Research Article

表征合成蛇毒缓激肽体内增强肽的药物潜力的比较研究

卷 29, 期 42, 2022

发表于: 01 April, 2022

页: [6422 - 6432] 页: 11

弟呕挨: 10.2174/0929867329666220203153051

价格: $65

Open Access Journals Promotions 2
摘要

背景: 缓激肽增强肽(BPPs)是一种抑制血管紧张素转换酶(ACE)的蛇毒肽。血管紧张素转换酶在调节血压方面起着重要作用。BPP导致了用于治疗高血压的血管紧张素转换酶抑制剂的开发。 目的:对四种合成的蛇毒BPPs进行体内综合比较研究。 方法:将4种合成的蛇毒BPPs 通过腹腔给药,固定剂量给药15 天。以赖诺普利为对照标准品。将30只雄性白化大鼠分为6组:A,B,C,D,E(赖诺普利组)和F(对照组)。F组作为对照组,仅给予生理盐水。15天后,取出血液样本和组织以研究选择性生化参数和组织形态学分析。对所有结果进行了统计评价。 结果: ZSAPGNEAIPP序列肽I具有剧毒,对本研究的所有生化和组织学参数均有不利影响。肽II(ZNWPHPQIPP)和肽IV(ZQWAQGRAPHPP)显示出较低的毒性。BPPs均未提高血清肌酐水平并表现出肾保护作用。虽然赖诺普利提高了肌酐水平,但它对胰腺和肺同时显示出保护作用。 结论: 本研究表明,尽管4种BPP之间存在较高的序列相似性,但它们的体内活性各不相同。肽II和肽IV的序列可用于改进当前用于高血压治疗的ACE抑制剂的设计。

关键词: 蛇毒缓激肽增强肽、赖诺普利、肌酐、曲细精管、肝脏组织形态测定、ACE。

[1]
Mathur, S.; Hoskins, C. Drug development: Lessons from nature. Biomed. Rep., 2017, 6(6), 612-614.
[http://dx.doi.org/10.3892/br.2017.909] [PMID: 28584631]
[2]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), E1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[3]
King, G.F. Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opin. Biol. Ther., 2011, 11(11), 1469-1484.
[http://dx.doi.org/10.1517/14712598.2011.621940] [PMID: 21939428]
[4]
Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics--cardiovascular examples. Toxicon, 2012, 59(4), 497-506.
[http://dx.doi.org/10.1016/j.toxicon.2011.03.017] [PMID: 21447352]
[5]
Ruder, T.; Ali, S.A.; Ormerod, K.; Brust, A.; Roymanchadi, M.L.; Ventura, S.; Undheim, E.A.; Jackson, T.N.; Mercier, A.J.; King, G.F.; Alewood, P.F.; Fry, B.G. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms. Peptides, 2013, 47, 71-76.
[http://dx.doi.org/10.1016/j.peptides.2013.07.002] [PMID: 23850991]
[6]
Almeida, J.R.; Resende, L.M.; Watanabe, R.K.; Carregari, V.C.; Huancahuire-Vega, S.; da S Caldeira, C.A.; Coutinho-Neto, A.; Soares, A.M.; Vale, N.; de C Gomes, P.A.; Marangoni, S.; de A Calderon, L.; Da Silva, S.L. snake venom peptides and low mass proteins: Molecular tools and therapeutic agents. Curr. Med. Chem., 2017, 24(30), 3254-3282.
[http://dx.doi.org/10.2174/0929867323666161028155611] [PMID: 27804880]
[7]
Almeida, D.; Domínguez-Pérez, D.; Matos, A.; Agüero-Chapin, G.; Osório, H.; Vasconcelos, V.; Campos, A.; Antunes, A. Putative antimicrobial peptides of the posterior salivary glands from the cephalopod Octopus vulgaris revealed by exploring a composite protein database. Antibiotics (Basel), 2020, 9(11), E757.
[http://dx.doi.org/10.3390/antibiotics9110757] [PMID: 33143020]
[8]
Bordon, K.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; Ferreira, I.G.; de Oliveira, I.S.; Boldrini-França, J.; Pucca, M.B.; Baldo, M.A.; Arantes, E.C. From animal poisons and venoms to medicines: Achievements, challenges and perspectives in drug discovery. Front. Pharmacol., 2020, 11, 1132.
[http://dx.doi.org/10.3389/fphar.2020.01132] [PMID: 32848750]
[9]
Munawar, A.; Ali, S.A.; Akrem, A.; Betzel, C. Snake venom peptides: Tools of biodiscovery. Toxins (Basel), 2018, 10(11), E474.
[http://dx.doi.org/10.3390/toxins10110474] [PMID: 30441876]
[10]
Cotton, J.; Hayashi, M.A.; Cuniasse, P.; Vazeux, G.; Ianzer, D.; De Camargo, A.C.; Dive, V. Selective inhibition of the C-domain of angiotensin I converting enzyme by bradykinin potentiating peptides. Biochemistry, 2002, 41(19), 6065-6071.
[http://dx.doi.org/10.1021/bi012121x] [PMID: 11994001]
[11]
van Esch, J.H.; Tom, B.; Dive, V.; Batenburg, W.W.; Georgiadis, D.; Yiotakis, A.; van Gool, J.M.; de Bruijn, R.J.; de Vries, R.; Danser, A.H. Selective angiotensin-converting enzyme C-domain inhibition is sufficient to prevent angiotensin I-induced vasoconstriction. Hypertension, 2005, 45(1), 120-125.
[http://dx.doi.org/10.1161/01.HYP.0000151323.93372.f5] [PMID: 15583077]
[12]
Ferreira, L.A.; Alves, W.E.; Lucas, M.S.; Habermehl, G.G. Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from Scaptocosa raptoria venom. Toxicon, 1996, 34(5), 599-603.
[http://dx.doi.org/10.1016/0041-0101(96)00010-4] [PMID: 8783454]
[13]
Conceição, K.; Konno, K.; de Melo, R.L.; Antoniazzi, M.M.; Jared, C.; Sciani, J.M.; Conceição, I.M.; Prezoto, B.C.; de Camargo, A.C.; Pimenta, D.C. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides, 2007, 28(3), 515-523.
[http://dx.doi.org/10.1016/j.peptides.2006.10.002] [PMID: 17098329]
[14]
Verano-Braga, T.; Rocha-Resende, C.; Silva, D.M.; Ianzer, D.; Martin-Eauclaire, M.F.; Bougis, P.E.; de Lima, M.E.; Santos, R.A.; Pimenta, A.M. Tityus serrulatus Hypotensins: A new family of peptides from scorpion venom. Biochem. Biophys. Res. Commun., 2008, 371(3), 515-520.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.104] [PMID: 18445483]
[15]
Arcanjo, D.D.; Vasconcelos, A.G.; Comerma-Steffensen, S.G.; Jesus, J.R.; Silva, L.P.; Pires Júnior, O.R.; Costa-Neto, C.M.; Oliveira, E.B.; Migliolo, L.; Franco, O.L.; Restini, C.B.; Paulo, M.; Bendhack, L.M.; Bemquerer, M.P.; Oliveira, A.P.; Simonsen, U.; Leite, J.R. A novel vasoactive proline-rich oligopeptide from the skin secretion of the frog Brachycephalus ephippium. PLoS One, 2015, 10(12), e0145071.
[http://dx.doi.org/10.1371/journal.pone.0145071] [PMID: 26661890]
[16]
Ganellin, J.F.C.R.; Alfoldi, S.; Fischer, J., Eds.; Analogue-Based Drug Discovery; John Wiley & Sons: Germany, 2006.
[17]
Bakhle, Y.S. How ACE inhibitors transformed the renin-angiotensin system. Br. J. Pharmacol., 2020, 177(12), 2657-2665.
[http://dx.doi.org/10.1111/bph.15045] [PMID: 32144755]
[18]
Sciani, J.M.; Pimenta, D.C. The modular nature of bradykinin-potentiating peptides isolated from snake venoms. J. Venom. Anim. Toxins Incl. Trop. Dis., 2017, 23, 45.
[http://dx.doi.org/10.1186/s40409-017-0134-7] [PMID: 29090005]
[19]
Ianzer, D.; Xavier, C.H.; Fraga, F.C.; Lautner, R.Q.; Guerreiro, J.R.; Machado, L.T.; Mendes, E.P.; de Camargo, A.C.; Santos, R.A. BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect. Ther. Adv. Cardiovasc. Dis., 2011, 5(6), 281-295.
[http://dx.doi.org/10.1177/1753944711427318] [PMID: 22032921]
[20]
Morais, K.L.; Ianzer, D.; Miranda, J.R.; Melo, R.L.; Guerreiro, J.R.; Santos, R.A.; Ulrich, H.; Lameu, C. Proline rich-oligopeptides: Diverse mechanisms for antihypertensive action. Peptides, 2013, 48, 124-133.
[http://dx.doi.org/10.1016/j.peptides.2013.07.016] [PMID: 23933300]
[21]
Sciani, J.M.; Vigerelli, H.; Costa, A.S.; Câmara, D.A.; Junior, P.L.; Pimenta, D.C. An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. J. Pept. Sci., 2017, 23(1), 68-76.
[http://dx.doi.org/10.1002/psc.2965] [PMID: 28054409]
[22]
Querobino, S.M.; Costa, M.S.; Alberto-Silva, C. Protective effects of distinct proline-rich oligopeptides from B. jararaca snake venom against oxidative stress-induced neurotoxicity. Toxicon, 2019, 167, 29-37.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.012] [PMID: 31181294]
[23]
Alberto-Silva, C.; Gilio, J.M.; Portaro, F.C.; Querobino, S.M.; Camargo, A.C. Angiotensin-converting enzyme inhibitors of Bothrops jararaca snake venom affect the structure of mice seminiferous epithelium. J. Venom. Anim. Toxins Incl. Trop. Dis., 2015, 21, 27.
[http://dx.doi.org/10.1186/s40409-015-0030-y] [PMID: 26244047]
[24]
Alberto-Silva, C.; Franzin, C.S.; Gilio, J.M.; Bonfim, R.S.; Querobino, S.M. Toxicological effects of bioactive peptide fractions obtained from Bothrops jararaca snake venom on the structure and function of mouse seminiferous epithelium. J. Venom. Anim. Toxins Incl. Trop. Dis., 2020, 26, e20200007.
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2020-0007] [PMID: 32636877]
[25]
Natesh, R.; Schwager, S.L.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature, 2003, 421(6922), 551-554.
[http://dx.doi.org/10.1038/nature01370] [PMID: 12540854]
[26]
Masuyer, G.; Schwager, S.L.; Sturrock, E.D.; Isaac, R.E.; Acharya, K.R. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci. Rep., 2012, 2, 717.
[http://dx.doi.org/10.1038/srep00717] [PMID: 23056909]
[27]
Sturrock, E.D.; Lubbe, L.; Cozier, G.E.; Schwager, S.L.U.; Arowolo, A.T.; Arendse, L.B.; Belcher, E.; Acharya, K.R. Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb). Biochem. J., 2019, 476(10), 1553-1570.
[http://dx.doi.org/10.1042/BCJ20190290] [PMID: 31072910]
[28]
Munawar, A.; Zahid, A.; Negm, A.; Akrem, A.; Spencer, P.; Betzel, C. Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Proteome Sci., 2016, 14, 1.
[http://dx.doi.org/10.1186/s12953-016-0090-0] [PMID: 26770072]
[29]
Joyce, M. Gilio, F.C.P., Maria I Borella, Claudiana Lameu, Antonio CM Camargo and Carlos Alberto-Silva, A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules. J. Venom. Anim. Toxins Incl. Trop. Dis., 2013, 19, 28.
[http://dx.doi.org/10.1186/1678-9199-19-28]
[30]
Alturkistani, H.A.; Tashkandi, F.M.; Mohammedsaleh, Z.M. Histological stains: A literature review and case study. Glob. J. Health Sci., 2015, 8(3), 72-79.
[http://dx.doi.org/10.5539/gjhs.v8n3p72] [PMID: 26493433]
[31]
StatPearls; StatPearls Publishing: Treasure Island (FL), 2021.
[32]
Gokcimen, A.; Kocak, A.; Kilbas, S.; Bayram, D.; Kilbas, A.; Cim, A.; Kockar, C.; Kutluhan, S. Effect of lisinopril on rat liver tissues in L-NAME induced hypertension model. Mol. Cell. Biochem., 2007, 296(1-2), 159-164.
[http://dx.doi.org/10.1007/s11010-006-9310-8] [PMID: 16988888]
[33]
Dodiya, H.; Kale, V.; Goswami, S.; Sundar, R.; Jain, M. Evaluation of adverse effects of lisinopril and rosuvastatin on hematological and biochemical analytes in wistar rats. Toxicol. Int., 2013, 20(2), 170-176.
[http://dx.doi.org/10.4103/0971-6580.117261] [PMID: 24082511]
[34]
Yun Shin Chun, M.D. Jean-Nicolas Vauthey. Venous Embolization of the Liver: Radiologic and Surgical Practice; Springer, 2011.
[35]
Al-Rifaie, A.; Khan, M.A.; Ali, A.; Dube, A.K.; Gleeson, D.; Hoeroldt, B. Lisinopril-induced liver injury: An unusual presentation and literature review. Eur. J. Case Rep. Intern. Med., 2020, 7(7), 001600.
[http://dx.doi.org/10.12890/2020_001600] [PMID: 32665926]
[36]
Bekheet, S.H.; Awadalla, E.A.; Salman, M.M.; Hassan, M.K. Bradykinin potentiating factor isolated from Buthus occitanus venom has a protective effect against cadmium-induced rat liver and kidney damage. Tissue Cell, 2011, 43(6), 337-343.
[http://dx.doi.org/10.1016/j.tice.2011.07.001] [PMID: 21862094]
[37]
Bekheet, S.H.; Awadalla, E.A.; Salman, M.M.; Hassan, M.K. Prevention of hepatic and renal toxicity with bradykinin potentiating factor (BPF) isolated from Egyptian scorpion venom (Buthus occitanus) in gentamicin treated rats. Tissue Cell, 2013, 45(2), 89-94.
[http://dx.doi.org/10.1016/j.tice.2012.09.006] [PMID: 23218888]
[38]
Yakubu, M.T.; Adesokan, A.A.; M.A, A. Biochemical changes in the Liver, Kidney and Serum of rat following chronic administration of cimetidine. Afr. J. Biomed. Res., 2006, 9, 213-218.
[39]
Dodiya, H.; Jain, M.; Goswami, S.S. Renal toxicity of lisinopril and rosuvastatin, alone and in combination, in Wistar rats. Int. J. Toxicol., 2011, 30(5), 518-527.
[http://dx.doi.org/10.1177/1091581811415293] [PMID: 21878554]
[40]
Nakamura, M.; Funakoshi, T.; Yoshida, H.; Arakawa, N.; Suzuki, T.; Hiramori, K. Endothelium-dependent vasodilation is augmented by angiotensin converting enzyme inhibitors in healthy volunteers. J. Cardiovasc. Pharmacol., 1992, 20(6), 949-954.
[http://dx.doi.org/10.1097/00005344-199212000-00015] [PMID: 1282598]
[41]
Henein, M.Y.; O’Sullivan, C.A.; Coats, A.J.; Gibson, D.G. Angiotensin-converting enzyme (ACE) inhibitors revert abnormal right ventricular filling in patients with restrictive left ventricular disease. J. Am. Coll. Cardiol., 1998, 32(5), 1187-1193.
[http://dx.doi.org/10.1016/S0735-1097(98)00412-4] [PMID: 9809924]
[42]
Caneguim, B.H.; Cerri, P.S.; Spolidório, L.C.; Miraglia, S.M.; Sasso-Cerri, E. Structural alterations in the seminiferous tubules of rats treated with immunosuppressor tacrolimus. Reprod. Biol. Endocrinol., 2009, 7(1), 19.
[http://dx.doi.org/10.1186/1477-7827-7-19] [PMID: 19243597]
[43]
Adebayo, A.; Olamide, A.; Helen, A.; Oluwaseun, H.I.; Olusegun, S.; Selimot, H.A. Toxicity effects of amlodipine on the testis histology in adult Wistar rats. Afr. J. Med. Med. Sci., 2012, 2(3), 36-40.
[http://dx.doi.org/10.5923/j.ajmms.20120203.02]
[44]
Foresta, C.; Indino, M.; Manoni, F.; Scandellari, C. Angiotensin-converting enzyme content of human spermatozoa and its release during capacitation. Fertil. Steril., 1987, 47(6), 1000-1003.
[http://dx.doi.org/10.1016/S0015-0282(16)59236-X] [PMID: 3036607]
[45]
Ojaghi, M.; Kastelic, J.; Thundathil, J. Testis-specific isoform of angiotensin-converting enzyme (tACE) is involved in the regulation of bovine sperm capacitation. Mol. Reprod. Dev., 2017, 84(5), 376-388.
[http://dx.doi.org/10.1002/mrd.22790] [PMID: 28244620]
[46]
Guo, D.; Li, S.; Behr, B.; Eisenberg, M.L. Hypertension and male fertility. World J. Mens Health, 2017, 35(2), 59-64.
[http://dx.doi.org/10.5534/wjmh.2017.35.2.59] [PMID: 28868816]
[47]
Mohammadi-Karakani, A.; Ghazi-Khansari, M.; Sotoudeh, M. Lisinopril ameliorates paraquat-induced lung fibrosis. Clin. Chim. Acta, 2006, 367(1-2), 170-174.
[http://dx.doi.org/10.1016/j.cca.2005.12.012] [PMID: 16458281]
[48]
Silva, Rde.B.; Ramalho, F.S.; Ramalho, L.Z. The effect of anti-hypertensive drugs on the obstructive pancreatitis in rats. Acta Cir. Bras., 2010, 25(5), 396-400.
[http://dx.doi.org/10.1590/S0102-86502010000500003] [PMID: 20877948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy