Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Immunological and Metabolic Alterations in Esophageal Cancer

Author(s): Mary Mikhael, Bilal Pasha, Harleen Chela, Veysel Tahan* and Ebubekir Daglilar

Volume 22, Issue 6, 2022

Published on: 18 March, 2022

Page: [579 - 589] Pages: 11

DOI: 10.2174/1871530322666220127113752

Price: $65

Abstract

Esophageal cancer is one of the most common types of gastrointestinal malignancies that is encountered. It has a global distribution and affects males and females, and is linked to significant morbidity and mortality. The mechanisms underlying pathophysiology are multifactorial and involve the interaction of genetic and environmental factors. This review article describes the immunological and metabolic changes that occur in malignancy of the esophagus.

Keywords: Esophageal cancer, immunology, metabolic changes, pathophysiology, malignancy, stromal cells.

Graphical Abstract
[1]
Short, M.W.; Burgers, K.G.; Fry, V.T. Esophageal cancer. Am. Fam. Physician, 2017, 95(1), 22-28.
[PMID: 28075104]
[2]
Huang, T.X.; Fu, L. The immune landscape of esophageal cancer. Cancer Commun. (Lond.), 2019, 39(1), 79.
[http://dx.doi.org/10.1186/s40880-019-0427-z] [PMID: 31771653]
[3]
Ku, G.Y. The current status of immunotherapies in esophagogastric cancer. Surg. Oncol. Clin. N. Am., 2017, 26(2), 277-292.
[http://dx.doi.org/10.1016/j.soc.2016.10.012] [PMID: 28279469]
[4]
Chen, X.; Wang, L.; Li, P.; Song, M.; Qin, G.; Gao, Q.; Zhang, Z.; Yue, D.; Wang, D.; Nan, S.; Qi, Y.; Li, F.; Yang, L.; Huang, L.; Zhang, M.; Zhang, B.; Gao, Y.; Zhang, Y. Dual TGF-β and PD-1 blockade synergistically enhances MAGE-A3-specific CD8+ T cell response in esophageal squamous cell carcinoma. Int. J. Cancer, 2018, 143(10), 2561-2574.
[http://dx.doi.org/10.1002/ijc.31730] [PMID: 29981155]
[5]
Zeng, G.; Aldridge, M.E.; Wang, Y.; Pantuck, A.J.; Wang, A.Y.; Liu, Y.X.; Han, Y.; Yuan, Y.H.; Robbins, P.F.; Dubinett, S.M.; deKernion, J.B.; Belldegrun, A.S. Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: Implications as a potential biomarker. Int. J. Cancer, 2005, 114(2), 268-273.
[http://dx.doi.org/10.1002/ijc.20716] [PMID: 15540228]
[6]
Oshima, Y.; Shimada, H.; Yajima, S.; Nanami, T.; Matsushita, K.; Nomura, F.; Kainuma, O.; Takiguchi, N.; Soda, H.; Ueda, T.; Iizasa, T.; Yamamoto, N.; Yamamoto, H.; Nagata, M.; Yokoi, S.; Tagawa, M.; Ohtsuka, S.; Kuwajima, A.; Murakami, A.; Kaneko, H. NY-ESO-1 au-toantibody as a tumor-specific biomarker for esophageal cancer: Screening in 1969 patients with various cancers. J. Gastroenterol., 2016, 51(1), 30-34.
[http://dx.doi.org/10.1007/s00535-015-1078-8] [PMID: 25906289]
[7]
Suda, T.; Tsunoda, T.; Daigo, Y.; Nakamura, Y.; Tahara, H. Identification of human leukocyte antigen-A24-restricted epitope peptides derived from gene products upregulated in lung and esophageal cancers as novel targets for immunotherapy. Cancer Sci., 2007, 98(11), 1803-1808.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00603.x] [PMID: 17784873]
[8]
Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol., 2016, 37(12), 855-865.
[http://dx.doi.org/10.1016/j.it.2016.09.006] [PMID: 27793569]
[9]
Jones, J.O.; Smyth, E.C. Gastroesophageal cancer: Navigating the immune and genetic terrain to improve clinical outcomes. Cancer Treat. Rev., 2020, 84, 101950.
[http://dx.doi.org/10.1016/j.ctrv.2019.101950] [PMID: 31918022]
[10]
Gao, F.X.; Wu, J.; Ren, D.L. [Effect of epithelial-to-mesenchymal transition on biological activity of NK cells in esophageal squamous cell carcinoma]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2019, 50(1), 40-47.
[PMID: 31037903]
[11]
Li, J.; Qiu, G.; Fang, B.; Dai, X.; Cai, J. Deficiency of IL-18 aggravates esophageal carcinoma through inhibiting IFN-γ production by CD8+T cells and NK cells. Inflammation, 2018, 41(2), 667-676.
[http://dx.doi.org/10.1007/s10753-017-0721-3] [PMID: 29264744]
[12]
Ueda, S.; Miyahara, Y.; Nagata, Y.; Sato, E.; Shiraishi, T.; Harada, N.; Ikeda, H.; Shiku, H.; Kageyama, S. NY-ESO-1 antigen expression and immune response are associated with poor prognosis in MAGE-A4-vaccinated patients with esophageal or head/neck squamous cell carcinoma. Oncotarget, 2018, 9(89), 35997-36011.
[http://dx.doi.org/10.18632/oncotarget.26323] [PMID: 30542513]
[13]
Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[14]
Lin, E.W.; Karakasheva, T.A.; Hicks, P.D.; Bass, A.J.; Rustgi, A.K. The tumor microenvironment in esophageal cancer. Oncogene, 2016, 35(41), 5337-5349.
[http://dx.doi.org/10.1038/onc.2016.34] [PMID: 26923327]
[15]
Dhupar, R.; Van Der Kraak, L.; Pennathur, A.; Schuchert, M.J.; Nason, K.S.; Luketich, J.D.; Lotze, M.T. Targeting immune checkpoints in esophageal cancer: A high mutational load tumor. Ann. Thorac. Surg., 2017, 103(4), 1340-1349.
[http://dx.doi.org/10.1016/j.athoracsur.2016.12.011] [PMID: 28359471]
[16]
Derks, S.; Nason, K.S.; Liao, X.; Stachler, M.D.; Liu, K.X.; Liu, J.B.; Sicinska, E.; Goldberg, M.S.; Freeman, G.J.; Rodig, S.J.; Davison, J.M.; Bass, A.J. Epithelial PD-L2 expression marks barrett’s esophagus and esophageal adenocarcinoma. cancer. Immunol. Res., 2015, 3(10), 1123-1129.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0046] [PMID: 26081225]
[17]
Loeser, H.; Kraemer, M.; Gebauer, F.; Bruns, C.; Schröder, W.; Zander, T.; Persa, O.D.; Alakus, H.; Hoelscher, A.; Buettner, R.; Lohneis, P.; Quaas, A. The expression of the immune checkpoint regulator VISTA correlates with improved overall survival in pT1/2 tumor stages in esophageal adenocarcinoma. OncoImmunology, 2019, 8(5), e1581546.
[http://dx.doi.org/10.1080/2162402X.2019.1581546] [PMID: 31069143]
[18]
Zhang, X.F.; Pan, K.; Weng, D.S.; Chen, C.L.; Wang, Q.J.; Zhao, J.J.; Pan, Q.Z.; Liu, Q.; Jiang, S.S.; Li, Y.Q.; Zhang, H.X.; Xia, J.C. Cyto-toxic T lymphocyte antigen-4 expression in esophageal carcinoma: Implications for prognosis. Oncotarget, 2016, 7(18), 26670-26679.
[http://dx.doi.org/10.18632/oncotarget.8476] [PMID: 27050369]
[19]
Hatogai, K.; Kitano, S.; Fujii, S.; Kojima, T.; Daiko, H.; Nomura, S.; Yoshino, T.; Ohtsu, A.; Takiguchi, Y.; Doi, T.; Ochiai, A. Compre-hensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma. Oncotarget, 2016, 7(30), 47252-47264.
[http://dx.doi.org/10.18632/oncotarget.10055] [PMID: 27322149]
[20]
Kelly, R.J.; Zaidi, A.H.; Smith, M.A.; Omstead, A.N.; Kosovec, J.E.; Matsui, D.; Martin, S.A.; DiCarlo, C.; Werts, E.D.; Silverman, J.F.; Wang, D.H.; Jobe, B.A. The dynamic and transient immune microenvironment in locally advanced esophageal adenocarcinoma post chemoradiation. Ann. Surg., 2018, 268(6), 992-999.
[http://dx.doi.org/10.1097/SLA.0000000000002410] [PMID: 28806299]
[21]
Babar, L.; Kosovec, J.E.; Jahangiri, V.; Chowdhury, N.; Zheng, P.; Omstead, A.N.; Salvitti, M.S.; Smith, M.A.; Goel, A.; Kelly, R.J.; Jobe, B.A.; Zaidi, A.H. Prognostic immune markers for recurrence and survival in locally advanced esophageal adenocarcinoma. Oncotarget, 2019, 10(44), 4546-4555.
[http://dx.doi.org/10.18632/oncotarget.27052] [PMID: 31360303]
[22]
Kiyozumi, Y.; Baba, Y.; Okadome, K.; Yagi, T.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Watanabe, M.; Komohara, Y.; Baba, H. IDO1 Expression is associated with immune tolerance and poor prognosis in patients with surgically resected esophageal cancer. Ann. Surg., 2019, 269(6), 1101-1108.
[http://dx.doi.org/10.1097/SLA.0000000000002754] [PMID: 31082908]
[23]
Gholamin, M.; Moaven, O.; Memar, B.; Farshchian, M.; Naseh, H.; Malekzadeh, R.; Sotoudeh, M.; Rajabi-Mashhadi, M.T.; Forghani, M.N.; Farrokhi, F.; Abbaszadegan, M.R. Overexpression and interactions of interleukin-10, transforming growth factor beta, and vascular endothelial growth factor in esophageal squamous cell carcinoma. World J. Surg., 2009, 33(7), 1439-1445.
[http://dx.doi.org/10.1007/s00268-009-0070-y] [PMID: 19440651]
[24]
Blum, A.E.; Venkitachalam, S.; Ravillah, D.; Chelluboyina, A.K.; Kieber-Emmons, A.M.; Ravi, L.; Kresak, A.; Chandar, A.K.; Markowitz, S.D.; Canto, M.I.; Wang, J.S.; Shaheen, N.J.; Guo, Y.; Shyr, Y.; Willis, J.E.; Chak, A.; Varadan, V.; Guda, K. Systems biology analyses show hyperactivation of transforming growth factor-β and jnk signaling pathways in esophageal cancer. Gastroenterology, 2019, 156(6), 1761-1774.
[http://dx.doi.org/10.1053/j.gastro.2019.01.263] [PMID: 30768984]
[25]
Wang, W.L.; Chang, W.L.; Yang, H.B.; Chang, I.W.; Lee, C.T.; Chang, C.Y.; Lin, J.T.; Sheu, B.S. Quantification of tumor infiltrating Foxp3+ regulatory T cells enables the identification of high-risk patients for developing synchronous cancers over upper aerodigestive tract. Oral Oncol., 2015, 51(7), 698-703.
[http://dx.doi.org/10.1016/j.oraloncology.2015.04.015] [PMID: 25958829]
[26]
Vinocha, A.; Grover, R.K.; Deepak, R. Clinical significance of interleukin-6 in diagnosis of lung, oral, esophageal, and gall bladder carci-nomas. J. Cancer Res. Ther., 2018, 14(Suppl.), S758-S760.
[http://dx.doi.org/10.4103/0973-1482.183217] [PMID: 30249899]
[27]
Higashino, N.; Koma, Y.I.; Hosono, M.; Takase, N.; Okamoto, M.; Kodaira, H.; Nishio, M.; Shigeoka, M.; Kakeji, Y.; Yokozaki, H. Fibro-blast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squa-mous cell carcinoma. Lab. Invest., 2019, 99(6), 777-792.
[http://dx.doi.org/10.1038/s41374-018-0185-6] [PMID: 30683902]
[28]
Milano, F.; Jorritsma, T.; Rygiel, A.M.; Bergman, J.J.; Sondermeijer, C.; Ten Brinke, A.; vanHam, S.M.; Krishnadath, K.K. Expression pattern of immune suppressive cytokines and growth factors in oesophageal adenocarcinoma reveal a tumour immune escape-promoting microenvironment. Scand. J. Immunol., 2008, 68(6), 616-623.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02183.x] [PMID: 19055699]
[29]
Kretschmer, I.; Freudenberger, T.; Twarock, S.; Yamaguchi, Y.; Grandoch, M.; Fischer, J.W. Esophageal squamous cell carcinoma cells modulate chemokine expression and hyaluronan synthesis in fibroblasts. J. Biol. Chem., 2016, 291(8), 4091-4106.
[http://dx.doi.org/10.1074/jbc.M115.708909] [PMID: 26699196]
[30]
Bierie, B.; Moses, H.L. Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer, 2006, 6(7), 506-520.
[http://dx.doi.org/10.1038/nrc1926] [PMID: 16794634]
[31]
Chen, Y.; Di, C.; Zhang, X.; Wang, J.; Wang, F.; Yan, J.F.; Xu, C.; Zhang, J.; Zhang, Q.; Li, H.; Yang, H.; Zhang, H. Transforming growth factor β signaling pathway: A promising therapeutic target for cancer. J. Cell. Physiol., 2020, 235(3), 1903-1914.
[http://dx.doi.org/10.1002/jcp.29108] [PMID: 31332789]
[32]
Chen, J.; Gingold, J.A.; Su, X. Immunomodulatory TGF-β Signaling in Hepatocellular Carcinoma. Trends Mol. Med., 2019, 25(11), 1010-1023.
[http://dx.doi.org/10.1016/j.molmed.2019.06.007] [PMID: 31353124]
[33]
Li, Y.; An, J.; Huang, S.; He, J.; Zhang, J. Esophageal cancer-derived microvesicles induce regulatory B cells. Cell Biochem. Funct., 2015, 33(5), 308-313.
[http://dx.doi.org/10.1002/cbf.3115] [PMID: 26009869]
[34]
Sawant, D.V.; Yano, H.; Chikina, M.; Zhang, Q.; Liao, M.; Liu, C.; Callahan, D.J.; Sun, Z.; Sun, T.; Tabib, T.; Pennathur, A.; Corry, D.B.; Luketich, J.D.; Lafyatis, R.; Chen, W.; Poholek, A.C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat. Immunol., 2019, 20(6), 724-735.
[http://dx.doi.org/10.1038/s41590-019-0346-9] [PMID: 30936494]
[35]
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer, 2014, 14(11), 736-746.
[http://dx.doi.org/10.1038/nrc3818] [PMID: 25342631]
[36]
Ebbing, E.A.; van der Zalm, A.P.; Steins, A.; Creemers, A.; Hermsen, S.; Rentenaar, R.; Klein, M.; Waasdorp, C.; Hooijer, G.K.J.; Meijer, S.L.; Krishnadath, K.K.; Punt, C.J.A.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; van Delden, O.M.; Hulshof, M.C.C.M.; Medema, J.P.; van Laarhoven, H.W.M.; Bijlsma, M.F. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc. Natl. Acad. Sci. USA, 2019, 116(6), 2237-2242.
[http://dx.doi.org/10.1073/pnas.1820459116] [PMID: 30670657]
[37]
Wang, T.; Niu, G.; Kortylewski, M.; Burdelya, L.; Shain, K.; Zhang, S.; Bhattacharya, R.; Gabrilovich, D.; Heller, R.; Coppola, D.; Dalton, W.; Jove, R.; Pardoll, D.; Yu, H. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med., 2004, 10(1), 48-54.
[http://dx.doi.org/10.1038/nm976] [PMID: 14702634]
[38]
Hodge, D.R.; Hurt, E.M.; Farrar, W.L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer, 2005, 41(16), 2502-2512.
[http://dx.doi.org/10.1016/j.ejca.2005.08.016] [PMID: 16199153]
[39]
Nabeki, B.; Ishigami, S.; Uchikado, Y.; Sasaki, K.; Kita, Y.; Okumura, H.; Arigami, T.; Kijima, Y.; Kurahara, H.; Maemura, K.; Natsugoe, S. Interleukin-32 expression and Treg infiltration in esophageal squamous cell carcinoma. Anticancer Res., 2015, 35(5), 2941-2947.
[PMID: 25964580]
[40]
Yagi, T.; Baba, Y.; Okadome, K.; Kiyozumi, Y.; Hiyoshi, Y.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Watanabe, M.; Ko-mohara, Y.; Baba, H. Tumour-associated macrophages are associated with poor prognosis and programmed death ligand 1 expression in oesophageal cancer. Eur. J. Cancer, 2019, 111, 38-49.
[http://dx.doi.org/10.1016/j.ejca.2019.01.018] [PMID: 30822683]
[41]
Li, J.; Xie, Y.; Wang, X.; Li, F.; Li, S.; Li, M.; Peng, H.; Yang, L.; Liu, C.; Pang, L.; Zou, H.; Zhao, J.; Qi, Y.; Cao, Y.; Hu, J. Prognostic impact of tumor-associated macrophage infiltration in esophageal cancer: A meta-analysis. Future Oncol., 2019, 15(19), 2303-2317.
[http://dx.doi.org/10.2217/fon-2018-0669] [PMID: 31237146]
[42]
Chen, M.F.; Kuan, F.C.; Yen, T.C.; Lu, M.S.; Lin, P.Y.; Chung, Y.H.; Chen, W.C.; Lee, K.D. IL-6-stimulated CD11b+ CD14+ HLA-DR- myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget, 2014, 5(18), 8716-8728.
[http://dx.doi.org/10.18632/oncotarget.2368] [PMID: 25238263]
[43]
Huang, H.; Zhang, G.; Li, G.; Ma, H.; Zhang, X. Circulating CD14(+)HLA-DR(-/low) myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC. Tumour Biol., 2015, 36(10), 7987-7996.
[http://dx.doi.org/10.1007/s13277-015-3426-y] [PMID: 25967454]
[44]
Liu, J.Y.; Li, F.; Wang, L.P.; Chen, X.F.; Wang, D.; Cao, L.; Ping, Y.; Zhao, S.; Li, B.; Thorne, S.H.; Zhang, B.; Kalinski, P.; Zhang, Y. CTL- vs Treg lymphocyte-attracting chemokines, CCL4 and CCL20, are strong reciprocal predictive markers for survival of patients with oesophageal squamous cell carcinoma. Br. J. Cancer, 2015, 113(5), 747-755.
[http://dx.doi.org/10.1038/bjc.2015.290] [PMID: 26284335]
[45]
Nishikawa, H.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol., 2014, 27, 1-7.
[http://dx.doi.org/10.1016/j.coi.2013.12.005] [PMID: 24413387]
[46]
Ichihara, F.; Kono, K.; Takahashi, A.; Kawaida, H.; Sugai, H.; Fujii, H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res., 2003, 9(12), 4404-4408.
[PMID: 14555512]
[47]
Condeelis, J.; Pollard, J.W. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 2006, 124(2), 263-266.
[http://dx.doi.org/10.1016/j.cell.2006.01.007] [PMID: 16439202]
[48]
Hefetz-Sela, S.; Stein, I.; Klieger, Y.; Porat, R.; Sade-Feldman, M.; Zreik, F.; Nagler, A.; Pappo, O.; Quagliata, L.; Dazert, E.; Eferl, R.; Ter-racciano, L.; Wagner, E.F.; Ben-Neriah, Y.; Baniyash, M.; Pikarsky, E. Acquisition of an immunosuppressive protumorigenic macrophage phenotype depending on c-Jun phosphorylation. Proc. Natl. Acad. Sci. USA, 2014, 111(49), 17582-17587.
[http://dx.doi.org/10.1073/pnas.1409700111] [PMID: 25422452]
[49]
Karakasheva, T.A.; Waldron, T.J.; Eruslanov, E.; Kim, S.B.; Lee, J.S.; O’Brien, S.; Hicks, P.D.; Basu, D.; Singhal, S.; Malavasi, F.; Rustgi, A.K. CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer. Cancer Res., 2015, 75(19), 4074-4085.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3639] [PMID: 26294209]
[50]
Chen, M.F.; Chen, P.T.; Lu, M.S.; Chen, W.C. Role of ALDH1 in the prognosis of esophageal cancer and its relationship with tumor mi-croenvironment. Mol. Carcinog., 2018, 57(1), 78-88.
[http://dx.doi.org/10.1002/mc.22733] [PMID: 28888039]
[51]
Mazzoni, A.; Bronte, V.; Visintin, A.; Spitzer, J.H.; Apolloni, E.; Serafini, P.; Zanovello, P.; Segal, D.M. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol., 2002, 168(2), 689-695.
[http://dx.doi.org/10.4049/jimmunol.168.2.689] [PMID: 11777962]
[52]
Liu, C.; Yu, S.; Kappes, J.; Wang, J.; Grizzle, W.E.; Zinn, K.R.; Zhang, H.G. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood, 2007, 109(10), 4336-4342.
[http://dx.doi.org/10.1182/blood-2006-09-046201] [PMID: 17244679]
[53]
Serafini, P.; Mgebroff, S.; Noonan, K.; Borrello, I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by ex-panding regulatory T cells. Cancer Res., 2008, 68(13), 5439-5449.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6621] [PMID: 18593947]
[54]
Srivastava, M.K.; Sinha, P.; Clements, V.K.; Rodriguez, P.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cells inhibit T-cell activa-tion by depleting cystine and cysteine. Cancer Res., 2010, 70(1), 68-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2587] [PMID: 20028852]
[55]
Chen, D.; Hu, Q.; Mao, C.; Jiao, Z.; Wang, S.; Yu, L.; Xu, Y.; Dai, D.; Yin, L.; Xu, H. Increased IL-17-producing CD4(+) T cells in pa-tients with esophageal cancer. Cell. Immunol., 2012, 272(2), 166-174.
[http://dx.doi.org/10.1016/j.cellimm.2011.10.015] [PMID: 22082565]
[56]
Liu, D.; Zhang, R.; Wu, J.; Pu, Y.; Yin, X.; Cheng, Y.; Wu, J.; Feng, C.; Luo, Y.; Zhang, J. Interleukin-17A promotes esophageal adenocar-cinoma cell invasiveness through ROS-dependent, NF-κB-mediated MMP-2/9 activation. Oncol. Rep., 2017, 37(3), 1779-1785.
[http://dx.doi.org/10.3892/or.2017.5426] [PMID: 28184939]
[57]
Lu, L.; Pan, K.; Zheng, H.X.; Li, J.J.; Qiu, H.J.; Zhao, J.J.; Weng, D.S.; Pan, Q.Z.; Wang, D.D.; Jiang, S.S.; Chang, A.E.; Li, Q.; Xia, J.C. IL-17A promotes immune cell recruitment in human esophageal cancers and the infiltrating dendritic cells represent a positive prognostic marker for patient survival. J. Immunother., 2013, 36(8), 451-458.
[http://dx.doi.org/10.1097/CJI.0b013e3182a802cf] [PMID: 23994890]
[58]
Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer, 2006, 6(5), 392-401.
[http://dx.doi.org/10.1038/nrc1877] [PMID: 16572188]
[59]
Yang, X.; Lin, Y.; Shi, Y.; Li, B.; Liu, W.; Yin, W.; Dang, Y.; Chu, Y.; Fan, J.; He, R. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res., 2016, 76(14), 4124-4135.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2973] [PMID: 27216177]
[60]
Kamangar, F.; Malekzadeh, R.; Dawsey, S.M.; Saidi, F. Esophageal cancer in Northeastern Iran: A review. Arch. Iran Med., 2007, 10(1), 70-82.
[PMID: 17198458]
[61]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[62]
Stein, H.J.; Feith, M.; Bruecher, B.L.D.M.; Naehrig, J.; Sarbia, M.; Siewert, J.R. Early esophageal cancer: Pattern of lymphatic spread and prognostic factors for long-term survival after surgical resection. Ann. Surg., 2005, 242(4), 566-573.
[http://dx.doi.org/10.1097/01.sla.0000184211.75970.85] [PMID: 16192817]
[63]
Tang, W.R.; Chen, Z.J.; Lin, K.; Su, M.; Au, W.W. Development of esophageal cancer in Chaoshan region, China: Association with envi-ronmental, genetic and cultural factors. Int. J. Hyg. Environ. Health, 2015, 218(1), 12-18.
[http://dx.doi.org/10.1016/j.ijheh.2014.10.004] [PMID: 25455641]
[64]
Lin, Y.; Totsuka, Y.; He, Y. Epidemiology of esophageal cancer in Japan and China. J. Epidemiol., 2013, 23.
[http://dx.doi.org/10.2188/jea.JE20120162]
[65]
Chen, Y.; Tong, Y.; Yang, C.; Gan, Y.; Sun, H.; Bi, H.; Cao, S.; Yin, X.; Lu, Z. Consumption of hot beverages and foods and the risk of esophageal cancer: A meta-analysis of observational studies. BMC Cancer, 2015, 15, 449.
[http://dx.doi.org/10.1186/s12885-015-1185-1] [PMID: 26031666]
[66]
Kühl, N.M. Heat shock effects on cell cycle progression. Cell. Mol. Life Sci. CMLS, 2000, 57(3), 450-463.
[http://dx.doi.org/10.1007/PL00000707]
[67]
Torok, Z.; Crul, T.; Maresca, B. Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic appli-cations. Biochim. Biophys. Acta, 2013, 12/26, 1838.
[http://dx.doi.org/10.1016/j.bbamem.2013.12.015] [PMID: 24374314]
[68]
Horváth, I.; Multhoff, G.; Sonnleitner, A.; Vígh, L. Membrane-associated stress proteins: More than simply chaperones. Biochimica et Bio-physica Acta (BBA) -. Biomembranes, 2008, 1778(7), 1653-1664.
[http://dx.doi.org/10.1016/j.bbamem.2008.02.012]
[69]
Kiang, J.G.; Tsokos, G.C. Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol. Ther., 1998, 80(2), 183-201.
[http://dx.doi.org/10.1016/S0163-7258(98)00028-X] [PMID: 9839771]
[70]
Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyper-thermia. Crit. Rev. Oncol. Hematol., 2002, 43(1), 33-56.
[http://dx.doi.org/10.1016/S1040-8428(01)00179-2] [PMID: 12098606]
[71]
Brenu, E.W.; Staines, D.R.; Tajouri, L.; Huth, T.; Ashton, K.J.; Marshall-Gradisnik, S.M. Heat shock proteins and regulatory T cells. Autoimmune Dis., 2013, 2013, 813256.
[http://dx.doi.org/10.1155/2013/813256] [PMID: 23573417]
[72]
Sonna, L.A.; Fujita, J.; Gaffin, S.L.; Lilly, C.M. Invited review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol., 2002, 92(4), 1725-1742.
[http://dx.doi.org/10.1152/japplphysiol.01143.2001] [PMID: 11896043]
[73]
Powell, D.W. Barrier function of epithelia. Am. J. Physiol., 1981, 241(4), G275-G288.
[http://dx.doi.org/10.1152/ajpgi.1981.241.4.G275] [PMID: 7032321]
[74]
Orlando, R.C. The integrity of the esophageal mucosa. Balance between offensive and defensive mechanisms. Best Pract. Res. Clin. Gastroenterol., 2010, 24(6), 873-882.
[http://dx.doi.org/10.1016/j.bpg.2010.08.008] [PMID: 21126700]
[75]
Dokladny, K.; Moseley, P.L.; Ma, T.Y. Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(2), G204-G212.
[http://dx.doi.org/10.1152/ajpgi.00401.2005] [PMID: 16407590]
[76]
Tobey, N.A.; Sikka, D.; Marten, E.; Caymaz-Bor, C.; Hosseini, S.S.; Orlando, R.C. Effect of heat stress on rabbit esophageal epithelium. Am. J. Physiol., 1999, 276(6), G1322-G1330.
[http://dx.doi.org/10.1152/ajpgi.1999.276.6.G1322] [PMID: 10362635]
[77]
Andrade, M.E.; Araújo, R.; Barros, P. The role of immunomodulators on intestinal barrier homeostasis in experimental models. Clin. Nutr., 2015, 34(6), 1080-1087.
[http://dx.doi.org/10.1016/j.clnu.2015.01.012]
[78]
Hamada, N.; Kodama, S.; Suzuki, K.; Watanabe, M. Gap junctional intercellular communication and cellular response to heat stress. Carcinogenesis, 2003, 24(11), 1723-1728.
[http://dx.doi.org/10.1093/carcin/bgg135] [PMID: 12919956]
[79]
Malskat, W.S.J.; Stokbroekx, M.A.L.; van der Geld, C.W.M.; Nijsten, T.E.C. van den Bos, RR Temperature profiles of 980- and 1,470-nm endo-venous laser ablation, endovenous radiofrequency ablation and endovenous steam ablation. Lasers Med. Sci., 2014, 29(2), 423-429.
[http://dx.doi.org/10.1007/s10103-013-1449-4]
[80]
Chen, J.J.; Zhao, S.; Cen, Y.; Liu, X.X.; Yu, R.; Wu, D.M. Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells. Br. J. Dermatol., 2007, 156(6), 1188-1195.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07898.x] [PMID: 17535221]
[81]
Dokladny, K.; Ye, D.; Kennedy, J.C.; Moseley, P.L.; Ma, T.Y. Cellular and molecular mechanisms of heat stress-induced up-regulation of oc-cludin protein expression: Regulatory role of heat shock factor-1. American J. Pathol, 2008, 172(3), 659-670.
[http://dx.doi.org/10.2353/ajpath.2008.070522]
[82]
Kregel, KC Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol., 1985, 92(5), 2177-2186.
[http://dx.doi.org/10.1152/japplphysiol.01267.2001]
[83]
Stenfeldt, A-L.; Wennerås, C. Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology, 2004, 112(4), 605-614.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01906.x] [PMID: 15270732]
[84]
Maghsudlu, M.; Farashahi Yazd, E. Heat-induced inflammation and its role in esophageal cancer. J. Dig. Dis., 2017, 18(8), 431-444.
[http://dx.doi.org/10.1111/1751-2980.12511] [PMID: 28749599]
[85]
Que, J.; Garman, K.S.; Souza, R.F.; Spechler, S.J. Pathogenesis and cells of origin of barrett’s esophagus. Gastroenterology, 2019, 157(2), 349-364.e1.
[http://dx.doi.org/10.1053/j.gastro.2019.03.072] [PMID: 31082367]
[86]
Stachler, M.D.; Taylor-Weiner, A.; Peng, S. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet., 2015, 47(9), 1047-1055.
[http://dx.doi.org/10.1038/ng.3343]
[87]
Ouatu-Lascar, R.; Fitzgerald, R.C.; Triadafilopoulos, G. Differentiation and proliferation in Barrett’s esophagus and the effects of acid suppression. Gastroenterology, 1999, 117(2), 327-335.
[http://dx.doi.org/10.1053/gast.1999.0029900327] [PMID: 10419913]
[88]
Buttar, N.S.; Wang, K.K.; Anderson, M.A.; Dierkhising, R.A.; Pacifico, R.J.; Krishnadath, K.K.; Lutzke, L.S. The effect of selective cy-clooxygenase-2 inhibition in Barrett’s esophagus epithelium: An in vitro study. J. Natl. Cancer Inst., 2002, 94(6), 422-429.
[http://dx.doi.org/10.1093/jnci/94.6.422] [PMID: 11904314]
[89]
Bednarz-Misa, I.; Fortuna, P.; Diakowska, D.; Jamrozik, N.; Krzystek-Korpacka, M. Distinct local and systemic molecular signatures in the esophageal and gastric cancers: possible therapy targets and biomarkers for gastric cancer. Int. J. Mol. Sci., 2020, 21(12), 4509.
[http://dx.doi.org/10.3390/ijms21124509] [PMID: 32630408]
[90]
Keshet, R.; Erez, A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis. Model. Mech., 2018, 11(8), dmm033332.
[http://dx.doi.org/10.1242/dmm.033332] [PMID: 30082427]
[91]
Morris, S.M. Jr Arginine metabolism: Boundaries of our knowledge. J. Nutr., 2007, 137(6)(Suppl. 2), 1602S-1609S.
[http://dx.doi.org/10.1093/jn/137.6.1602S] [PMID: 17513435]
[92]
Szefel, J.; Danielak, A. Kruszewski, WJ Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv. Med. Sci., 2019, 64(1), 104-110.
[http://dx.doi.org/10.1016/j.advms.2018.08.018]
[93]
Zou, S.; Wang, X.; Liu, P.; Ke, C.; Xu, S. Arginine metabolism and deprivation in cancer therapy. Biomed. Pharmacother., 2019, 118, 109210.
[http://dx.doi.org/10.1016/j.biopha.2019.109210] [PMID: 31330440]
[94]
Gerner, E.W.; Bruckheimer, E.; Cohen, A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J. Biol. Chem., 2018, 293(48), 18770-18778.
[http://dx.doi.org/10.1074/jbc.TM118.003343] [PMID: 30355737]
[95]
Auvinen, M.; Laine, A.; Paasinen-Sohns, A.; Kangas, A.; Kangas, L.; Saksela, O.; Andersson, L.C.; Hölttä, E. Human ornithine decarbox-ylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res., 1997, 57(14), 3016-3025.
[PMID: 9230217]
[96]
Bednarz-Misa, I.; Fortuna, P.; Fleszar, M.G. Lewandowski, Ł Diakowska, D.; Rosińczuk, J.; Krzystek-Korpacka, M. Esophageal squa-mous cell carcinoma is accompanied by local and systemic changes in L-arginine/NO pathway. Int. J. Mol. Sci., 2020, 21(17), E6282.
[http://dx.doi.org/10.3390/ijms21176282] [PMID: 32872669]
[97]
Koop, C.E.; Luoto, J. “The Health Consequences of Smoking: Cancer,” overview of a report of the Surgeon General. Public Health Rep., 1982, 97(4), 318-324.
[PMID: 7111654]
[98]
Freedman, N.D.; Abnet, C.C.; Leitzmann, M.F.; Mouw, T.; Subar, A.F.; Hollenbeck, A.R.; Schatzkin, A. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am. J. Epidemiol., 2007, 165(12), 1424-1433.
[http://dx.doi.org/10.1093/aje/kwm051] [PMID: 17420181]
[99]
Yershova, K.; Yuan, J.M.; Wang, R.; Valentin, L.; Watson, C.; Gao, Y.T.; Hecht, S.S.; Stepanov, I. Tobacco-specific N-nitrosamines and polycyclic aromatic hydrocarbons in cigarettes smoked by the participants of the Shanghai Cohort Study. Int. J. Cancer, 2016, 139(6), 1261-1269.
[http://dx.doi.org/10.1002/ijc.30178] [PMID: 27163125]
[100]
Tran, G.D.; Sun, X.D.; Abnet, C.C.; Fan, J.H.; Dawsey, S.M.; Dong, Z.W.; Mark, S.D.; Qiao, Y.L.; Taylor, P.R. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int. J. Cancer, 2005, 113(3), 456-463.
[http://dx.doi.org/10.1002/ijc.20616] [PMID: 15455378]
[101]
Montazeri, Z.; Nyiraneza, C.; El-Katerji, H.; Little, J. Waterpipe smoking and cancer: Systematic review and meta-analysis. Tob. Control, 2017, 26(1), 92-97.
[http://dx.doi.org/10.1136/tobaccocontrol-2015-052758] [PMID: 27165994]
[102]
Ishiguro, S.; Sasazuki, S.; Inoue, M.; Kurahashi, N.; Iwasaki, M.; Tsugane, S. Effect of alcohol consumption, cigarette smoking and flush-ing response on esophageal cancer risk: A population-based cohort study (JPHC study). Cancer Lett., 2009, 275(2), 240-246.
[http://dx.doi.org/10.1016/j.canlet.2008.10.020] [PMID: 19036500]
[103]
Inoue-Choi, M.; Liao, L.M.; Reyes-Guzman, C.; Hartge, P.; Caporaso, N.; Freedman, N.D. Association of long-term, low-intensity smok-ing with all-cause and cause-specific mortality in the national institutes of health-AARP diet and health study. JAMA Intern. Med., 2017, 177(1), 87-95.
[http://dx.doi.org/10.1001/jamainternmed.2016.7511] [PMID: 27918784]
[104]
Lubin, J.H.; Cook, M.B.; Pandeya, N.; Vaughan, T.L.; Abnet, C.C.; Giffen, C.; Webb, P.M.; Murray, L.J.; Casson, A.G.; Risch, H.A.; Ye, W.; Kamangar, F.; Bernstein, L.; Sharp, L.; Nyrén, O.; Gammon, M.D.; Corley, D.A.; Wu, A.H.; Brown, L.M.; Chow, W.H.; Ward, M.H.; Freedman, N.D.; Whiteman, D.C. The importance of exposure rate on odds ratios by cigarette smoking and alcohol consumption for esophageal adenocarcinoma and squamous cell carcinoma in the barrett’s esophagus and esophageal adenocarcinoma consortium. Cancer Epidemiol., 2012, 36(3), 306-316.
[http://dx.doi.org/10.1016/j.canep.2012.03.001] [PMID: 22504051]
[105]
Abnet, C.C.; Arnold, M.; Wei, W-Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology, 2018, 154(2), 360-373.
[http://dx.doi.org/10.1053/j.gastro.2017.08.023] [PMID: 28823862]
[106]
Blot, W.J.; Li, J.Y. Some considerations in the design of a nutrition intervention trial in Linxian, People’s Republic of China. Natl. Cancer Inst. Monogr., 1985, 69, 29-34.
[PMID: 3914622]
[107]
Ohashi, S.; Miyamoto, S.; Kikuchi, O.; Goto, T.; Amanuma, Y.; Muto, M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology, 2015, 149(7), 1700-1715.
[http://dx.doi.org/10.1053/j.gastro.2015.08.054] [PMID: 26376349]
[108]
Liu, Y.; Chen, H.; Sun, Z.; Chen, X. Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett., 2015, 361(2), 164-173.
[http://dx.doi.org/10.1016/j.canlet.2015.03.006] [PMID: 25766659]
[109]
Homann, N.; Jousimies-Somer, H.; Jokelainen, K.; Heine, R.; Salaspuro, M. High acetaldehyde levels in saliva after ethanol consumption: Methodological aspects and pathogenetic implications. Carcinogenesis, 1997, 18(9), 1739-1743.
[http://dx.doi.org/10.1093/carcin/18.9.1739] [PMID: 9328169]
[110]
Muto, M.; Hitomi, Y.; Ohtsu, A.; Shimada, H.; Kashiwase, Y.; Sasaki, H.; Yoshida, S.; Esumi, H. Acetaldehyde production by non-pathogenic Neisseria in human oral microflora: Implications for carcinogenesis in upper aerodigestive tract. Int. J. Cancer, 2000, 88(3), 342-350.
[http://dx.doi.org/10.1002/1097-0215(20001101)88:3<342:AID-IJC4>3.0.CO;2-I] [PMID: 11054661]
[111]
Dumitrescu, R.G. Alcohol-induced epigenetic changes in cancer. Methods Mol. Biol., 2018, 1856, 157-172.
[http://dx.doi.org/10.1007/978-1-4939-8751-1_9] [PMID: 30178251]
[112]
Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med., 2018, 24(4), 392-400.
[http://dx.doi.org/10.1038/nm.4517] [PMID: 29634682]
[113]
Yu, G.; Dye, B.A.; Gail, M.H. The association between the upper digestive tract microbiota by HOMIM and oral health in a population-based study in Linxian, China. BMC Public Health, 2014, 14(1), 1110.
[http://dx.doi.org/10.1186/1471-2458-14-1110]
[114]
Chen, X.; Winckler, B.; Lu, M.; Cheng, H.; Yuan, Z.; Yang, Y.; Jin, L.; Ye, W. Oral microbiota and risk for esophageal squamous cell car-cinoma in a high-risk area of China. PLoS One, 2015, 10(12), e0143603.
[http://dx.doi.org/10.1371/journal.pone.0143603] [PMID: 26641451]
[115]
Nasrollahzadeh, D.; Malekzadeh, R.; Ploner, A.; Shakeri, R.; Sotoudeh, M.; Fahimi, S.; Nasseri-Moghaddam, S.; Kamangar, F.; Abnet, C.C.; Winckler, B.; Islami, F.; Boffetta, P.; Brennan, P.; Dawsey, S.M.; Ye, W. Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia. Sci. Rep., 2015, 5, 8820.
[http://dx.doi.org/10.1038/srep08820] [PMID: 25743945]
[116]
Gao, S.; Li, S.; Ma, Z.; Liang, S.; Shan, T.; Zhang, M.; Zhu, X.; Zhang, P.; Liu, G.; Zhou, F.; Yuan, X.; Jia, R.; Potempa, J.; Scott, D.A.; Lamont, R.J.; Wang, H.; Feng, X. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological char-acteristics and survival in patients with esophageal cancer. Infect. Agent. Cancer, 2016, 11, 3.
[http://dx.doi.org/10.1186/s13027-016-0049-x] [PMID: 26788120]
[117]
Erőss, B.; Farkas, N.; Vincze, Á.; Tinusz, B.; Szapáry, L.; Garami, A.; Balaskó, M.; Sarlós, P.; Czopf, L.; Alizadeh, H.; Rakonczay, Z., Jr; Habon, T.; Hegyi, P. Helicobacter pylori infection reduces the risk of Barrett’s esophagus: A meta-analysis and systematic review. Helicobacter, 2018, 23(4), e12504.
[http://dx.doi.org/10.1111/hel.12504] [PMID: 29938864]
[118]
Rajendra, S.; Xuan, W.; Merrett, N.; Sharma, P.; Sharma, P.; Pavey, D.; Yang, T.; Santos, L.D.; Sharaiha, O.; Pande, G.; Cosman, P.; Wu, X.; Wang, B. Survival rates for patients with barrett high-grade dysplasia and esophageal adenocarcinoma with or without human papillo-mavirus infection. JAMA Netw. Open, 2018, 1(4), e181054-e181054.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.1054] [PMID: 30646096]
[119]
Engel, L.S.; Chow, W.H.; Vaughan, T.L.; Gammon, M.D.; Risch, H.A.; Stanford, J.L.; Schoenberg, J.B.; Mayne, S.T.; Dubrow, R.; Rotter-dam, H.; West, A.B.; Blaser, M.; Blot, W.J.; Gail, M.H.; Fraumeni, J.F., Jr Population attributable risks of esophageal and gastric cancers. J. Natl. Cancer Inst., 2003, 95(18), 1404-1413.
[http://dx.doi.org/10.1093/jnci/djg047] [PMID: 13130116]
[120]
He, L.; Jin-Hu, F.; Qiao, Y. Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China. Cancer Biology & Medicine, 2017, 14, 33-41.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0093]
[121]
Ren, J.S.; Kamangar, F.; Forman, D.; Islami, F. Pickled food and risk of gastric cancer-a systematic review and meta-analysis of English and Chinese literature. Cancer Epidemiol. Biomarkers Prev., 2012, 21(6), 905-915.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-0202] [PMID: 22499775]
[122]
Cheng, S.J.; Sala, M.; Li, M.H.; Wang, M.Y.; Pot-Deprun, J.; Chouroulinkov, I. Mutagenic, transforming and promoting effect of pickled vegeta-bles from Linxian county, China. Carcinogenesis, 1980, 1(8), 685-692.
[http://dx.doi.org/10.1093/carcin/1.8.685]
[123]
Islami, F.; Ren, J.S.; Taylor, P.R.; Kamangar, F. Pickled vegetables and the risk of oesophageal cancer: A meta-analysis. British J. Cancer, 2009, 101(9), 1641-1647.
[http://dx.doi.org/10.1038/sj.bjc.6605372]
[124]
Yang, C.S. Research on esophageal cancer in China: A review. Cancer Res., 1980, 40(8 Pt 1), 2633-2644.
[PMID: 6992989]
[125]
Iyer, R.B.; Silverman, P.M.; Tamm, E.P.; Dunnington, J.S.; DuBrow, R.A. Diagnosis, staging, and follow-up of esophageal cancer. AJR Am. J. Roentgenol., 2003, 181(3), 785-793.
[http://dx.doi.org/10.2214/ajr.181.3.1810785] [PMID: 12933482]
[126]
Rice, T.W.; Ishwaran, H.; Ferguson, M.K.; Blackstone, E.H.; Goldstraw, P. Cancer of the esophagus and esophagogastric junction: An eighth edition staging primer. J. Thorac Oncol., 2017, 12(1), 36-42.
[http://dx.doi.org/10.1016/j.jtho.2016.10.016]
[127]
Munden, R.F.; Macapinlac, H.A.; Erasmus, J.J. Esophageal cancer: the role of integrated CT-PET in initial staging and response assessment after preoperative therapy. J. Thorac. Imaging, 2006, 21(2), 137-145.
[http://dx.doi.org/10.1097/00005382-200605000-00005] [PMID: 16770230]
[128]
Shahbaz, S.C.M.; Luketich, J.D.; Landreneau, R.J.; Abbas, G. Esophageal cancer: An update. Int. J. Surg., 2010, 8(6), 417-422.
[http://dx.doi.org/10.1016/j.ijsu.2010.06.011] [PMID: 20601255]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy