Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Potential of Caffeic Acid Derivatives as Antimalarial Leads

Author(s): Gilles Degotte*, Bernard Pirotte, Michel Frédérich and Pierre Francotte

Volume 19, Issue 9, 2022

Published on: 01 April, 2022

Page: [823 - 836] Pages: 14

DOI: 10.2174/1570180819666220202160247

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Malaria was one of the deadliest infectious diseases in 2021. Indeed, this infection, mostly caused by a protozoan called Plasmodium falciparum, is responsible for more than 200 million cases and around 400 000 related deaths annually, mainly in Africa. Despite the availability of effective drugs, the number of patients has increased since 2015, which could be due to parasite resistance as well as resistance in the pathogen's vectors, Anopheles mosquitoes. Consequently, it is necessary to search for new alternative treatments.

Methods: Polyphenols, more precisely small phenolic acids, could represent a good starting point for new antimalarials. Indeed, these molecules, including caffeic acid (1), possess several pharmacological activities and an interesting pharmacokinetic profile. Therefore, we have developed several small derivatives of this scaffold to define the potential pharmacophore responsible for the antiplasmodial properties.

Results: A good to low activity on Plasmodium falciparum (IC50 = 16-241 μM) was observed, especially for the small ester derivatives (2-6). These molecules were good antiplasmodials compared to their mother compound (IC50 = 80 μM) and showed selectivity against human cells. These structures have also highlighted the need for catechol and carboxyl moieties in the anti-Plasmodium effect.

Conclusion: None of the synthetic caffeate derivatives reported here seemed sufficiently effective to become a potential antimalarial (IC50 < 1 μM). However, the significant increase of their efficacy on the malarial agent and the selectivity to human cells highlighted their potential as new leads for future developments.

Keywords: Malaria, Plasmodium, caffeic acid, pharmacomodulation, polyphenols, antimalarials.

Graphical Abstract
[1]
Center for Disease Control. Available from: https://www.cdc.gov/malaria/about/disease.html (Accessed on: Jan 27, 2021).
[2]
World Health Organization. World Malaria Report 2020, 2020.
[3]
World Health Organisation. Malaria, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria (Accessed on: Nov 10, 2020).
[4]
Center for disease control. Malaria’s impact worldwide. Available from: https://www.cdc.gov/malaria/malaria_worldwide/impact.html (Accessed on: Jan 27, 2021).
[5]
Center for disease control. Drug resistance in the malaria-endemic world. Available from: https://www.cdc.gov/malaria/malaria_ worldwide/reduction/drug_resistance.html (Accessed on: Jan 27, 2021).
[6]
World Health Organization. Status Report on Artemisinin Resistance, 2014.
[7]
Roberts, L. Drug-resistant malaria advances in Mekong. Science, 2017, 358(6360), 155-156.
[8]
Center for Disease Control. Anopheles mosquitoes. Available from: https://www.cdc.gov/malaria/about/biology/index.html#tabs-1-5 (Accessed on: Jan 27, 2021).
[9]
Mbengue, A.; Bhattacharjee, S.; Pandharkar, T.; Liu, H.; Estiu, G.; Stahelin, R.V.; Rizk, S.S.; Njimoh, D.L.; Ryan, Y.; Chotivanich, K.; Nguon, C.; Ghorbal, M.; Lopez-Rubio, J.J.; Pfrender, M.; Emrich, S.; Mohandas, N.; Dondorp, A.M.; Wiest, O.; Haldar, K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 2015, 520(7549), 683-687.
[http://dx.doi.org/10.1038/nature14412] [PMID: 25874676]
[10]
Klayman, D.L.; Lin, A.J.; Acton, N.; Scovill, J.P.; Hoch, J.M.; Milhous, W.K.; Theoharides, A.D.; Dobek, A.S. Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J. Nat. Prod., 1984, 47(4), 715-717.
[http://dx.doi.org/10.1021/np50034a027] [PMID: 6387056]
[11]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[12]
Batista, R.; Silva, A.J., Jr; de Oliveira, A.B. Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules, 2009, 14(8), 3037-3072.
[http://dx.doi.org/10.3390/molecules14083037] [PMID: 19701144]
[13]
Tajuddeen, N.; Van Heerden, F.R. Antiplasmodial natural products: An update. Malar. J., 2019, 18(1), 404.
[http://dx.doi.org/10.1186/s12936-019-3026-1] [PMID: 31805944]
[14]
Pan, W-H.; Xu, X-Y.; Shi, N.; Tsang, S.W.; Zhang, H-J. Antimalarial activity of plant metabolites. Int. J. Mol. Sci., 2018, 19(5), 1-40.
[http://dx.doi.org/10.3390/ijms19051382] [PMID: 29734792]
[15]
Xu, Y-J.; Pieters, L. Recent developments in antimalarial natural products isolated from medicinal plants. Mini Rev. Med. Chem., 2013, 13(7), 1056-1072.
[PMID: 22974400]
[16]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[17]
Soh, P.N.; Witkowski, B.; Olagnier, D.; Nicolau, M.L.; Garcia-Alvarez, M.C.; Berry, A.; Benoit-Vical, F. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob. Agents Chemother., 2009, 53(3), 1100-1106.
[http://dx.doi.org/10.1128/AAC.01175-08] [PMID: 19015354]
[18]
Touaibia, M.; Jean-François, J.; Doiron, J. Caffeic Acid, a versatile pharmacophore: An overview. Mini Rev. Med. Chem., 2011, 11(8), 695-713.
[http://dx.doi.org/10.2174/138955711796268750] [PMID: 21679136]
[19]
Otero, E.; Robledo, S.M.; Díaz, S.; Carda, M.; Muñoz, D.; Paños, J.; Vélez, I.D.; Cardona, W. Synthesis and leishmanicidal activity of cinnamic acid esters: Structure-activity relationship. Med. Chem. Res., 2014, 23(3), 1378-1386.
[http://dx.doi.org/10.1007/s00044-013-0741-y]
[20]
Bisogno, F.; Mascoti, L.; Sanchez, C.; Garibotto, F.; Giannini, F.; Kurina-Sanz, M.; Enriz, R. Structure-antifungal activity relationship of cinnamic acid derivatives. J. Agric. Food Chem., 2007, 55(26), 10635-10640.
[http://dx.doi.org/10.1021/jf0729098] [PMID: 18038998]
[21]
Fu, J.; Cheng, K.; Zhang, Z.M.; Fang, R.Q.; Zhu, H.L. Synthesis, structure and structure-activity relationship analysis of caffeic acid amides as potential antimicrobials. Eur. J. Med. Chem., 2010, 45(6), 2638-2643.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.066] [PMID: 20181415]
[22]
Vongvanich, N.; Kittakoop, P.; Charoenchai, P.; Intamas, S.; Sriklung, K.; Thebtaranonth, Y. Antiplasmodial, antimycobacterial, and cytotoxic principles from Camchaya calcarea. Planta Med., 2006, 72(15), 1427-1430.
[http://dx.doi.org/10.1055/s-2006-951711] [PMID: 17089326]
[23]
Uwai, K.; Osanai, Y.; Imaizumi, T.; Kanno, S.; Takeshita, M.; Ishikawa, M. Inhibitory effect of the alkyl side chain of caffeic acid analogues on lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages. Bioorg. Med. Chem., 2008, 16(16), 7795-7803.
[http://dx.doi.org/10.1016/j.bmc.2008.07.006] [PMID: 18667320]
[24]
Jayaprakasam, B.; Vanisree, M.; Zhang, Y.; Dewitt, D.L.; Nair, M.G. Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J. Agric. Food Chem., 2006, 54(15), 5375-5381.
[http://dx.doi.org/10.1021/jf060899p] [PMID: 16848520]
[25]
Ribeiro, D.; Proença, C.; Varela, C.; Janela, J.; Tavares da Silva, E.J.; Fernandes, E.; Roleira, F.M.F. New phenolic cinnamic acid derivatives as selective COX-2 inhibitors. Design, synthesis, biological activity and structure-activity relationships. Bioorg. Chem., 2019, 91, 103179.
[http://dx.doi.org/10.1016/j.bioorg.2019.103179] [PMID: 31404794]
[26]
da Cunha, F.M.; Duma, D.; Assreuy, J.; Buzzi, F.C.; Niero, R.; Campos, M.M.; Calixto, J.B. Caffeic acid derivatives: In vitro and in vivo anti-inflammatory properties. Free Radic. Res., 2004, 38(11), 1241-1253.
[http://dx.doi.org/10.1080/10715760400016139] [PMID: 15621702]
[27]
Reta, G.F.; Tonn, C.E.; Ríos-Luci, C.; León, L.G.; Pérez-Roth, E.; Padrón, J.M.; Donadel, O.J. Cytotoxic bioactivity of some phenylpropanoic acid derivatives. Nat. Prod. Commun., 2012, 7(10), 1341-1346.
[http://dx.doi.org/10.1177/1934578x1200701023] [PMID: 23157005]
[28]
Suberu, J.O.; Gorka, A.P.; Jacobs, L.; Roepe, P.D.; Sullivan, N.; Barker, G.C.; Lapkin, A.A. Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract-possible synergistic and resistance mechanisms. PLoS One, 2013, 8(11), e80790.
[http://dx.doi.org/10.1371/journal.pone.0080790] [PMID: 24244716]
[29]
Lagnika, L.; Weniger, B.; Attioua, B.; Jensen, O.; Anthaume, C.; Sanni, A.; Kaiser, M.; Lobstein, A.; Vonthron-Senechau, C. Trypanocidal activity of diarylheptanoids from Schrankia leptocarpa DC. S. Afr. J. Bot., 2012, 83, 92-97.
[http://dx.doi.org/10.1016/j.sajb.2012.06.011]
[30]
Grellier, P. Nemeikaite-Čeniene, A.; Šarlauskas, J.; Čenas, N. Role of single-electron oxidation potential and lipophilicity in the antiplasmodial in vitro activity of polyphenols: Comparison to mammalian cells. Z. Naturforsch. C J. Biosci., 2008, 63(5-6), 445-450.
[http://dx.doi.org/10.1515/znc-2008-5-622] [PMID: 18669034]
[31]
Nemeikaite-Čeniene, A.; Imbrasaite, A.; Sergediene, E.; Čenas, N. Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: Role of potential of phenoxyl radical/phenol redox couple. Arch. Biochem. Biophys., 2005, 441(2), 182-190.
[http://dx.doi.org/10.1016/j.abb.2005.07.002] [PMID: 16111645]
[32]
Alson, S.G.; Jansen, O.; Cieckiewicz, E.; Rakotoarimanana, H.; Rafatro, H.; Degotte, G.; Francotte, P.; Frederich, M. In-vitro and in-vivo antimalarial activity of caffeic acid and some of its derivatives. J. Pharm. Pharmacol., 2018, 70(10), 1349-1356.
[http://dx.doi.org/10.1111/jphp.12982] [PMID: 30033538]
[33]
Mota, L.F.; Queimada, J.A.; Pinho, P.S.; Macedo, E.A. Aqueous solubility of some natural phenolic compounds. Ind. Eng. Chem. Res., 2008, 47(15), 5182-5189.
[http://dx.doi.org/10.1021/ie071452o]
[34]
Liu, Y.; Qiu, S.; Wang, L.; Zhang, N.; Shi, Y.; Zhou, H.; Liu, X.; Shao, L.; Liu, X.; Chen, J.; Hou, M. Reproductive and developmental toxicity study of caffeic acid in mice. Food Chem. Toxicol., 2019, 123(123), 106-112.
[http://dx.doi.org/10.1016/j.fct.2018.10.040] [PMID: 30366071]
[35]
Brautigan, D.L.; Gielata, M.; Heo, J.; Kubicka, E.; Wilkins, L.R. Selective toxicity of caffeic acid in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2018, 505(2), 612-617.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.155] [PMID: 30278886]
[36]
Olthof, M.R.; Hollman, P.C.H.; Katan, M.B. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr., 2001, 131(1), 66-71.
[http://dx.doi.org/10.1093/jn/131.1.66] [PMID: 11208940]
[37]
Konishi, Y.; Hitomi, Y.; Yoshida, M.; Yoshioka, E. Pharmacokinetic study of caffeic and rosmarinic acids in rats after oral administration. J. Agric. Food Chem., 2005, 53(12), 4740-4746.
[http://dx.doi.org/10.1021/jf0478307] [PMID: 15941309]
[38]
Konishi, Y.; Kobayashi, S.; Shimizu, M. Transepithelial transport of p-coumaric acid and gallic acid in Caco-2 cell monolayers. Biosci. Biotechnol. Biochem., 2003, 67(11), 2317-2324.
[http://dx.doi.org/10.1271/bbb.67.2317] [PMID: 14646189]
[39]
Konishi, Y.; Hitomi, Y.; Yoshioka, E. Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J. Agric. Food Chem., 2004, 52(9), 2527-2532.
[http://dx.doi.org/10.1021/jf035366k] [PMID: 15113151]
[40]
Omar, M.H.; Mullen, W.; Stalmach, A.; Auger, C.; Rouanet, J.M.; Teissedre, P.L.; Caldwell, S.T.; Hartley, R.C.; Crozier, A. Absorption, disposition, metabolism, and excretion of [3-(14)C]caffeic acid in rats. J. Agric. Food Chem., 2012, 60(20), 5205-5214.
[PMID: 22480330]
[41]
Peters, W.; Portus, J.H.; Robinson, B.L. Berghei in screening for blood schizontocidal activity. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann. Trop. Med. Parasitol., 1975, 69(2), 155-171.
[http://dx.doi.org/10.1080/00034983.1975.11686997] [PMID: 1098584]
[42]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193(4254), 673-675.
[43]
Frédérich, M.; Jacquier, M.J.; Thépenier, P.; De Mol, P.; Tits, M.; Philippe, G.; Delaude, C.; Angenot, L.; Zèches-Hanrot, M. Antiplasmodial activity of alkaloids from various strychnos species. J. Nat. Prod., 2002, 65(10), 1381-1386.
[http://dx.doi.org/10.1021/np020070e] [PMID: 12398531]
[44]
Murebwayire, S.; Frédérich, M.; Hannaert, V.; Jonville, M.C.; Duez, P. Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine, 2008, 15(9), 728-733.
[http://dx.doi.org/10.1016/j.phymed.2007.10.005] [PMID: 18321694]
[45]
Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Gibbins, B.L.; Hinrichs, D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg., 1993, 48(6), 739-741.
[http://dx.doi.org/10.4269/ajtmh.1993.48.739] [PMID: 8333566]
[46]
Jansen, O.; Tits, M.; Angenot, L.; Nicolas, J.P.; De Mol, P.; Nikiema, J.B.; Frédérich, M. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar. J., 2012, 11, 289.
[http://dx.doi.org/10.1186/1475-2875-11-289] [PMID: 22909422]
[47]
Ledoux, A.; St-Gelais, A.; Cieckiewicz, E.; Jansen, O.; Bordignon, A.; Illien, B.; Di Giovanni, N.; Marvilliers, A.; Hoareau, F.; Pendeville, H.; Quetin-Leclercq, J.; Frédérich, M. Antimalarial activities of alkyl cyclohexenone derivatives isolated from the leaves of Poupartia borbonica. J. Nat. Prod., 2017, 80(6), 1750-1757.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01019] [PMID: 28557449]
[48]
Martic, S.; Brennan, J.D.; Brook, M.A.; Ackloo, S.; Nagy, N. Towards the development of a covalently tethered MALDI system - A Study of allyl-modified MALDI matrixes. Can. J. Chem., 2007, 85(1), 66-76.
[http://dx.doi.org/10.1139/V06-185]
[49]
Chiang, Y.M.; Lo, C.P.; Chen, Y.P.; Wang, S.Y.; Yang, N.S.; Kuo, Y.H.; Shyur, L.F. Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br. J. Pharmacol., 2005, 146(3), 352-363.
[http://dx.doi.org/10.1038/sj.bjp.0706343] [PMID: 16041399]
[50]
Helferich, B.; Vorsatz, F. Notiz Über Ester Der Kaffeesäure. J. Prakt. Chem., 1935, 142(6–7), 191-192.
[http://dx.doi.org/10.1002/prac.19351420606]
[51]
Sharma, A.; Sharma, N.; Shard, A.; Kumar, R.; Mohanakrishnan, D. Saima; Sinha, A.K.; Sahal, D. Tandem allylic oxidation-condensation/esterification catalyzed by silica gel: An expeditious approach towards antimalarial diaryldienones and enones from natural methoxylated phenylpropenes. Org. Biomol. Chem., 2011, 9(14), 5211-5219.
[http://dx.doi.org/10.1039/c1ob05293d] [PMID: 21625717]
[52]
Gokcen, T.; Gulcin, I.; Ozturk, T.; Goren, A.C. A class of sulfonamides as carbonic anhydrase I and II inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(sup2), 180-188.
[http://dx.doi.org/10.1080/14756366.2016.1198900] [PMID: 27353698]
[53]
Hermann, K. Caffeyl alcohol. Pharmazie, 1953, 8, 303.
[54]
Jiang, S.; Yang, K.; Yu, X. Synthesis of α β-unsaturated amide via phosphonium ylide. Synth. Commun., 2009, 39(10), 1759-1767.
[http://dx.doi.org/10.1080/00397910802590902]
[55]
Birch, A.J.; Ritchie, E.; Speake, R.N. 719. The structure of alphitonin. J. Chem. Soc., 1960, 3593.
[http://dx.doi.org/10.1039/jr9600003593]
[56]
Chumkaew, P.; Kato, S.; Chantrapromma, K. A new triterpenoid ester from the fruits of Bruguiera parviflora. Chem. Pharm. Bull. (Tokyo), 2005, 53(1), 95-96.
[PMID: 15635238]
[57]
Filipe, H.A.L.; Sousa, C.; Marquês, J.T.; Vila-Viçosa, D.; de Granada-Flor, A.; Viana, A.S.; Santos, M.S.C.S.; Machuqueiro, M.; de Almeida, R.F.M. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives. Free Radic. Biol. Med., 2018, 115(115), 232-245.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.002] [PMID: 29221989]
[58]
Wu, X.W.; Wei, W.; Yang, X.W.; Zhang, Y.B.; Xu, W.; Yang, Y.F.; Zhong, G.Y.; Liu, H.N.; Yang, S.L. Anti-inflammatory phenolic acid esters from the roots and rhizomes of Notopterygium incisium and their permeability in the human Caco-2 monolayer cell model. Molecules, 2017, 22(6), 2-11.
[http://dx.doi.org/10.3390/molecules22060935] [PMID: 28587222]
[59]
Verma, R.P.; Hansch, C. An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem, 2004, 5(9), 1188-1195.
[http://dx.doi.org/10.1002/cbic.200400094] [PMID: 15368569]
[60]
Likhitwitayawuid, K.; Kaewamatawong, R.; Ruangrungsi, N.; Krungkrai, J. Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med., 1998, 64(3), 237-241.
[http://dx.doi.org/10.1055/s-2006-957417] [PMID: 9581522]
[61]
Degotte, G.; Pirotte, B.; Frédérich, M.; Francotte, P. Polyhydroxybenzoic acid derivatives as potential new antimalarial agents. Arch. Pharm. (Weinheim), 2021, 354(11), e2100190.
[http://dx.doi.org/10.1002/ardp.202100190] [PMID: 34346088]
[62]
Sugiura, M.; Naito, Y.; Yamaura, Y.; Fukaya, C.; Yokoyama, K. Inhibitory activities and inhibition specificities of caffeic acid derivatives and related compounds toward 5-lipoxygenase. Chem. Pharm. Bull. (Tokyo), 1989, 37(4), 1039-1043.
[PMID: 2766406]
[63]
Nagaoka, T.; Banskota, A.H.; Tezuka, Y.; Saiki, I.; Kadota, S. Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg. Med. Chem., 2002, 10(10), 3351-3359.
[http://dx.doi.org/10.1016/S0968-0896(02)00138-4] [PMID: 12150882]
[64]
Nagaoka, T.; Banskota, A.H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K.; Kadota, S. Caffeic acid phenethyl ester (CAPE) analogues: Potent nitric oxide inhibitors from the Netherlands propolis. Biol. Pharm. Bull., 2003, 26(4), 487-491.
[http://dx.doi.org/10.1248/bpb.26.487] [PMID: 12673030]
[65]
Saito, S.; Kurakane, S.; Seki, M.; Takai, E.; Kasai, T.; Kawabata, J. Radical scavenging activity of dicaffeoyloxycyclohexanes: Contribution of an intramolecular interaction of two caffeoyl residues. Bioorg. Med. Chem., 2005, 13(13), 4191-4199.
[http://dx.doi.org/10.1016/j.bmc.2005.04.049] [PMID: 15893932]
[66]
Riihimäki, L.H.; Vainio, M.J.; Heikura, J.M.S.; Valkonen, K.H.; Virtanen, V.T.; Vuorela, P.M. Binding of phenolic compounds and their derivatives to bovine and reindeer β-lactoglobulin. J. Agric. Food Chem., 2008, 56(17), 7721-7729.
[http://dx.doi.org/10.1021/jf801120a] [PMID: 18700775]
[67]
Xiao, J.; Kai, G. A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr., 2012, 52(1), 85-101.
[http://dx.doi.org/10.1080/10408398.2010.499017] [PMID: 21991992]
[68]
Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull., 2006, 29(11), 2226-2235.
[http://dx.doi.org/10.1248/bpb.29.2226] [PMID: 17077519]
[69]
Klein, V.G.; Bond, A.G.; Craigon, C.; Lokey, R.S.; Ciulli, A. Amide-to-ester substitution as a strategy for optimizing PROTAC permeability and cellular activity. J. Med. Chem., 2021, 64(24), 18082-18101.
[PMID: 34881891]
[70]
Molsoft. Drug-likeness and molecular property prediction, 2021.
[71]
Rajan, P.; Vedernikova, I.; Cos, P.; Berghe, D.V.; Augustyns, K.; Haemers, A. Synthesis and evaluation of caffeic acid amides as antioxidants. Bioorg. Med. Chem. Lett., 2001, 11(2), 215-217.
[http://dx.doi.org/10.1016/S0960-894X(00)00630-2] [PMID: 11206462]
[72]
Son, S.; Lewis, B.A. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: Structure-activity relationship. J. Agric. Food Chem., 2002, 50(3), 468-472.
[http://dx.doi.org/10.1021/jf010830b] [PMID: 11804514]
[73]
Taguchi, R.; Hatayama, K.; Takahashi, T.; Hayashi, T.; Sato, Y.; Sato, D.; Ohta, K.; Nakano, H.; Seki, C.; Endo, Y.; Tokuraku, K.; Uwai, K. Structure-activity relations of rosmarinic acid derivatives for the amyloid β aggregation inhibition and antioxidant properties. Eur. J. Med. Chem., 2017, 138, 1066-1075.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.026] [PMID: 28759879]
[74]
Center for disease control.. Available from: https://www.cdc.gov/malaria/about/biology/index. html (Accessed on: Jan 27, 2021).
[75]
Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: Efficacy models for compound screening. Nat. Rev. Drug Discov., 2004, 3(6), 509-520.
[http://dx.doi.org/10.1038/nrd1416] [PMID: 15173840]
[76]
Dej-Adisai, S.; Tinpun, K.; Wattanapiromsakul, C.; Keawpradub, N. Bio-activities and phytochemical investigation of Cnestis palala (Lour.). Merr. Afr. J. Tradit. Complement. Altern. Med., 2015, 12(3), 27-37.
[http://dx.doi.org/10.4314/ajtcam.v12i3.3]
[77]
Kirmizibekmez, H.; Çalis, I.; Perozzo, R.; Brun, R.; Dönmez, A.A.; Linden, A.; Rüedi, P.; Tasdemir, D. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med., 2004, 70(8), 711-717.
[http://dx.doi.org/10.1055/s-2004-827200] [PMID: 15326547]
[78]
Lomchid, P.; Nasomjai, P.; Kanokmedhakul, S.; Boonmak, J.; Youngme, S.; Kanokmedhakul, K. Bioactive lupane and hopane triterpenes from Lepisanthes senegalensis. Planta Med, 2017, 83(3-04), 334-340.
[http://dx.doi.org/10.1055/s-0042-116438] [PMID: 27617903]
[79]
Ma, C.Y.; Musoke, S.F.; Tan, G.T.; Sydara, K.; Bouamanivong, S.; Southavong, B.; Soejarto, D.D.; Fong, H.H.S.; Zhang, H.J. Study of antimalarial activity of chemical constituents from Diospyros quaesita. Chem. Biodivers., 2008, 5(11), 2442-2448.
[http://dx.doi.org/10.1002/cbdv.200890209] [PMID: 19035573]
[80]
Al-Musayeib, N.M.; Mohamed, G.A.; Ibrahim, S.R.M.; Ross, S.A. New thiophene and flavonoid from Tagetes minuta leaves growing in Saudi Arabia. Molecules, 2014, 19(3), 2819-2828.
[http://dx.doi.org/10.3390/molecules19032819] [PMID: 24599122]
[81]
Kitagawa, I. WEi, H.; Nagao, S.; Mahmud, T.; Hori, K.; Kobayashi, M.; Uji, T.; Shibuya, H Characterization of 3′-o-caffeoylsweroside, a new secoiridoid glucoside, and kelampayosides A and B, two new phenolic apioglucosides, from the bark of Antocephalus chinensis (Rubiceae). Chem. Pharm. Bull. (Tokyo), 1996, 44(6), 1162-1167.
[PMID: 8814946]
[82]
Sangsopha, W.; Lekphrom, R.; Kanokmedhakul, S.; Kanokmedhakul, K. Cytotoxic and antimalarial constituents from aerial parts of Sphaeranthus Indicus. Phytochem. Lett., 2016, 17, 278-281.
[http://dx.doi.org/10.1016/j.phytol.2016.08.001]
[83]
Mambu, L.; Grellier, P.; Florent, L.; Joyeau, R.; Ramanitrahasimbola, D.; Rasoanaivo, P.; Frappier, F. Clerodane and labdane diterpenoids from Nuxia sphaerocephala. Phytochemistry, 2006, 67(5), 444-451.
[http://dx.doi.org/10.1016/j.phytochem.2005.11.024] [PMID: 16427101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy