Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Evaluation of Specific Antibody Responses in Patients with Selective IgA Deficiency and Ataxia Telangiectasia

Author(s): Shaghayegh Khanmohammadi, Tannaz Moeini Shad, Samaneh Delavari, Paniz Shirmast, Yasser Bagheri, Gholamreza Azizi, Asghar Aghamohammadi, Hassan Abolhassani, Reza Yazdani and Nima Rezaei*

Volume 22, Issue 6, 2022

Published on: 11 April, 2022

Page: [640 - 649] Pages: 10

DOI: 10.2174/1871530322666220208111837

Price: $65

Abstract

Background: Specific Antibody Deficiency (SAD) is a primary immunodeficiency disease (PID) characterized by the occurrence of recurrent infections and inadequate antibody response to polysaccharide new antigens.

Objective: This study aims to determine the titer of specific antibodies against unconjugated 23-valent pneumococcal polysaccharide vaccine (PPSV-23), the presence of SAD, and its association with clinical and laboratory findings in Ataxia-telangiectasia (A-T) and selective immunoglobulin A deficiency (SIgAD) patients.

Methods: 32 A-T patients and 43 SIgAD patients were included in this cross-sectional study. Samples of the patients were obtained before and three weeks after vaccination with PPSV-23. Specific immunoglobulin G (IgG) directed towards pneumococcal capsular antigen and specific antibodies against whole pneumococcal antigens was measured.

Results: Comparison of the response to vaccination revealed that 81.3% of A-T patients and 18.6% of the SIgAD patients had an inadequate response to PPSV-23 (p<0.001). The prevalence of recurrent infection (p=0.034) and pneumonia (p=0.003) in SIgAD patients was significantly higher in non-responders than responders. Likewise, the number of marginal zone B cells (p=0.037), transitional B cells (p=0.019), plasmablasts (p=0.019), CD8+ naïve T cells (p=0.036), and percentage of CD8+ T cells (p=0.047), switched memory B cells (SMB) (p=0.026) and immunoglobulin M (IgM) memory B cells (p=0.022) in SIgAD patients were significantly lower in non-responder group than responder group. In contrast, the percentage of CD4 T+ cells in A-T patients was lower in the non-responder group than responders (p=0.035).

Conclusion: SAD is more frequent in A-T patients than SIgAD patients. The role of SMB and T cells should not be underestimated in SAD.

Keywords: Primary immunodeficiency, inborn errors of immunity, Ataxia telangiectasia, selective IgA deficiency, specific antibody deficiency, 23-valent pneumococcal polysaccharide vaccine, PPSV-23.

Graphical Abstract
[1]
Yazdani, R.; Habibi, S.; Sharifi, L.; Azizi, G.; Abolhassani, H.; Olbrich, P.; Aghamohammadi, A. Common variable immunodeficiency: epi-demiology, pathogenesis, clinical manifestations, diagnosis, classification, and management. J. Investig. Allergol. Clin. Immunol., 2020, 30(1), 14-34.
[http://dx.doi.org/10.18176/jiaci.0388] [PMID: 30741636]
[2]
Aghamohammadi, A.; Cheraghi, T.; Gharagozlou, M.; Movahedi, M.; Rezaei, N.; Yeganeh, M.; Parvaneh, N.; Abolhassani, H.; Pourpak, Z.; Moin, M. IgA deficiency: correlation between clinical and immunological phenotypes. J. Clin. Immunol., 2009, 29(1), 130-136.
[http://dx.doi.org/10.1007/s10875-008-9229-9] [PMID: 18683032]
[3]
Sorensen, R.U. A critical view of specific antibody deficiencies. Front. Immunol., 2019, 10, 986.
[http://dx.doi.org/10.3389/fimmu.2019.00986] [PMID: 31118939]
[4]
Alachkar, H.; Taubenheim, N.; Haeney, M.R.; Durandy, A.; Arkwright, P.D. Memory switched B cell percentage and not serum immuno-globulin concentration is associated with clinical complications in children and adults with specific antibody deficiency and common variable immunodeficiency. Clin. Immunol., 2006, 120(3), 310-318.
[http://dx.doi.org/10.1016/j.clim.2006.05.003] [PMID: 16782407]
[5]
Wall, L.A.; Dimitriades, V.R.; Sorensen, R.U. Specific antibody deficiencies. Immunol. Allergy Clin. North Am., 2015, 35(4), 659-670.
[http://dx.doi.org/10.1016/j.iac.2015.07.003] [PMID: 26454312]
[6]
Fernández, F.; Campillay, R.; Palma, V.; Norambuena, X.; Quezada, A.; Inostroza, J. Specific antibody deficiency: Primary immunodeficien-cy associated to respiratory allergy. Rev. Chil. Pediatr., 2017, 88(2), 252-257.
[http://dx.doi.org/10.1016/j.rchipe.2016.08.006] [PMID: 27614984]
[7]
Song, C.H.; Estevez, D.; Chernikova, D.; Hernandez, F.; Sakai-Bizmark, R.; Stiehm, R. Low baseline pneumococcal antibody titers predict specific antibody deficiency, increased upper respiratory infections, and allergy sensitization. Allergy Rhinol. (Providence), 2020, 11, 2152656719900338.
[http://dx.doi.org/10.1177/2152656719900338] [PMID: 32030313]
[8]
Fried, A.J.; Bonilla, F.A. Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin. Microbiol. Rev., 2009, 22(3), 396-414.
[http://dx.doi.org/10.1128/CMR.00001-09] [PMID: 19597006]
[9]
Bousfiha, A.; Jeddane, L.; Picard, C.; Al-Herz, W.; Ailal, F.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Ochs, H.D.; Oksenhendler, E.; Puck, J.; Torgerson, T.R.; Casanova, J.L.; Sullivan, K.E.; Tangye, S.G. Human inborn er-rors of immunity: 2019 update of the iuis phenotypical classification. J. Clin. Immunol., 2020, 40(1), 66-81.
[http://dx.doi.org/10.1007/s10875-020-00758-x] [PMID: 32048120]
[10]
Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Ochs, H.D.; Oksenhendler, E.; Picard, C.; Puck, J.; Torgerson, T.R.; Casanova, J.L.; Sullivan, K.E. Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J. Clin. Immunol., 2020, 40(1), 24-64.
[http://dx.doi.org/10.1007/s10875-019-00737-x] [PMID: 31953710]
[11]
Amaya-Uribe, L.; Rojas, M.; Azizi, G.; Anaya, J.M.; Gershwin, M.E. Primary immunodeficiency and autoimmunity: A comprehensive re-view. J. Autoimmun., 2019, 99, 52-72.
[http://dx.doi.org/10.1016/j.jaut.2019.01.011] [PMID: 30795880]
[12]
Tavakol, M.; Jamee, M.; Azizi, G.; Sadri, H.; Bagheri, Y.; Zaki-Dizaji, M.; Mahdavi, F.S.; Jadidi-Niaragh, F.; Tajfirooz, S.; Kamali, A.N.; Aghamahdi, F.; Noorian, S.; Kojidi, H.T.; Mosavian, M.; Matani, R.; Dolatshahi, E.; Porrostami, K.; Elahimehr, N.; Fatemi-Abhari, M.; Shari-fi, L.; Arjmand, R.; Haghi, S.; Zainaldain, H.; Yazdani, R.; Shaghaghi, M.; Abolhassani, H.; Aghamohammadi, A. Diagnostic approach to the patients with suspected primary immunodeficiency. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 157-171.
[http://dx.doi.org/10.2174/1871530319666190828125316] [PMID: 31456526]
[13]
Yazdani, R.; Azizi, G.; Abolhassani, H.; Aghamohammadi, A. Selective iga deficiency: epidemiology, pathogenesis, clinical phenotype, diag-nosis, prognosis and management. Scand. J. Immunol., 2017, 85(1), 3-12.
[http://dx.doi.org/10.1111/sji.12499] [PMID: 27763681]
[14]
Yazdani, R.; Latif, A.; Tabassomi, F.; Abolhassani, H.; Azizi, G.; Rezaei, N.; Aghamohammadi, A. Clinical phenotype classification for selec-tive immunoglobulin A deficiency. Expert Rev. Clin. Immunol., 2015, 11(11), 1245-1254.
[http://dx.doi.org/10.1586/1744666X.2015.1081565] [PMID: 26306496]
[15]
Yel, L. Selective IgA deficiency. J. Clin. Immunol., 2010, 30(1), 10-16.
[http://dx.doi.org/10.1007/s10875-009-9357-x] [PMID: 20101521]
[16]
Odineal, D.D.; Gershwin, M.E. The epidemiology and clinical manifestations of autoimmunity in selective iga deficiency. Clin. Rev. Allergy Immunol., 2020, 58(1), 107-133.
[http://dx.doi.org/10.1007/s12016-019-08756-7] [PMID: 31267472]
[17]
Conley, M.E.; Notarangelo, L.D.; Etzioni, A. Diagnostic criteria for primary immunodeficiencies. Clin. Immunol., 1999, 93(3), 190-197.
[http://dx.doi.org/10.1006/clim.1999.4799] [PMID: 10600329]
[18]
van Os, N.J.H.; Jansen, A.F.M.; van Deuren, M.; Haraldsson, A.; van Driel, N.T.M.; Etzioni, A.; van der Flier, M.; Haaxma, C.A.; Morio, T.; Rawat, A.; Schoenaker, M.H.D.; Soresina, A.; Taylor, A.M.R.; van de Warrenburg, B.P.C.; Weemaes, C.M.R.; Roeleveld, N.; Willemsen, M.A.A.P. Ataxia-telangiectasia: Immunodeficiency and survival. Clin. Immunol., 2017, 178, 45-55.
[http://dx.doi.org/10.1016/j.clim.2017.01.009] [PMID: 28126470]
[19]
Amirifar, P.; Ranjouri, M.R.; Lavin, M.; Abolhassani, H.; Yazdani, R.; Aghamohammadi, A. Ataxia-telangiectasia: epidemiology, pathogene-sis, clinical phenotype, diagnosis, prognosis and management. Expert Rev. Clin. Immunol., 2020, 16(9), 859-871.
[http://dx.doi.org/10.1080/1744666X.2020.1810570] [PMID: 32791865]
[20]
Stray-Pedersen, A.; Aaberge, I.S.; Früh, A.; Abrahamsen, T.G. Pneumococcal conjugate vaccine followed by pneumococcal polysaccharide vaccine; immunogenicity in patients with ataxia-telangiectasia. Clin. Exp. Immunol., 2005, 140(3), 507-516.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02791.x] [PMID: 15932512]
[21]
Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia telangiectasia: a review. Orphanet J. Rare Dis., 2016, 11(1), 159.
[http://dx.doi.org/10.1186/s13023-016-0543-7] [PMID: 27884168]
[22]
Levy, A.; Lang, A.E. Ataxia-telangiectasia: A review of movement disorders, clinical features, and genotype correlations. Mov. Disord., 2018, 33(8), 1238-1247.
[http://dx.doi.org/10.1002/mds.27319] [PMID: 29436738]
[23]
Alyasin, S.; Esmaeilzadeh, H.; Ebrahimi, N.; Nabavizadeh, S.H.; Nemati, H. Clinical presentation of ataxia-telangiectasia. Arch. Iran Med., 2019, 22(12), 682-686.
[PMID: 31823618]
[24]
Staples, E.R.; McDermott, E.M.; Reiman, A.; Byrd, P.J.; Ritchie, S.; Taylor, A.M.R.; Davies, E.G. Immunodeficiency in ataxia telangiectasia is correlated strongly with the presence of two null mutations in the ataxia telangiectasia mutated gene. Clin. Exp. Immunol., 2008, 153(2), 214-220.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03684.x] [PMID: 18505428]
[25]
Bobba, N.; Kaplan, M.S. Immunodeficiency and infections in ataxia-telangiectasia. Pediatrics, 2005, 116(Supplement 2), 568.
[http://dx.doi.org/10.1542/peds.2005-0698SSS]
[26]
Jamee, M.; Sharifi, L.; Ghiasy, S. Anti-peptide antibody responses in patients with ataxia-telangiectasia. Immunol. Genetics J., 2019, 2(1), 28-36.
[http://dx.doi.org/10.22034/igj.2019.85745]
[27]
Chopra, C.; Davies, G.; Taylor, M.; Anderson, M.; Bainbridge, S.; Tighe, P.; McDermott, E.M. Immune deficiency in ataxia-telangiectasia: a longitudinal study of 44 patients. Clin. Exp. Immunol., 2014, 176(2), 275-282.
[http://dx.doi.org/10.1111/cei.12262] [PMID: 24387201]
[28]
Sanal, O.; Ersoy, F.; Tezcan, I.; Metin, A.; Turul, T.; Gariboglu, S.; Yel, L. Antibody response to a seven-valent pneumococcal conjugated vaccine in patients with ataxia-telangiectasia. J. Clin. Immunol., 2004, 24(4), 411-417.
[http://dx.doi.org/10.1023/B:JOCI.0000029109.15355.ba] [PMID: 15163897]
[29]
Clutterbuck, E.A.; Salt, P.; Oh, S.; Marchant, A.; Beverley, P.; Pollard, A.J. The kinetics and phenotype of the human B-cell response follow-ing immunization with a heptavalent pneumococcal-CRM conjugate vaccine. Immunology, 2006, 119(3), 328-337.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02436.x] [PMID: 17067312]
[30]
Schubert, R.; Reichenbach, J.; Rose, M.; Zielen, S. Immunogenicity of the seven valent pneumococcal conjugate vaccine in patients with ataxia-telangiectasia. Pediatr. Infect. Dis. J., 2004, 23(3), 269-270.
[http://dx.doi.org/10.1097/01.inf.0000115737.35353.55] [PMID: 15014308]
[31]
Orange, J.S.; Ballow, M.; Stiehm, E.R.; Ballas, Z.K.; Chinen, J.; De La Morena, M.; Kumararatne, D.; Harville, T.O.; Hesterberg, P.; Koleilat, M.; McGhee, S.; Perez, E.E.; Raasch, J.; Scherzer, R.; Schroeder, H.; Seroogy, C.; Huissoon, A.; Sorensen, R.U.; Katial, R. Use and interpreta-tion of diagnostic vaccination in primary immunodeficiency: a working group report of the Basic and Clinical Immunology Interest Section of the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol., 2012, 130(3)(Suppl.), S1-S24.
[http://dx.doi.org/10.1016/j.jaci.2012.07.002] [PMID: 22935624]
[32]
Roberton, D.M.; Björkander, J.; Henrichsen, J.; Söderström, T.; Hanson, L.A. Enhanced IgG1 and IgG3 responses to pneumococcal polysac-charides in isolated IgA deficiency. Clin. Exp. Immunol., 1989, 75(2), 201-205.
[PMID: 2702775]
[33]
Sanal, O.; Ersoy, F.; Yel, L.; Tezcan, I.; Metin, A.; Ozyürek, H.; Gariboglu, S.; Fikrig, S.; Berkel, A.I.; Rijkers, G.T.; Zegers, B.J. Impaired IgG antibody production to pneumococcal polysaccharides in patients with ataxia-telangiectasia. J. Clin. Immunol., 1999, 19(5), 326-334.
[http://dx.doi.org/10.1023/A:1020599810261] [PMID: 10535610]
[34]
Guerra-Maranhão, M.C.; Costa-Carvalho, B.T.; Nudelman, V.; Barros-Nunes, P.; Carneiro-Sampaio, M.M.S.; Arslanian, C. Resposta a antígenos polissacarídicos em pacientes com ataxia-telangiectasia. J. Pediatr. (Rio J.), 2006, 82, 132-136.
[http://dx.doi.org/10.1590/S0021-75572006000200010] [PMID: 16614768]
[35]
Gupta, S.; Gupta, A. Selective IgM deficiency-an underestimated primary immunodeficiency. Front. Immunol., 2017, 8, 1056.
[http://dx.doi.org/10.3389/fimmu.2017.01056] [PMID: 28928736]
[36]
Assaad, U.; El-Masri, I.; Porhomayon, J.; El-Solh, A.A. Pneumonia immunization in older adults: review of vaccine effectiveness and strate-gies. Clin. Interv. Aging, 2012, 7, 453-461.
[http://dx.doi.org/10.2147/CIA.S29675] [PMID: 23152675]
[37]
Seidel, M.G.; Kindle, G.; Gathmann, B.; Quinti, I.; Buckland, M.; van Montfrans, J.; Scheible, R.; Rusch, S.; Gasteiger, L.M.; Grimbacher, B.; Mahlaoui, N.; Ehl, S. The european society for immunodeficiencies (esid) registry working definitions for the clinical diagnosis of inborn er-rors of immunity. J. Allergy Clin. Immunol. Pract., 2019, 7(6), 1763-1770.
[http://dx.doi.org/10.1016/j.jaip.2019.02.004] [PMID: 30776527]
[38]
Abolhassani, H.; Kiaee, F.; Tavakol, M.; Chavoshzadeh, Z.; Mahdaviani, S.A.; Momen, T.; Yazdani, R.; Azizi, G.; Habibi, S.; Gharagozlou, M.; Movahedi, M.; Hamidieh, A.A.; Behniafard, N.; Nabavi, M.; Bemanian, M.H.; Arshi, S.; Molatefi, R.; Sherkat, R.; Shirkani, A.; Amin, R.; Aleyasin, S.; Faridhosseini, R.; Jabbari-Azad, F.; Mohammadzadeh, I.; Ghaffari, J.; Shafiei, A.; Kalantari, A.; Mansouri, M.; Mesdaghi, M.; Babaie, D.; Ahanchian, H.; Khoshkhui, M.; Soheili, H.; Eslamian, M.H.; Cheraghi, T.; Dabbaghzadeh, A.; Tavassoli, M.; Kalmarzi, R.N.; Mortazavi, S.H.; Kashef, S.; Esmaeilzadeh, H.; Tafaroji, J.; Khalili, A.; Zandieh, F.; Sadeghi-Shabestari, M.; Darougar, S.; Behmanesh, F.; Akbari, H.; Zandkarimi, M.; Abolnezhadian, F.; Fayezi, A.; Moghtaderi, M.; Ahmadiafshar, A.; Shakerian, B.; Sajedi, V.; Taghvaei, B.; Safari, M.; Heidarzadeh, M.; Ghalebaghi, B.; Fathi, S.M.; Darabi, B.; Bazregari, S.; Bazargan, N.; Fallahpour, M.; Khayatzadeh, A.; Javahertrash, N.; Bashardoust, B.; Zamani, M.; Mohsenzadeh, A.; Ebrahimi, S.; Sharafian, S.; Vosughimotlagh, A.; Tafakoridelbari, M.; Rahimi, M.; Ashour-nia, P.; Razaghian, A.; Rezaei, A.; Mamishi, S.; Parvaneh, N.; Rezaei, N.; Hammarström, L.; Aghamohammadi, A. Fourth update on the Irani-an National Registry of primary immunodeficiencies: integration of molecular diagnosis. J. Clin. Immunol., 2018, 38(7), 816-832.
[http://dx.doi.org/10.1007/s10875-018-0556-1] [PMID: 30302726]
[39]
Miles, J.; Riches, P. The determination of IgG subclass concentrations in serum by enzyme-linked immunosorbent assay: establishment of age-related reference ranges for cord blood samples, children aged 5-13 years and adults. Ann. Clin. Biochem., 1994, 31(Pt 3), 245-248.
[http://dx.doi.org/10.1177/000456329403100305] [PMID: 8067664]
[40]
Cuilliere, M.L.; Montagne, P.; Bessou, T.; el Omari, R.; Riochet, D.; Varcin, P.; Laroche, P.; Prud’homme, P.; Marchand, J.; Flecheux, O. Microparticle-enhanced nephelometric immunoassay (Nephelia) for immunoglobulins G, A, and M. Clin. Chem., 1991, 37(1), 20-25.
[http://dx.doi.org/10.1093/clinchem/37.1.20] [PMID: 1988204]
[41]
Hammarström, L.; Vorechovsky, I.; Webster, D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin. Exp. Immunol., 2000, 120(2), 225-231.
[http://dx.doi.org/10.1046/j.1365-2249.2000.01131.x] [PMID: 10792368]
[42]
Stiehm, E.R.; Fudenberg, H.H. Serum levels of immune globulins in health and disease: a survey. Pediatrics, 1966, 37(5), 715-727.
[http://dx.doi.org/10.1542/peds.37.5.715] [PMID: 4956666]
[43]
Schur, P.H.; Rosen, F.; Norman, M.E. Immunoglobulin subclasses in normal children. Pediatr. Res., 1979, 13(3), 181-183.
[http://dx.doi.org/10.1203/00006450-197903000-00010] [PMID: 471573]
[44]
Huo, Z.M.; Miles, J.; Riches, P.G.; Harris, T. Limitations of Pneumovax as a detection antigen in the measurement of serotype-specific anti-bodies by enzyme-linked immunosorbent assay. Ann. Clin. Biochem., 2002, 39(Pt 4), 398-403.
[http://dx.doi.org/10.1258/000456302760042164] [PMID: 12117444]
[45]
Tabatabaie, P.; Aghamohammadi, A.; Mamishi, S.; Isaeian, A.; Heidari, G.; Abdollahzade, S.; Pirouzi, P.; Rezaei, N.; Heidarnazhad, H.; Mirsaeid Ghazi, B.; Yeganeh, M.; Cheraghi, T.; Abolhasani, H.; Saghafi, S.; Alizadeh, H.; Anaraki, M.R. Evaluation of humoral immune func-tion in patients with bronchiectasis. Iran. J. Allergy Asthma Immunol., 2008, 7(2), 69-77.
[PMID: 18552408]
[46]
Lavin, M.F.; Shiloh, Y. The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol., 1997, 15(1), 177-202.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.177] [PMID: 9143686]
[47]
Meyn, M.S. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res., 1995, 55(24), 5991-6001.
[PMID: 8521380]
[48]
Amirifar, P.; Ranjouri, M.R.; Yazdani, R.; Abolhassani, H.; Aghamohammadi, A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr. Allergy Immunol., 2019, 30(3), 277-288.
[http://dx.doi.org/10.1111/pai.13020] [PMID: 30685876]
[49]
Amirifar, P.; Mozdarani, H.; Yazdani, R.; Kiaei, F.; Moeini Shad, T.; Shahkarami, S.; Abolhassani, H.; Delavari, S.; Sohani, M.; Rezaei, A.; Hassanpour, G.; Akrami, S.M.; Aghamohammadi, A. Effect of Class Switch Recombination Defect on the Phenotype of Ataxia-Telangiectasia Patients. Immunol. Invest., 2021, 50(2-3), 201-215.
[http://dx.doi.org/10.1080/08820139.2020.1723104] [PMID: 32116070]
[50]
Edwards, E.; Razvi, S.; Cunningham-Rundles, C. IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clin. Immunol., 2004, 111(1), 93-97.
[http://dx.doi.org/10.1016/j.clim.2003.12.005] [PMID: 15093556]
[51]
Knutsen, A.P. Patients with Igg subclass and/or selective antibody deficiency to polysaccharide antigens: initiation of a controlled clinical trial of intravenous immune globulin. J. Allergy Clin. Immunol., 1989, 84(4 Pt 2), 640-645.
[http://dx.doi.org/10.1016/0091-6749(89)90203-0] [PMID: 2677097]
[52]
Perez, E.; Bonilla, F.A.; Orange, J.S.; Ballow, M. Specific antibody deficiency: controversies in diagnosis and management. Front. Immunol., 2017, 8, 586.
[http://dx.doi.org/10.3389/fimmu.2017.00586] [PMID: 28588580]
[53]
Mitchell, R.; Kelly, D.F.; Pollard, A.J.; Trück, J. Polysaccharide-specific B cell responses to vaccination in humans. Hum. Vaccin. Immunother., 2014, 10(6), 1661-1668.
[http://dx.doi.org/10.4161/hv.28350] [PMID: 24632599]
[54]
Nechvatalova, J.; Pikulova, Z.; Stikarovska, D.; Pesak, S.; Vlkova, M.; Litzman, J. B-lymphocyte subpopulations in patients with selective IgA deficiency. J. Clin. Immunol., 2012, 32(3), 441-448.
[http://dx.doi.org/10.1007/s10875-012-9655-6] [PMID: 22328142]
[55]
Lopes-Carvalho, T.; Kearney, J.F. Development and selection of marginal zone B cells. Immunol. Rev., 2004, 197, 192-205.
[http://dx.doi.org/10.1111/j.0105-2896.2004.0112.x] [PMID: 14962196]
[56]
Zouali, M.; Richard, Y. Marginal zone B-cells, a gatekeeper of innate immunity. Front. Immunol., 2011, 2(63)
[http://dx.doi.org/10.3389/fimmu.2011.00063]
[57]
Aghamohammadi, A.; Abolhassani, H.; Biglari, M.; Abolmaali, S.; Moazzami, K.; Tabatabaeiyan, M.; Asgarian-Omran, H.; Parvaneh, N.; Mirahmadian, M.; Rezaei, N. Analysis of switched memory B cells in patients with IgA deficiency. Int. Arch. Allergy Immunol., 2011, 156(4), 462-468.
[http://dx.doi.org/10.1159/000323903] [PMID: 21832837]
[58]
Seifert, M.; Przekopowitz, M.; Taudien, S.; Lollies, A.; Ronge, V.; Drees, B.; Lindemann, M.; Hillen, U.; Engler, H.; Singer, B.B.; Küppers, R. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc. Natl. Acad. Sci. USA, 2015, 112(6), E546-E555.
[http://dx.doi.org/10.1073/pnas.1416276112] [PMID: 25624468]
[59]
Hoshina, T.; Ohga, S.; Fujiyoshi, J.; Nanishi, E.; Takimoto, T.; Kanno, S.; Nishio, H.; Saito, M.; Akeda, Y.; Oishi, K.; Hara, T. Memory B-cell pools predict the immune response to pneumococcal conjugate vaccine in immunocompromised children. J. Infect. Dis., 2016, 213(5), 848-855.
[http://dx.doi.org/10.1093/infdis/jiv469] [PMID: 26410591]
[60]
Shi, Y.; Yamazaki, T.; Okubo, Y.; Uehara, Y.; Sugane, K.; Agematsu, K. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J. Immunol., 2005, 175(5), 3262-3267.
[http://dx.doi.org/10.4049/jimmunol.175.5.3262] [PMID: 16116217]
[61]
Martin, V.G.; Wu, Y.B.; Townsend, C.L.; Lu, G.H.C.; O’Hare, J.S.; Mozeika, A.; Coolen, A.C.; Kipling, D.; Fraternali, F.; Dunn-Walters, D.K. Transitional B cells in early human B cell development - time to revisit the paradigm? Front. Immunol., 2016, 7, 546.
[http://dx.doi.org/10.3389/fimmu.2016.00546] [PMID: 27994589]
[62]
Bagheri, Y.; Sanaei, R.; Yazdani, R.; Shekarabi, M.; Falak, R.; Mohammadi, J.; Abolhassani, H.; Aghamohammadi, A. The heterogeneous pathogenesis of selective immunoglobulin a deficiency. Int. Arch. Allergy Immunol., 2019, 179(3), 231-246.
[http://dx.doi.org/10.1159/000499044] [PMID: 31091523]
[63]
Lemarquis, A.L.; Einarsdottir, H.K.; Kristjansdottir, R.N.; Jonsdottir, I.; Ludviksson, B.R.; Transitional, B. transitional B cells and TLR9 responses are defective in selective IgA deficiency. Front. Immunol., 2018, 9, 909.
[http://dx.doi.org/10.3389/fimmu.2018.00909] [PMID: 29755476]
[64]
Roth, A.; Glaesener, S.; Schütz, K.; Meyer-Bahlburg, A. Reduced number of transitional and naive B cells in addition to decreased BAFF levels in response to the T cell independent immunogen pneumovax®23. PLoS One, 2016, 11(3), e0152215.
[http://dx.doi.org/10.1371/journal.pone.0152215] [PMID: 27031098]
[65]
Jha, V.; Janoff, E.N. Complementary role of CD4+ T cells in response to pneumococcal polysaccharide vaccines in humans. Vaccines (Basel), 2019, 7(1), E18.
[http://dx.doi.org/10.3390/vaccines7010018] [PMID: 30754689]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy