxicity. 2-(Polyhydroxyalkyl)- and 2-(polyacetoxyalkyl)thiazolidine-4(R)-carboxylic acids. J. Med. Chem., 1987, 30(10), 1891-1896.
[http://dx.doi.org/10.1021/jm00393a034] [PMID: 3656363]
[164]
Xie, Y.; Short, M.D.; Cassidy, P.B.; Roberts, J.C. Selenazolidines as novel organoselenium delivery agents. Bioorg. Med. Chem. Lett., 2001, 11(22), 2911-2915.
[http://dx.doi.org/10.1016/S0960-894X(01)00590-X] [PMID: 11677125]
[165]
El-Sayed, W.M.; Aboul-Fadl, T.; Lamb, J.G.; Roberts, J.C.; Franklin, M.R. Acute effects of novel selenazolidines on murine chemoprotective enzymes. Chem. Biol. Interact., 2006, 162(1), 31-42.
[http://dx.doi.org/10.1016/j.cbi.2006.05.002] [PMID: 16765927]
[166]
Cordeau, E.; Cantel, S.; Gagne, D.; Lebrun, A.; Martinez, J.; Subra, G.; Enjalbal, C. Selenazolidine: A selenium containing proline surrogate in peptide science. Org. Biomol. Chem., 2016, 14(34), 8101-8108.
[http://dx.doi.org/10.1039/C6OB01450J] [PMID: 27506250]
[167]
Short, M.D.; Xie, Y.; Li, L.; Cassidy, P.B.; Roberts, J.C. Characteristics of selenazolidine prodrugs of selenocysteine: Toxicity and glutathione peroxidase induction in V79 cells. J. Med. Chem., 2003, 46(15), 3308-3313.
[http://dx.doi.org/10.1021/jm020496q] [PMID: 12852761]
[168]
Jubilut, G.N.; Cilli, E.M.; Tominaga, M.; Miranda, A.; Okada, Y.; Nakaie, C.R. Evaluation of the trifluoromethanosulfonic acid/trifluoroacetic acid/thioanisole cleavage procedure for application in solid-phase peptide synthesis. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1089-1092.
[http://dx.doi.org/10.1248/cpb.49.1089] [PMID: 11558592]
[169]
Fülöp, F.; Mattinen, J.; Pihlaja, K. Ring-chain tautomerism in 1, 3-thiazolidines. Tetrahedron, 1990, 46(18), 6545-6552.
[http://dx.doi.org/10.1016/S0040-4020(01)96019-3]
[170]
Fülöp, F.; Pihlajaa, K. Ring-chain tautomerism of oxazolidines derived from serine esters. Tetrahedron, 1993, 49(30), 6701-6706.
[http://dx.doi.org/10.1016/S0040-4020(01)81839-1]
[171]
Tickler, A. K.; Barrow, C. J.; Wade, J. D. Improved preparation of amyloid-β peptides using DBU as Nα-Fmoc deprotection reagent. J. Peptide Sci., 2001, 7(9), 488-494.
[172]
Yamashita, Y.; Yamashita, M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem., 2010, 285(24), 18134-18138.
[http://dx.doi.org/10.1074/jbc.C110.106377] [PMID: 20388714]
[173]
Yamashita, Y.; Yabu, T.; Yamashita, M. Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J. Biol. Chem., 2010, 1(5), 144-150.
[http://dx.doi.org/10.4331/wjbc.v1.i5.144] [PMID: 21540999]
[174]
Yamashita, Y.; Amlund, H.; Suzuki, T.; Hara, T.; Hossain, M.A.; Yabu, T.; Touhata, K.; Yamashita, M. Selenoneine, total selenium, and total mercury content in the muscle of fishes. Fish. Sci., 2011, 77(4), 679-686.
[http://dx.doi.org/10.1007/s12562-011-0360-9]
[175]
Suzuki, T.; Hongo, T.; Ohba, T.; Kobayashi, K.; Imai, H.; Ishida, H.; Suzuki, H. The relation of dietary selenium to erythrocyte and plasma selenium concentrations in Japanese college women. Nutr. Res., 1989, 9(8), 839-848.
[http://dx.doi.org/10.1016/S0271-5317(89)80029-6]
[176]
Imai, H.; Suzuki, T.; Kashiwazaki, H.; Takemoto, T-i.; Izumi, T.; Moji, K. Dietary habit and selenium concentrations in erythrocyte and serum in a group of middle-aged and elderly Japanese. Nutr. Res., 1990, 10(11), 1205-1214.
[http://dx.doi.org/10.1016/S0271-5317(05)80159-9]
[177]
Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr., 2010, 91(5), 1484S-1491S.
[http://dx.doi.org/10.3945/ajcn.2010.28674J] [PMID: 20200264]
[178]
Fox, T.E.; Atherton, C.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Baxter, M.J.; Crews, H.M.; Fairweather-Tait, S.J. Absorption of selenium from wheat, garlic, and cod intrinsically labeled with Se-77 and Se-82 stable isotopes. Int. J. Vitam. Nutr. Res., 2005, 75(3), 179-186.
[http://dx.doi.org/10.1024/0300-9831.75.3.179] [PMID: 16028633]
[179]
Rayman, M.P.; Infante, H.G.; Sargent, M. Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr., 2008, 100(2), 238-253.
[http://dx.doi.org/10.1017/S0007114508922522] [PMID: 18346307]
[180]
Turrini, N.G.; Kroepfl, N.; Jensen, K.B.; Reiter, T.C.; Francesconi, K.A.; Schwerdtle, T.; Kroutil, W.; Kuehnelt, D. Biosynthesis and isolation of selenoneine from genetically modified fission yeast. Metallomics, 2018, 10(10), 1532-1538.
[http://dx.doi.org/10.1039/C8MT00200B] [PMID: 30246828]
[181]
Pandey, A.T.; Pandey, I.; Hachenberger, Y.; Krause, B-C.; Haidar, R.; Laux, P.; Luch, A.; Singh, M.P.; Singh, A.V. Emerging paradigm against global antimicrobial resistance via bioprospecting of fungi into novel nanotherapeutics development. Trends Food Sci. Technol., 2020, 106, 333-344.
[http://dx.doi.org/10.1016/j.tifs.2020.10.025]
[182]
Pluskal, T.; Ueno, M.; Yanagida, M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS One, 2014, 9(5), e97774.
[http://dx.doi.org/10.1371/journal.pone.0097774] [PMID: 24828577]
[183]
Yamashita, M. Quality control of tuna meat by optimization of fishing and handling. Koseisha-Koseikaku; Tokyo, Japan, 2010.
[184]
Weber, G.J.; Choe, S.E.; Dooley, K.A.; Paffett-Lugassy, N.N.; Zhou, Y.; Zon, L.I. Mutant-specific gene programs in the zebrafish. Blood, 2005, 106(2), 521-530.
[http://dx.doi.org/10.1182/blood-2004-11-4541] [PMID: 15827125]
[185]
Gründemann, D.; Harlfinger, S.; Golz, S.; Geerts, A.; Lazar, A.; Berkels, R.; Jung, N.; Rubbert, A.; Schömig, E. Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. USA, 2005, 102(14), 5256-5261.
[http://dx.doi.org/10.1073/pnas.0408624102] [PMID: 15795384]
[186]
Nilsson, R.; Schultz, I.J.; Pierce, E.L.; Soltis, K.A.; Naranuntarat, A.; Ward, D.M.; Baughman, J.M.; Paradkar, P.N.; Kingsley, P.D.; Culotta, V.C.; Kaplan, J.; Palis, J.; Paw, B.H.; Mootha, V.K. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab., 2009, 10(2), 119-130.
[http://dx.doi.org/10.1016/j.cmet.2009.06.012] [PMID: 19656490]
[187]
Ripka, A.S.; Rich, D.H. Peptidomimetic design. Curr. Opin. Chem. Biol., 1998, 2(4), 441-452.
[http://dx.doi.org/10.1016/S1367-5931(98)80119-1] [PMID: 9736916]
[188]
Braga, A.L.; Vargas, F.; Sehnem, J.A.; Braga, R.C. Efficient synthesis of chiral β-seleno amides via ring-opening reaction of 2-oxazolines and their application in the palladium-catalyzed asymmetric allylic alkylation. J. Org. Chem., 2005, 70(22), 9021-9024.
[http://dx.doi.org/10.1021/jo051451a] [PMID: 16238343]
[189]
Braga, A.L.; Galetto, F.Z.; Taube, P.S.; Paixão, M.W.; Silveira, C.C.; Singh, D.; Vargas, F. Mild and efficient one-pot synthesis of chiral β-chalcogen amides via 2-oxazoline ring-opening reaction mediated by indium metal. J. Organomet. Chem., 2008, 693(24), 3563-3566.
[http://dx.doi.org/10.1016/j.jorganchem.2008.08.031]
[190]
Braga, A.L.; Lüdtke, D.S.; Paixão, M.W.; Alberto, E.E.; Stefani, H.A.; Juliano, L. Straightforward Synthesis of Non-Natural Selenium Containing Amino Acid Derivatives and Peptides; Wiley Online Library, 2005.
[http://dx.doi.org/10.1002/ejoc.200500530]
[191]
McKennon, M.J.; Meyers, A.; Drauz, K.; Schwarm, M. A convenient reduction of amino acids and their derivatives. J. Org. Chem., 1993, 58(13), 3568-3571.
[http://dx.doi.org/10.1021/jo00065a020]
[192]
Braga, A.L.; Paixão, M.W.; Lüdtke, D.S.; Silveira, C.C.; Rodrigues, O.E. Synthesis of new chiral aliphatic amino diselenides and their application as catalysts for the enantioselective addition of diethylzinc to aldehydes. Org. Lett., 2003, 5(15), 2635-2638.
[http://dx.doi.org/10.1021/ol034773e] [PMID: 12868877]
[193]
Braga, A.L.; Sehnem, J.A.; Luedtke, D.S.; Zeni, G.; Silveira, C.C.; Marchi, M.I. New simple chiral phosphine oxazolidine ligands: Easy synthesis and application in the palladium-catalyzed asymmetric allylic alkylation. Synlett, 2005, 2005(08), 1331-1333.
[http://dx.doi.org/10.1055/s-2005-868475]
[194]
Braga, A.L.; Vargas, F.c.; Silveira, C.C.; de Andrade, L.H. Synthesis of new chiral imidazolidine disulfides derived from L-cystine and their application in the enantioselective addition of diethylzinc to aldehydes. Tetrahedron Lett., 2002, 43(13), 2335-2337.
[http://dx.doi.org/10.1016/S0040-4039(02)00300-3]
[195]
Hai-zhen, M.; Zhang, M.; Li, X.-l. Brassica chinensis enriched selenium regularity and its effect on nutrient content. J. Food Sci. Biotechnol., 2006, 5, 1.
[196]
Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life, 2016, 68(2), 97-105.
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[197]
Ferguson, L.R.; Karunasinghe, N.; Zhu, S.; Wang, A.H. Selenium and its’ role in the maintenance of genomic stability. Mutat. Res., 2012, 733(1-2), 100-110.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.12.011] [PMID: 22234051]
[198]
Zhu, C.; Ling, Q.; Cai, Z.; Wang, Y.; Zhang, Y.; Hoffmann, P.R.; Zheng, W.; Zhou, T.; Huang, Z. Selenium-containing phycocyanin from se-enriched spirulina platensis reduces inflammation in dextran sulfate sodium-induced colitis by inhibiting NF-κB activation. J. Agric. Food Chem., 2016, 64(24), 5060-5070.
[http://dx.doi.org/10.1021/acs.jafc.6b01308] [PMID: 27223481]
[199]
Cong, M.; Zhang, L.; Zhang, L.; Zhao, J.; Wu, H.; Chen, H.; Kong, J. Molecular characterization of a Se-containing glutathione peroxidases gene and its expressions to heavy metals compared with non-Se-containing glutathione peroxidases in Venerupis philippinarum. Agri Gene, 2016, 1, 46-52.
[http://dx.doi.org/10.1016/j.aggene.2016.06.003]
[200]
Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides, 2010, 31(10), 1949-1956.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[201]
Xie, Z.; Huang, J.; Xu, X.; Jin, Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem., 2008, 111(2), 370-376.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.078] [PMID: 26047437]
[202]
Zhao, X.; Zhao, Q.; Chen, H.; Xiong, H. Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress. Food Chem., 2019, 272, 201-209.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.039] [PMID: 30309533]
[203]
Fang, Y.; Pan, X.; Zhao, E.; Shi, Y.; Shen, X.; Wu, J.; Pei, F.; Hu, Q.; Qiu, W. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem., 2019, 275, 696-702.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.115] [PMID: 30724251]
[204]
Guo, D.; Zhang, Y.; Zhao, J.; He, H.; Hou, T. Selenium-biofortified corn peptides: Attenuating concanavalin A-Induced liver injury and structure characterization. J. Trace Elem. Med. Biol., 2019, 51, 57-64.
[http://dx.doi.org/10.1016/j.jtemb.2018.09.010] [PMID: 30466939]
[205]
Mishra, B.; Sharma, A.; Naumov, S.; Priyadarsini, K.I. Novel reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine. J. Phys. Chem. B, 2009, 113(21), 7709-7715.
[http://dx.doi.org/10.1021/jp900322z] [PMID: 19408939]
[206]
Payne, N.C.; Geissler, A.; Button, A.; Sasuclark, A.R.; Schroll, A.L.; Ruggles, E.L.; Gladyshev, V.N.; Hondal, R.J. Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic. Biol. Med., 2017, 104, 249-261.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.028] [PMID: 28108278]
[207]
Schöneich, C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim. Biophys. Acta, 2005, 1703(2), 111-119.
[http://dx.doi.org/10.1016/j.bbapap.2004.09.009] [PMID: 15680219]
[208]
Liu, K.; Du, R.; Chen, F. Antioxidant activities of Se-MPS: A selenopeptide identified from selenized brown rice protein hydrolysates. Lebensm. Wiss. Technol., 2019, 111, 555-560.
[http://dx.doi.org/10.1016/j.lwt.2019.05.076]
[209]
Yoshida, S.; Kumakura, F.; Komatsu, I.; Arai, K.; Onuma, Y.; Hojo, H.; Singh, B.G.; Priyadarsini, K.I.; Iwaoka, M. Antioxidative glutathione peroxidase activity of selenoglutathione. Angew. Chem. Int. Ed. Engl., 2011, 50(9), 2125-2128.
[http://dx.doi.org/10.1002/anie.201006939] [PMID: 21344566]
[210]
Zhu, S.; Du, C.; Yu, T.; Cong, X.; Liu, Y.; Chen, S.; Li, Y. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J. Food Sci., 2019, 84(12), 3504-3511.
[http://dx.doi.org/10.1111/1750-3841.14843] [PMID: 31665556]
[211]
Liu, K.; Zhao, Y.; Chen, F.; Fang, Y. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food Chem., 2015, 187, 424-430.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.086] [PMID: 25977046]
[212]
Takeda, H.; Takai, A.; Inuzuka, T.; Marusawa, H. Genetic basis of hepatitis virus-associated hepatocellular carcinoma: Linkage between infection, inflammation, and tumorigenesis. J. Gastroenterol., 2017, 52(1), 26-38.
[http://dx.doi.org/10.1007/s00535-016-1273-2] [PMID: 27714455]
[213]
Hamid, M.; Abdulrahim, Y.; Liu, D.; Qian, G.; Khan, A.; Huang, K. The hepatoprotective effect of selenium-enriched yeast and gum arabic combination on carbon tetrachloride-induced chronic liver injury in rats. J. Food Sci., 2018, 83(2), 525-534.
[http://dx.doi.org/10.1111/1750-3841.14030] [PMID: 29350750]
[214]
Hamid, M.; Abdulrahim, Y.; Liu, D.; Awad, F.N.; Omer, N.A.; Khan, A.; Huang, K. Selenium enriched yeast and Gum Arabic combination attenuate oxidative liver damage via suppression of oxidative stress, inhibition of caspase-3 and pro-inflammatory genes expression in carbon tetrachloride-intoxicated rats. Bioactive Carbohydr. Dietary Fibre, 2021, 26, 100267.
[http://dx.doi.org/10.1016/j.bcdf.2021.100267]
[215]
Tichati, L.; Trea, F.; Ouali, K. Potential role of selenium against hepatotoxicity induced by 2,4-dichlorophenoxyacetic acid in albino wistar rats. Biol. Trace Elem. Res., 2020, 194(1), 228-236.
[http://dx.doi.org/10.1007/s12011-019-01773-9] [PMID: 31190189]
[216]
Fan, C.; Jiang, J.; Yin, X.; Wong, K-H.; Zheng, W.; Chen, T. Purification of selenium-containing allophycocyanin from selenium-enriched Spirulina platensis and its hepatoprotective effect against t-BOOH-induced apoptosis. Food Chem., 2012, 134(1), 253-261.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.130]
[217]
Liu, W.; Hou, T.; Shi, W.; Guo, D.; He, H. Hepatoprotective effects of selenium-biofortified soybean peptides on liver fibrosis induced by tetrachloromethane. J. Funct. Foods, 2018, 50, 183-191.
[http://dx.doi.org/10.1016/j.jff.2018.09.034]
[218]
Liu, W.; Hou, T.; Zhang, X.; He, H. TGF-β1/Smad7 signaling pathway and cell apoptosis: Two key aspects of Selenium-biofortified soybean peptide attenuating liver fibrosis. J. Funct. Foods, 2019, 63, 103583.
[http://dx.doi.org/10.1016/j.jff.2019.103583]
[219]
Umar, A.; Dunn, B.K.; Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer, 2012, 12(12), 835-848.
[http://dx.doi.org/10.1038/nrc3397] [PMID: 23151603]
[220]
Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.J.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci. USA, 2005, 102(36), 12962-12967.
[http://dx.doi.org/10.1073/pnas.0504274102] [PMID: 16123131]
[221]
Hatakeyama, S.; Sugihara, K.; Shibata, T.K.; Nakayama, J.; Akama, T.O.; Tamura, N.; Wong, S.M.; Bobkov, A.A.; Takano, Y.; Ohyama, C.; Fukuda, M.; Fukuda, M.N. Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19587-19592.
[http://dx.doi.org/10.1073/pnas.1105057108] [PMID: 22114188]
[222]
Cai, L.L.; Liu, P.; Li, X.; Huang, X.; Ye, Y.Q.; Chen, F.Y.; Yuan, H.; Hu, F.Q.; Du, Y.Z. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int. J. Nanomedicine, 2011, 6, 3499-3508.
[PMID: 22282676]
[223]
Li, C.; Wang, Y.; Zhang, X.; Deng, L.; Zhang, Y.; Chen, Z. Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide. Int. J. Nanomedicine, 2013, 8, 1051-1062.
[http://dx.doi.org/10.2147/IJN.S40498] [PMID: 23515368]
[224]
Yan, Z.; Zhan, C.; Wen, Z.; Feng, L.; Wang, F.; Liu, Y.; Yang, X.; Dong, Q.; Liu, M.; Lu, W. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics. Nanotechnology, 2011, 22(41), 415103.
[http://dx.doi.org/10.1088/0957-4484/22/41/415103] [PMID: 21914940]
[225]
Guo, X.; Shi, J.; Tang, Z.; Cui, D.; Zhang, Y. Synthesis and biological activity of seleno sunflower trypsin inhibitor analog. Chem. Biol. Drug Des., 2006, 68(6), 341-344.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00457.x] [PMID: 17177897]
[226]
Yan, Z.; Wang, F.; Wen, Z.; Zhan, C.; Feng, L.; Liu, Y.; Wei, X.; Xie, C.; Lu, W. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J. Control. Release, 2012, 157(1), 118-125.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.034] [PMID: 21827801]
[227]
Liao, W.; Zhang, R.; Dong, C.; Yu, Z.; Ren, J. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: Facile synthesis and mechanistic investigation of anticancer activity. Int. J. Nanomedicine, 2016, 11, 1305-1321.
[PMID: 27143875]
[228]
Gadakh, B.; Van Aerschot, A. Renaissance in antibiotic discovery: Some novel approaches for finding drugs to treat bad bugs. Curr. Med. Chem., 2015, 22(18), 2140-2158.
[http://dx.doi.org/10.2174/0929867322666150319115828] [PMID: 25787965]
[229]
Penesyan, A.; Gillings, M.; Paulsen, I.T. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules, 2015, 20(4), 5286-5298.
[http://dx.doi.org/10.3390/molecules20045286] [PMID: 25812150]
[230]
Giurg, M.; Gołąb, A.; Suchodolski, J.; Kaleta, R.; Krasowska, A.; Piasecki, E.; Piętka-Ottlik, M. Reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with phenols, aminophenols, and other amines towards diphenyl diselenides with antimicrobial and antiviral properties. Molecules, 2017, 22(6), 974.
[http://dx.doi.org/10.3390/molecules22060974] [PMID: 28604620]
[231]
Jastrzebska, I.; Mellea, S.; Salerno, V.; Grzes, P.A.; Siergiejczyk, L.; Niemirowicz-Laskowska, K.; Bucki, R.; Monti, B.; Santi, C. PhSeZnCl in the synthesis of steroidal β-hydroxy-phenylselenides having antibacterial activity. Int. J. Mol. Sci., 2019, 20(9), 2121.
[http://dx.doi.org/10.3390/ijms20092121] [PMID: 31032813]
[232]
Asquith, C.R.M.; Meili, T.; Laitinen, T.; Baranovsky, I.V.; Konstantinova, L.S.; Poso, A.; Rakitin, O.A.; Hofmann-Lehmann, R. Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg. Med. Chem. Lett., 2019, 29(14), 1765-1768.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.016] [PMID: 31101470]
[233]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01183] [PMID: 26613134]
[234]
Tran, P.; Kopel, J.; Fralick, J.A.; Reid, T.W. The use of an organo-selenium peptide to develop new antimicrobials that target a specific bacteria. Antibiotics (Basel), 2021, 10(6), 611.
[http://dx.doi.org/10.3390/antibiotics10060611] [PMID: 34063816]
[235]
Schepetkin, I.A.; Quinn, M.T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol., 2006, 6(3), 317-333.
[http://dx.doi.org/10.1016/j.intimp.2005.10.005] [PMID: 16428067]
[236]
Kápolna, E.; Fodor, P. Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after ‘in vitro’ gastrointestinal digestion. Int. J. Food Sci. Nutr., 2007, 58(4), 282-296.
[http://dx.doi.org/10.1080/09637480601154335] [PMID: 17566890]
[237]
Oropeza-Moe, M.; Wisløff, H.; Bernhoft, A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elem. Med. Biol., 2015, 31, 148-156.
[http://dx.doi.org/10.1016/j.jtemb.2014.09.011] [PMID: 25456335]
[238]
Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of selenium concentration of rice in china and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem., 2002, 50(18), 5128-5130.
[http://dx.doi.org/10.1021/jf0201374] [PMID: 12188618]
[239]
Wang, Y-D.; Wang, X.; Wong, Y-S. Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chem., 2013, 141(3), 2385-2393.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.095] [PMID: 23870972]
[240]
Wu, J.; Li, P.; Shi, Y.; Fang, Y.; Zhu, Y.; Fan, F.; Pei, F.; Xia, J.; Xie, M.; Hu, Q. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells. Food Chem. Toxicol., 2020, 135, 110932.
[http://dx.doi.org/10.1016/j.fct.2019.110932] [PMID: 31682935]
[241]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the bbb: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[242]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B-W. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[243]
Christophersen, B.O. Formation of monohydroxy-polyenic fatty acids from lipid peroxides by a glutathione peroxidase. Biochim. Biophys. Acta, 1968, 164(1), 35-46.
[http://dx.doi.org/10.1016/0005-2760(68)90068-4] [PMID: 5680294]
[244]
Little, C.; O’Brien, P.J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem. Biophys. Res. Commun., 1968, 31(2), 145-150.
[http://dx.doi.org/10.1016/0006-291X(68)90721-3] [PMID: 5656060]
[245]
Ursini, F. Selenium-Dependent Peroxidases. Oxidative Processes and Antioxidants, 1994, 1, 25.
[246]
Brigelius-Flohé, R. Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med., 1999, 27(9-10), 951-965.
[http://dx.doi.org/10.1016/S0891-5849(99)00173-2] [PMID: 10569628]
[247]
Rocher, C.; Lalanne, J.L.; Chaudière, J. Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur. J. Biochem., 1992, 205(3), 955-960.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16862.x] [PMID: 1577013]
[248]
Maiorino, M.; Gregolin, C.; Ursini, F. Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol., 1990, 186, 448-457.
[http://dx.doi.org/10.1016/0076-6879(90)86139-M] [PMID: 2233312]
[249]
Davis, R.L.; Lavine, C.L.; Arredondo, M.A.; McMahon, P.; Tenner, T.E., Jr Differential indicators of diabetes-induced oxidative stress in New Zealand White rabbits: Role of dietary vitamin E supplementation. Int. J. Exp. Diabetes Res., 2002, 3(3), 185-192.
[http://dx.doi.org/10.1080/15604280214279] [PMID: 12458660]
[250]
Forgione, M.A.; Cap, A.; Liao, R.; Moldovan, N.I.; Eberhardt, R.T.; Lim, C.C.; Jones, J.; Goldschmidt-Clermont, P.J.; Loscalzo, J. Heterozygous cellular glutathione peroxidase deficiency in the mouse: Abnormalities in vascular and cardiac function and structure. Circulation, 2002, 106(9), 1154-1158.
[http://dx.doi.org/10.1161/01.CIR.0000026820.87824.6A] [PMID: 12196344]
[251]
Burke, M.P.; Opeskin, K. Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease). Med. Sci. Law, 2002, 42(1), 10-13.
[http://dx.doi.org/10.1177/002580240204200103] [PMID: 11848134]
[252]
Babizhayev, M.A. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochim. Biophys. Acta, 1996, 1315(2), 87-99.
[http://dx.doi.org/10.1016/0925-4439(95)00091-7] [PMID: 8608175]
[253]
Behne, D.; Kyriakopoulos, A. Mammalian selenium-containing proteins. Annu. Rev. Nutr., 2001, 21(1), 453-473.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.453] [PMID: 11375445]
[254]
Sies, H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med., 1993, 14(3), 313-323.
[http://dx.doi.org/10.1016/0891-5849(93)90028-S] [PMID: 8458589]
[255]
Dawson, D.A.; Masayasu, H.; Graham, D.I.; Macrae, I.M. The neuroprotective efficacy of ebselen (a glutathione peroxidase mimic) on brain damage induced by transient focal cerebral ischaemia in the rat. Neurosci. Lett., 1995, 185(1), 65-69.
[http://dx.doi.org/10.1016/0304-3940(94)11226-9] [PMID: 7731557]
[256]
Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Stroke, 1998, 29(1), 12-17.
[http://dx.doi.org/10.1161/01.STR.29.1.12] [PMID: 9445321]
[257]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[PMID: 6487370]
[258]
Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4] [PMID: 6487371]
[259]
Ziegler, D.M.; Graf, P.; Poulsen, L.L.; Stahl, W.; Sies, H. NADPH-dependent oxidation of reduced ebselen, 2-selenylbenzanilide, and of 2-(methylseleno)benzanilide catalyzed by pig liver flavin-containing monooxygenase. Chem. Res. Toxicol., 1992, 5(2), 163-166.
[http://dx.doi.org/10.1021/tx00026a004] [PMID: 1643246]
[260]
Akerboom, T.P.; Sies, H.; Ziegler, D.M. The oxidation of ebselen metabolites to thiol oxidants catalyzed by liver microsomes and perfused rat liver. Arch. Biochem. Biophys., 1995, 316(1), 220-226.
[http://dx.doi.org/10.1006/abbi.1995.1031] [PMID: 7840620]
[261]
Chen, G.P.; Ziegler, D.M. Liver microsome and flavin-containing monooxygenase catalyzed oxidation of organic selenium compounds. Arch. Biochem. Biophys., 1994, 312(2), 566-572.
[http://dx.doi.org/10.1006/abbi.1994.1346] [PMID: 8037472]
[262]
Chaudiere, J.; Courtin, O.; Leclaire, J. Glutathione oxidase activity of selenocystamine: a mechanistic study. Arch. Biochem. Biophys., 1992, 296(1), 328-336.
[http://dx.doi.org/10.1016/0003-9861(92)90580-P] [PMID: 1605642]
[263]
Cotgreave, I.A.; Morgenstern, R.; Engman, L.; Ahokas, J. Characterisation and quantitation of a selenol intermediate in the reaction of ebselen with thiols. Chem. Biol. Interact., 1992, 84(1), 69-76.
[http://dx.doi.org/10.1016/0009-2797(92)90121-Z] [PMID: 1394616]
[264]
Maiorino, M.; Roveri, A.; Coassin, M.; Ursini, F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem. Pharmacol., 1988, 37(11), 2267-2271.
[http://dx.doi.org/10.1016/0006-2952(88)90591-6] [PMID: 3377822]
[265]
Morgenstern, R.; Cotgreave, I.A.; Engman, L. Determination of the relative contributions of the diselenide and selenol forms of ebselen in the mechanism of its glutathione peroxidase-like activity. Chem. Biol. Interact., 1992, 84(1), 77-84.
[http://dx.doi.org/10.1016/0009-2797(92)90122-2] [PMID: 1394617]
[266]
Haenen, G.R.; De Rooij, B.M.; Vermeulen, N.P.; Bast, A. Mechanism of the reaction of ebselen with endogenous thiols: Dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen. Mol. Pharmacol., 1990, 37(3), 412-422.
[PMID: 2107391]
[267]
Biewenga, G.P.; Bast, A. Reaction of lipoic acid with ebselen and hypochlorous acid. Methods Enzymol., 1995, 251, 303-314.
[http://dx.doi.org/10.1016/0076-6879(95)51133-4] [PMID: 7651210]
[268]
Reich, H.J.; Jasperse, C.P. Organoselenium chemistry. Redox chemistry of selenocysteine model systems. J. Am. Chem. Soc., 1987, 109(18), 5549-5551.
[http://dx.doi.org/10.1021/ja00252a055]
[269]
Parnham, M.J.; Biedermann, J.; Bittner, C.; Dereu, N.; Leyck, S.; Wetzig, H. Structure-activity relationships of a series of anti-inflammatory benzisoselenazolones (BISAs). Agents Actions, 1989, 27(3-4), 306-308.
[http://dx.doi.org/10.1007/BF01972806] [PMID: 2801314]
[270]
Jacquemin, P.V.; Christiaens, L.E.; Renson, M.J.; Evers, M.J.; Dereu, N. Synthesis of 2H, 3-4-Dihydro-1, 2-benzoselenazin-3-one and derivatives: A new heterocyclic ring system. Tetrahedron Lett., 1992, 33(27), 3863-3866.
[http://dx.doi.org/10.1016/S0040-4039(00)74805-2]
[271]
Ostrovidov, S.; Franck, P.; Joseph, D.; Martarello, L.; Kirsch, G.; Belleville, F.; Nabet, P.; Dousset, B. Screening of new antioxidant molecules using flow cytometry. J. Med. Chem., 2000, 43(9), 1762-1769.
[http://dx.doi.org/10.1021/jm991019j] [PMID: 10794693]
[272]
Sun, Y.; Li, T.; Chen, H.; Zhang, K.; Zheng, K.; Mu, Y.; Yan, G.; Li, W.; Shen, J.; Luo, G. Selenium-containing 15-mer peptides with high glutathione peroxidase-like activity. J. Biol. Chem., 2004, 279(36), 37235-37240.
[http://dx.doi.org/10.1074/jbc.M403032200] [PMID: 15148324]
[273]
He, H.; Liu, S.; Li, H.; Chen, T. Selenium–phycocyanin from selenium-enriched cultures of Nostoc sp. isolated from rice field prevents human kidney cells from paraquat-induced damage. RSC Advances, 2017, 7(68), 43266-43272.
[http://dx.doi.org/10.1039/C7RA08250A]
[274]
Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 1995, 18(2), 321-336.
[http://dx.doi.org/10.1016/0891-5849(94)00159-H] [PMID: 7744317]
[275]
White, R.R.; Hardaway, C.J.; Richert, J.C.; Sneddon, J. Selenium–lead interactions in crawfish (Procambrus clarkii) in a controlled laboratory environment. Microchem. J., 2012, 102, 91-114.
[http://dx.doi.org/10.1016/j.microc.2011.12.005]
[276]
Xu, Z.; Fang, Y.; Chen, Y.; Yang, W.; Ma, N.; Pei, F.; Kimatu, B.M.; Hu, Q.; Qiu, W. Protective effects of Se-containing protein hydrolysates from Se-enriched rice against Pb(2+)-induced cytotoxicity in PC12 and RAW264.7 cells. Food Chem., 2016, 202, 396-403.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.021] [PMID: 26920310]
[277]
Fang, Y.; Xu, Z.; Shi, Y.; Pei, F.; Yang, W.; Ma, N.; Kimatu, B.M.; Liu, K.; Qiu, W.; Hu, Q. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264.7 cells. Food Chem., 2017, 219, 391-398.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.131] [PMID: 27765242]
[278]
Zhang, X.; He, H.; Xiang, J.; Yin, H.; Hou, T. Selenium-containing proteins/peptides from plants: A review on the structures and functions. J. Agric. Food Chem., 2020, 68(51), 15061-15073.
[http://dx.doi.org/10.1021/acs.jafc.0c05594] [PMID: 33315396]
[279]
Wang, Y.; Fang, W.; Huang, Y.; Hu, F.; Ying, Q.; Yang, W.; Xiong, B. Reduction of selenium-binding protein 1 sensitizes cancer cells to selenite via elevating extracellular glutathione: a novel mechanism of cancer-specific cytotoxicity of selenite. Free Radic. Biol. Med., 2015, 79, 186-196.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.015] [PMID: 25445402]
[280]
Walewska, A.; Jaśkiewicz, A.; Bulaj, G.; Rolka, K. Selenopeptide analogs of EETI-II retain potent trypsin inhibitory activities. Chem. Biol. Drug Des., 2011, 77(1), 93-97.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01046.x] [PMID: 20958922]
[281]
Zhang, J.; Zhou, H.; Li, H.; Ying, Z.; Liu, X. Research progress on separation of selenoproteins/Se-enriched peptides and their physiological activities. Food Funct., 2021, 12(4), 1390-1401.
[http://dx.doi.org/10.1039/D0FO02236E] [PMID: 33464257]
[282]
Tie, M.; Li, B.; Zhuang, X.; Han, J.; Liu, L.; Hu, Y.; Li, H. Selenium speciation in soybean by high performance liquid chromatography coupled to electrospray ionization–tandem mass spectrometry (HPLC–ESI–MS/MS). Microchem. J., 2015, 123, 70-75.
[http://dx.doi.org/10.1016/j.microc.2015.05.017]
[283]
Singh, A.V.; Maharjan, R-S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[284]
Barghash, R.F.; Fawzy, I.M.; Chandrasekar, V.; Singh, A.V.; Katha, U.; Mandour, A.A. In silico modeling as a perspective in developing potential vaccine candidates and therapeutics for COVID-19. Coatings, 2021, 11(11), 1273.
[http://dx.doi.org/10.3390/coatings11111273]
[285]
Pettem, C.M.; Briens, J.M.; Janz, D.M.; Weber, L.P. Cardiometabolic response of juvenile rainbow trout exposed to dietary selenomethionine. Aquat. Toxicol., 2018, 198, 175-189.
[http://dx.doi.org/10.1016/j.aquatox.2018.02.022] [PMID: 29550715]
[286]
Naderi, M.; Salahinejad, A.; Jamwal, A.; Chivers, D.P.; Niyogi, S. Chronic dietary selenomethionine exposure induces oxidative stress, dopaminergic dysfunction, and cognitive impairment in adult zebrafish (Danio rerio). Environ. Sci. Technol., 2017, 51(21), 12879-12888.
[http://dx.doi.org/10.1021/acs.est.7b03937] [PMID: 28981273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy