Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders

Author(s): Francesco Matrisciano*, Valentina Locci, Erbo Dong, Ferdinando Nicoletti, Alessandro Guidotti and Dennis R. Grayson

Volume 20, Issue 12, 2022

Published on: 08 June, 2022

Page: [2354 - 2368] Pages: 15

DOI: 10.2174/1567202619999220209112609

Price: $65

conference banner
Abstract

Background: mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of “monogenic” forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects.

Objective: Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype.

Methods: Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure.

Results: Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine.

Conclusion: These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.

Keywords: mGlu5 receptor, autism, GABA, glutamate, MTEP, synaptic plasticity, PI hydrolysis, striatum.

Graphical Abstract
[1]
Shekelle, P.; Maglione, M.; Bagley, S.; Suttorp, M.; Mojica, W.A.; Carter, J.; Rolón, C.; Hilton, L.; Zhou, A.; Chen, S.; Glassman, P.; Newberry, S. Efficacy and comparative effectiveness of off-label use of atypical antipsychotics. 2007. Rockville (MD): Agency for Healthcare Research and Quality (US); 2007 Jan. Report No.: 07-EHC003-EF. AHRQ Comparative Effectiveness Reviews,
[2]
Volkmar, F.R.; McPartland, J.C. From Kanner to DSM-5: Autism as an evolving diagnostic concept. Annu. Rev. Clin. Psychol., 2014, 10(1), 193-212.
[http://dx.doi.org/10.1146/annurev-clinpsy-032813-153710] [PMID: 24329180]
[3]
Won, H.; Mah, W.; Kim, E. Autism spectrum disorder causes, mechanisms, and treatments: Focus on neuronal synapses. Front. Mol. Neurosci., 2013, 6, 19.
[http://dx.doi.org/10.3389/fnmol.2013.00019] [PMID: 23935565]
[4]
Silverman, J.L.; Tolu, S.S.; Barkan, C.L.; Crawley, J.N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology, 2010, 35(4), 976-989.
[http://dx.doi.org/10.1038/npp.2009.201]
[5]
Crawley, J.N. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin. Neurosci., 2012, 14(3), 293-305.
[http://dx.doi.org/10.31887/DCNS.2012.14.3/jcrawley] [PMID: 23226954]
[6]
Bear, M.F.; Huber, K.M.; Warren, S.T. The mGluR theory of fragile X mental retardation. Trends Neurosci., 2004, 27(7), 370-377.
[http://dx.doi.org/10.1016/j.tins.2004.04.009] [PMID: 15219735]
[7]
Huber, K.M.; Gallagher, S.M.; Warren, S.T.; Bear, M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7746-7750.
[http://dx.doi.org/10.1073/pnas.122205699] [PMID: 12032354]
[8]
Scharf, S.H.; Jaeschke, G.; Wettstein, J.G.; Lindemann, L. Metabotropic glutamate receptor 5 as drug target for Fragile X syndrome. Curr. Opin. Pharmacol., 2015, 20, 124-134.
[http://dx.doi.org/10.1016/j.coph.2014.11.004] [PMID: 25488569]
[9]
D’Antoni, S.; Spatuzza, M.; Bonaccorso, C.M.; Musumeci, S.A.; Ciranna, L.; Nicoletti, F.; Huber, K.M.; Catania, M.V. Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neurosci. Biobehav. Rev., 2014, 46(2), 228-241.
[http://dx.doi.org/10.1016/j.neubiorev.2014.02.003]
[10]
Pignatelli, M.; Piccinin, S.; Molinaro, G.; Di Menna, L.; Riozzi, B.; Cannella, M.; Motolese, M.; Vetere, G.; Catania, M.V.; Battaglia, G.; Nicoletti, F.; Nisticò, R.; Bruno, V. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome. J. Neurosci., 2014, 34(13), 4558-4566.
[http://dx.doi.org/10.1523/JNEUROSCI.1846-13.2014] [PMID: 24672001]
[11]
Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 2015, 87(4), 684-698.
[http://dx.doi.org/10.1016/j.neuron.2015.07.033] [PMID: 26291155]
[12]
Rubenstein, J.L.R.; Merzenich, M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav., 2003, 2(5), 255-267.
[http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x] [PMID: 14606691]
[13]
Gao, R.; Penzes, P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr. Mol. Med., 2015, 15(2), 146-167.
[http://dx.doi.org/10.2174/1566524015666150303003028] [PMID: 25732149]
[14]
Lee, E.; Lee, J.; Kim, E. Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol. Psychiatry, 2017, 81(10), 838-847.
[http://dx.doi.org/10.1016/j.biopsych.2016.05.011] [PMID: 27450033]
[15]
Silverman, J.L.; Yang, M.; Turner, S.M.; Katz, A.M.; Bell, D.B.; Koenig, J.I.; Crawley, J.N. Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience, 2010, 171(4), 1197-1208.
[http://dx.doi.org/10.1016/j.neuroscience.2010.09.059] [PMID: 20888890]
[16]
Chao, O.Y.; Marron Fernandez de Velasco, E.; Pathak, S.S.; Maitra, S.; Zhang, H.; Duvick, L.; Wickman, K.; Orr, H.T.; Hirai, H.; Yang, Y.M. Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism. Neuropsychopharmacology, 2020, 45(7), 1159-1170.
[http://dx.doi.org/10.1038/s41386-020-0656-5]
[17]
Youssef, E.A.; Berry-Kravis, E.; Czech, C.; Hagerman, R.J.; Hessl, D.; Wong, C.Y.; Rabbia, M.; Deptula, D.; John, A.; Kinch, R.; Drewitt, P.; Lindemann, L.; Marcinowski, M.; Langland, R.; Horn, C.; Fontoura, P.; Santarelli, L.; Quiroz, J.A. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X Syndrome in a randomized, double-blind, placebo-controlled trial: FragXis Phase 2 Results. Neuropsychopharmacology, 2018, 43(3), 503-512.
[http://dx.doi.org/10.1038/npp.2017.177]
[18]
Hampson, D.R.; Gholizadeh, S.; Pacey, L.K.K. Pathways to drug development for autism spectrum disorders. Clin. Pharmacol. Ther., 2012, 91(2), 189-200.
[http://dx.doi.org/10.1038/clpt.2011.245] [PMID: 22205199]
[19]
Huguet, G.; Ey, E.; Bourgeron, T. The genetic landscapes of autism spectrum disorders. Annu. Rev. Genomics Hum. Genet., 2013, 14(1), 191-213.
[http://dx.doi.org/10.1146/annurev-genom-091212-153431] [PMID: 23875794]
[20]
Carlson, G.C. Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders. Pharmacol. Biochem. Behav., 2012, 100(4), 850-854.
[http://dx.doi.org/10.1016/j.pbb.2011.02.003] [PMID: 21315104]
[21]
van den Bos, R. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour. Behav. Pharmacol., 2015, 26(1 and 2 - Special Issue), 6-17.
[http://dx.doi.org/10.1097/FBP.0000000000000110] [PMID: 25545961]
[22]
Haber, S.N. Corticostriatal circuitry. Dialogues Clin. Neurosci., 2016, 18(1), 7-21.
[http://dx.doi.org/10.31887/DCNS.2016.18.1/shaber] [PMID: 27069376]
[23]
Ramos-Prats, A.; Kölldorfer, J.; Paolo, E.; Zeidler, M.; Schmid, G.; Ferraguti, F. An appraisal of the influence of the metabotropic glutamate 5 (mGlu5) receptor on sociability and anxiety. Front. Mol. Neurosci., 2019, 12, 30.
[http://dx.doi.org/10.3389/fnmol.2019.00030] [PMID: 30873001]
[24]
Matrisciano, F.; Tueting, P.; Dalal, I.; Kadriu, B.; Grayson, D.R.; Davis, J.M.; Nicoletti, F.; Guidotti, A. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology, 2013, 68, 184-194.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.013] [PMID: 22564440]
[25]
Silverman, J.L.; Yang, M.; Lord, C.; Crawley, J.N. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci., 2010, 11(7), 490-502.
[http://dx.doi.org/10.1038/nrn2851] [PMID: 20559336]
[26]
Dong, E.; Tueting, P.; Matrisciano, F.; Grayson, D.R.; Guidotti, A. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: Relevance for the study of chromatin remodeling properties of antipsychotic drugs. Transl. Psychiatry, 2016, 6(1), e711.
[http://dx.doi.org/10.1038/tp.2015.191] [PMID: 26756904]
[27]
Dong, E.; Guidotti, A.; Zhang, H.; Pandey, S.C. Prenatal stress leads to chromatin and synaptic remodeling and excessive alcohol intake comorbid with anxiety-like behaviors in adult offspring. Neuropharmacology, 2018, 140, 76-85.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.010] [PMID: 30016666]
[28]
Meltzer, H.Y.; Rajagopal, L.; Matrisciano, F.; Hao, J.; Svensson, K.A.; Huang, M. The allosteric dopamine D1 receptor potentiator, DETQ, ameliorates subchronic phencyclidine-induced object recognition memory deficits and enhances cortical acetylcholine efflux in male humanized D1 receptor knock-in mice. Behav. Brain Res., 2019, 361, 139-150.
[http://dx.doi.org/10.1016/j.bbr.2018.12.006] [PMID: 30521930]
[29]
Nardecchia, F.; Orlando, R.; Iacovelli, L.; Colamartino, M.; Fiori, E.; Leuzzi, V.; Piccinin, S.; Nistico, R.; Puglisi-Allegra, S.; Di Menna, L.; Battaglia, G.; Nicoletti, F.; Pascucci, T. Targeting mGlu5 metabotropic glutamate receptors in the treatment of cognitive dysfunction in a mouse model of phenylketonuria. Front. Neurosci., 2018, 12, 154.
[http://dx.doi.org/10.3389/fnins.2018.00154] [PMID: 29615849]
[30]
Zuena, A.R.; Iacovelli, L.; Orlando, R.; Di Menna, L.; Casolini, P.; Alemà, G.S.; Di Cicco, G.; Battaglia, G.; Nicoletti, F. In vivo non-radioactive assessment of mGlu5 receptor-activated polyphosphoinositide hydrolysis in response to systemic administration of a positive allosteric modulator. Front. Pharmacol., 2018, 9, 804.
[http://dx.doi.org/10.3389/fphar.2018.00804] [PMID: 30108503]
[31]
Silverman, J.L.; Oliver, C.F.; Karras, M.N.; Gastrell, P.T.; Crawley, J.N. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology, 2013, 64(1), 268-282.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.013] [PMID: 22801296]
[32]
Ade, K.K.; Wan, Y.; Hamann, H.C.; O’Hare, J.K.; Guo, W.; Quian, A.; Kumar, S.; Bhagat, S.; Rodriguiz, R.M.; Wetsel, W.C.; Conn, P.J.; Dzirasa, K.; Huber, K.M.; Calakos, N. Increased metabotropic glutamate receptor 5 signaling underlies obsessive-compulsive disorder-like behavioral and striatal circuit abnormalities in mice. Biol. Psychiatry, 2016, 80(7), 522-533.
[http://dx.doi.org/10.1016/j.biopsych.2016.04.023] [PMID: 27436084]
[33]
Amodeo, D.A.; Cuevas, L.; Dunn, J.T.; Sweeney, J.A.; Ragozzino, M.E. The adenosine A2A receptor agonist, CGS 21680, attenuates a probabilistic reversal learning deficit and elevated grooming behavior in BTBR mice. Autism research : official journal of the International Society for Autism Research, 2018, 11(2), 223-233.
[http://dx.doi.org/10.1002/aur.1901]
[34]
Abe, T.; Sugihara, H.; Nawa, H.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem., 1992, 267(19), 13361-13368.
[http://dx.doi.org/10.1016/S0021-9258(18)42219-3] [PMID: 1320017]
[35]
Auerbach, B.D.; Osterweil, E.K.; Bear, M.F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature, 2011, 480(7375), 63-68.
[http://dx.doi.org/10.1038/nature10658] [PMID: 22113615]
[36]
Potter, W.B.; Basu, T.; O’Riordan, K.J.; Kirchner, A.; Rutecki, P.; Burger, C.; Roopra, A. Reduced juvenile long-term depression in tuberous sclerosis complex is mitigated in adults by compensatory recruitment of mGluR5 and Erk signaling. PLoS Biol., 2013, 11(8), e1001627.
[http://dx.doi.org/10.1371/journal.pbio.1001627] [PMID: 23966835]
[37]
Kelly, E.; Schaeffer, S.M.; Dhamne, S.C.; Lipton, J.O.; Lindemann, L.; Honer, M.; Jaeschke, G.; Super, C.E.; Lammers, S.H.; Modi, M.E.; Silverman, J.L.; Dreier, J.R.; Kwiatkowski, D.J.; Rotenberg, A.; Sahin, M. mGluR5 modulation of behavioral and epileptic phenotypes in a mouse model of tuberous sclerosis complex. Neuropsychopharmacology, 2018, 43(6), 1457-1465.
[http://dx.doi.org/10.1038/npp.2017.295]
[38]
Tao, J.; Wu, H.; Coronado, A.A.; de Laittre, E.; Osterweil, E.K.; Zhang, Y.; Bear, M.F. Negative allosteric modulation of mGluR5 partially corrects pathophysiology in a mouse model of rett syndrome. J. Neurosci., 2016, 36(47), 11946-11958.
[http://dx.doi.org/10.1523/JNEUROSCI.0672-16.2016] [PMID: 27881780]
[39]
Silverman, J.L.; Smith, D.G.; Rizzo, S.J.S.; Karras, M.N.; Turner, S.M.; Tolu, S.S.; Bryce, D.K.; Smith, D.L.; Fonseca, K.; Ring, R.H.; Crawley, J.N. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci. Transl. Med., 2012, 4(131), 131ra51.
[http://dx.doi.org/10.1126/scitranslmed.3003501] [PMID: 22539775]
[40]
Hubert, G.W.; Paquet, M.; Smith, Y. Differential subcellular localization of mGluR1a and mGluR5 in the rat and monkey Substantia nigra. J. Neurosci., 2001, 21(6), 1838-1847.
[http://dx.doi.org/10.1523/JNEUROSCI.21-06-01838.2001] [PMID: 11245668]
[41]
Balázs, R.; Miller, S.; Romano, C.; De Vries, A.; Chun, Y.; Cotman, C.W. Metabotropic glutamate receptor mGluR5 in astrocytes: Pharmacological properties and agonist regulation. J. Neurochem., 1997, 69(1), 151-163.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69010151.x] [PMID: 9202306]
[42]
Seese, R.R.; Maske, A.R.; Lynch, G.; Gall, C.M. Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology, 2014, 39(7), 1664.
[http://dx.doi.org/10.1038/npp.2014.13]
[43]
Minakami, R.; Iida, K.; Hirakawa, N.; Sugiyama, H. The expression of two splice variants of metabotropic glutamate receptor subtype 5 in the rat brain and neuronal cells during development. J. Neurochem., 1995, 65(4), 1536-1542.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65041536.x] [PMID: 7561847]
[44]
Joly, C.; Gomeza, J.; Brabet, I.; Curry, K.; Bockaert, J.; Pin, J.P. Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: Comparison with mGluR1. J. Neurosci., 1995, 15(5), 3970-3981.
[http://dx.doi.org/10.1523/JNEUROSCI.15-05-03970.1995] [PMID: 7751958]
[45]
Nicoletti, F.; Meek, J.L.; Iadarola, M.J.; Chuang, D.M.; Roth, B.L.; Costa, E. Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem., 1986, 46(1), 40-46.
[http://dx.doi.org/10.1111/j.1471-4159.1986.tb12922.x] [PMID: 2866236]
[46]
Di Menna, L.; Joffe, M.E.; Iacovelli, L.; Orlando, R.; Lindsley, C.W.; Mairesse, J.; Gressèns, P.; Cannella, M.; Caraci, F.; Copani, A.; Bruno, V.; Battaglia, G.; Conn, P.J.; Nicoletti, F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 2018, 128, 301-313.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.026] [PMID: 29079293]
[47]
Romano, C.; Smout, S.; Miller, J.K.; O’Malley, K.L. Developmental regulation of metabotropic glutamate receptor 5b protein in rodent brain. Neuroscience, 2002, 111(3), 693-698.
[http://dx.doi.org/10.1016/S0306-4522(02)00042-8] [PMID: 12031354]
[48]
Sebastianutto, I.; Cenci, M.A. mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr. Opin. Pharmacol., 2018, 38, 81-89.
[http://dx.doi.org/10.1016/j.coph.2018.03.003] [PMID: 29625424]
[49]
Pourmirbabaei, S.; Dolatshahi, M.; Rahmani, F. Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur. J. Pharmacol., 2019, 855, 149-159.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.004] [PMID: 31063776]
[50]
Beggiato, S.; Tomasini, M.C.; Borelli, A.C.; Borroto-Escuela, D.O.; Fuxe, K.; Antonelli, T.; Tanganelli, S.; Ferraro, L. Functional role of striatal A2A, D2, and mGlu5 receptor interactions in regulating striatopallidal GABA neuronal transmission. J. Neurochem., 2016, 138(2), 254-264.
[http://dx.doi.org/10.1111/jnc.13652] [PMID: 27127992]
[51]
Picconi, B.; Hernández, L.F.; Obeso, J.A.; Calabresi, P. Motor complications in Parkinson’s disease: Striatal molecular and electrophysiological mechanisms of dyskinesias. Mov. Disord., 2018, 33(6), 867-876.
[http://dx.doi.org/10.1002/mds.27261] [PMID: 29219207]
[52]
Sebastianutto, I.; Goyet, E.; Andreoli, L.; Font-Ingles, J.; Moreno-Delgado, D.; Bouquier, N.; Jahannault-Talignani, C.; Moutin, E.; Di Menna, L.; Maslava, N.; Pin, J.P.; Fagni, L.; Nicoletti, F.; Ango, F.; Cenci, M.A.; Perroy, J. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease. J. Clin. Invest., 2020, 130(3), 1168-1184.
[http://dx.doi.org/10.1172/JCI126361] [PMID: 32039920]
[53]
Squillace, M.; Dodero, L.; Federici, M.; Migliarini, S.; Errico, F.; Napolitano, F.; Krashia, P.; Di Maio, A.; Galbusera, A.; Bifone, A.; Scattoni, M.L.; Pasqualetti, M.; Mercuri, N.B.; Usiello, A.; Gozzi, A. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl. Psychiatry, 2014, 4(8), e427.
[http://dx.doi.org/10.1038/tp.2014.69] [PMID: 25136890]
[54]
Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci., 2010, 11(10), 682-696.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[55]
Doherty, A.J.; Palmer, M.J.; Henley, J.M.; Collingridge, G.L.; Jane, D.E. (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but no mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology, 1997, 36(2), 265-267.
[http://dx.doi.org/10.1016/S0028-3908(97)00001-4] [PMID: 9144665]
[56]
Ugolini, A.; Corsi, M.; Bordi, F. Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons. Neuropharmacology, 1999, 38(10), 1569-1576.
[http://dx.doi.org/10.1016/S0028-3908(99)00095-7] [PMID: 10530818]
[57]
Awad, H.; Hubert, G.W.; Smith, Y.; Levey, A.I.; Conn, P.J. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci., 2000, 20(21), 7871-7879.
[http://dx.doi.org/10.1523/JNEUROSCI.20-21-07871.2000] [PMID: 11050106]
[58]
Attucci, S.; Carlà, V.; Mannaioni, G.; Moroni, F. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br. J. Pharmacol., 2001, 132(4), 799-806.
[http://dx.doi.org/10.1038/sj.bjp.0703904] [PMID: 11181420]
[59]
Mannaioni, G.; Marino, M.J.; Valenti, O.; Traynelis, S.F.; Conn, P.J. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J. Neurosci., 2001, 21(16), 5925-5934.
[http://dx.doi.org/10.1523/JNEUROSCI.21-16-05925.2001] [PMID: 11487615]
[60]
Pisani, A.; Gubellini, P.; Bonsi, P.; Conquet, F.; Picconi, B.; Centonze, D.; Bernardi, G.; Calabresi, P. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience, 2001, 106(3), 579-587.
[http://dx.doi.org/10.1016/S0306-4522(01)00297-4] [PMID: 11591458]
[61]
Alagarsamy, S.; Saugstad, J.; Warren, L.; Mansuy, I.M.; Gereau, R.W.; Conn, P.J. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology, 2005, 49(1), 135-145.
[http://dx.doi.org/10.1016/j.neuropharm.2005.05.005]
[62]
Calabresi, P.; Giacomini, P.; Centonze, D.; Bernardi, G. Levodopa-induced dyskinesia: A pathological form of striatal synaptic plasticity? Ann. Neurol., 2000, 47(4)(Suppl. 1), S60-S68.
[PMID: 10762133]
[63]
Conn, P.J.; Battaglia, G.; Marino, M.J.; Nicoletti, F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat. Rev. Neurosci., 2005, 6(10), 787-798.
[http://dx.doi.org/10.1038/nrn1763] [PMID: 16276355]
[64]
Qin, X.; Jiang, Y.; Tse, Y.C.; Wang, Y.; Wong, T.P.; Paudel, H.K. Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons. J. Biol. Chem., 2015, 290(49), 29603-29616.
[http://dx.doi.org/10.1074/jbc.M115.668889] [PMID: 26475861]
[65]
Wilkerson, J.R.; Tsai, N.P.; Maksimova, M.A.; Wu, H.; Cabalo, N.P.; Loerwald, K.W.; Dictenberg, J.B.; Gibson, J.R.; Huber, K.M. A role for dendritic mGluR5-mediated local translation of Arc/Arg3.1 in MEF2-dependent synapse elimination. Cell Rep., 2014, 7(5), 1589-1600.
[http://dx.doi.org/10.1016/j.celrep.2014.04.035] [PMID: 24857654]
[66]
Wilkerson, J.R.; Albanesi, J.P.; Huber, K.M. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin. Cell Dev. Biol., 2018, 77, 51-62.
[http://dx.doi.org/10.1016/j.semcdb.2017.09.035] [PMID: 28969983]
[67]
Kyzar, E.J.; Zhang, H.; Pandey, S.C. Adolescent alcohol exposure epigenetically suppresses amygdala arc enhancer RNA expression to confer adult anxiety susceptibility. Biol. Psychiatry, 2019, 85(11), 904-914.
[http://dx.doi.org/10.1016/j.biopsych.2018.12.021] [PMID: 30827484]
[68]
Gomez, G.; Escande, M.V.; Suarez, L.M.; Rela, L.; Belforte, J.E.; Moratalla, R.; Murer, M.G.; Gershanik, O.S.; Taravini, I.R.E. Changes in dendritic spine density and inhibitory perisomatic connectivity onto medium spiny neurons in l-dopa-induced dyskinesia. Mol. Neurobiol., 2019, 56(9), 6261-6275.
[http://dx.doi.org/10.1007/s12035-019-1515-4] [PMID: 30746639]
[69]
Sgambato-Faure, V.; Buggia, V.; Gilbert, F.; Lévesque, D.; Benabid, A.L.; Berger, F. Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. J. Neuropathol. Exp. Neurol., 2005, 64(11), 936-947.
[http://dx.doi.org/10.1097/01.jnen.0000186922.42592.b7] [PMID: 16254488]
[70]
Kumar, V.; Jong, Y.J.I.; O’Malley, K.L. Activated nuclear metabotropic glutamate receptor mGlu5 couples to nuclear Gq/11 proteins to generate inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ release. J. Biol. Chem., 2008, 283(20), 14072-14083.
[http://dx.doi.org/10.1074/jbc.M708551200] [PMID: 18337251]
[71]
Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology, 2011, 60(7-8), 1017-1041.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.022] [PMID: 21036182]
[72]
Gálvez-Rosas, A.; Avila-Luna, A.; Valdés-Flores, M.; Montes, S.; Bueno-Nava, A. GABAergic imbalance is normalized by dopamine D1 receptor activation in the striatum contralateral to the cortical injury in motor deficit-recovered rats. Psychopharmacology (Berl.), 2019, 236(7), 2211-2222.
[http://dx.doi.org/10.1007/s00213-019-05215-1] [PMID: 30859334]
[73]
Benjamini, Y.; Krieger, A.M.; Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 2006, 93(3), 491-507.
[http://dx.doi.org/10.1093/biomet/93.3.491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy