Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Targeting PI3K by Natural Products: A Potential Therapeutic Strategy for Attention-deficit Hyperactivity Disorder

Author(s): Tayebeh Noori, Mousa Sahebgharani, Antoni Sureda, Eduardo Sobarzo-Sanchez, Sajad Fakhri and Samira Shirooie*

Volume 20, Issue 8, 2022

Published on: 12 April, 2022

Page: [1564 - 1578] Pages: 15

DOI: 10.2174/1570159X20666220119125040

Price: $65

conference banner
Abstract

Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood psychiatric disorder. In general, a child with ADHD has significant attention problems with difficulty concentrating on a subject and is generally associated with impulsivity and excessive activity. The etiology of ADHD in most patients is unknown, although it is considered to be a multifactorial disease caused by a combination of genetics and environmental factors. Diverse factors, such as the existence of mental, nutritional, or general health problems during childhood, as well as smoking and alcohol drinking during pregnancy, are related to an increased risk of ADHD. Behavioral and psychological characteristics of ADHD include anxiety, mood disorders, behavioral disorders, language disorders, and learning disabilities. These symptoms affect individuals, families, and communities, negatively altering educational and social results, strained parent-child relationships, and increased use of health services. ADHD may be associated with deficits in inhibitory frontostriatal noradrenergic neurons on lower striatal structures that are predominantly driven by dopaminergic neurons. Phosphoinositide 3-kinases (PI3Ks) are a conserved family of lipid kinases that control a number of cellular processes, including cell proliferation, differentiation, migration, insulin metabolism, and apoptosis. Since PI3K plays an important role in controlling the noradrenergic neuron, it opens up new insights into research on ADHD and other developmental brain diseases. This review presents evidence for the potential usefulness of PI3K and its modulators as a potential treatment for ADHD.

Keywords: Attention-deficit hyperactivity disorder (ADHD), Phosphoinositide 3-kinases (PI3Ks), neurogenesis, dopamine, etiology, natural products.

Graphical Abstract
[1]
Evans, S.; Ling, M.; Hill, B.; Rinehart, N.; Austin, D.; Sciberras, E. Systematic review of meditation-based interventions for children with ADHD. Eur. Child Adolesc. Psychiatry, 2018, 27(1), 9-27.
[http://dx.doi.org/10.1007/s00787-017-1008-9] [PMID: 28547119]
[2]
Luo, Y.; Weibman, D.; Halperin, J.M.; Li, X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front. Hum. Neurosci., 2019, 13, 42.
[http://dx.doi.org/10.3389/fnhum.2019.00042] [PMID: 30804772]
[3]
Skogli, E.W.; Teicher, M.H.; Andersen, P.N.; Hovik, K.T.; Øie, M. ADHD in girls and boys--gender differences in co-existing symptoms and executive function measures. BMC Psychiatry, 2013, 13(1), 298.
[http://dx.doi.org/10.1186/1471-244X-13-298] [PMID: 24206839]
[4]
Núñez-Jaramillo, L.; Herrera-Solís, A.; Herrera-Morales, W.V. ADHD: Reviewing the causes and evaluating solutions. J. Pers. Med., 2021, 11(3), 166.
[http://dx.doi.org/10.3390/jpm11030166] [PMID: 33804365]
[5]
Reale, L.; Bartoli, B.; Cartabia, M.; Zanetti, M.; Costantino, M.A.; Canevini, M.P.; Termine, C.; Bonati, M. Comorbidity prevalence and treatment outcome in children and adolescents with ADHD. Eur. Child Adolesc. Psychiatry, 2017, 26(12), 1443-1457.
[http://dx.doi.org/10.1007/s00787-017-1005-z] [PMID: 28527021]
[6]
Castellanos, F.X.; Sonuga-Barke, E.J.; Milham, M.P.; Tannock, R. Characterizing cognition in ADHD: Beyond executive dysfunction. Trends Cogn. Sci., 2006, 10(3), 117-123.
[http://dx.doi.org/10.1016/j.tics.2006.01.011] [PMID: 16460990]
[7]
Costa Dias, T.G.; Iyer, S.P.; Carpenter, S.D.; Cary, R.P.; Wilson, V.B.; Mitchell, S.H.; Nigg, J.T.; Fair, D.A. Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Dev. Cogn. Neurosci., 2015, 11, 155-174.
[http://dx.doi.org/10.1016/j.dcn.2014.12.005] [PMID: 25660033]
[8]
Faraone, S.V. Attention deficit hyperactivity disorder and premature death. Lancet, 2015, 385(9983), 2132-2133.
[http://dx.doi.org/10.1016/S0140-6736(14)61822-5] [PMID: 25726517]
[9]
Öğütlü, H.; Esin, İ.S.; Erdem, H.B.; Tatar, A.; Dursun, O.B. Mitochondrial DNA copy number is associated with attention deficit hyperac-tivity disorder. Psychiatr. Danub., 2020, 32(2), 168-175.
[http://dx.doi.org/10.24869/psyd.2020.168] [PMID: 32796781]
[10]
Russell, V.A. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hy-peractivity disorder--the spontaneously hypertensive rat. Behav. Brain Res., 2002, 130(1-2), 191-196.
[http://dx.doi.org/10.1016/S0166-4328(01)00425-9] [PMID: 11864734]
[11]
Sagvolden, T.; Johansen, E.B.; Aase, H.; Russell, V.A. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav. Brain Sci., 2005, 28(3), 397-419.
[http://dx.doi.org/10.1017/S0140525X05000075] [PMID: 16209748]
[12]
Feldman, H.M.; Reiff, M.I. Clinical practice. Attention deficit-hyperactivity disorder in children and adolescents. N. Engl. J. Med., 2014, 370(9), 838-846.
[http://dx.doi.org/10.1056/NEJMcp1307215] [PMID: 24571756]
[13]
American Psychiatric Association. A.; Association, A. P., Diagnostic and statistical manual of mental disorders: DSM-5;, American psychiatric association: Washington, DC. 2013.
[14]
Taylor, L.E.; Antshel, K.M. Factors associated with parental treatment attitudes and information-seeking behaviors for childhood ADHD. J. Atten. Disord., 2021, 25(4), 607-617.
[http://dx.doi.org/10.1177/1087054718821734] [PMID: 30623746]
[15]
Nimmo-Smith, V.; Merwood, A.; Hank, D.; Brandling, J.; Greenwood, R.; Skinner, L.; Law, S.; Patel, V.; Rai, D. Non-pharmacological interventions for adult ADHD: A systematic review. Psychol. Med., 2020, 50(4), 529-541.
[http://dx.doi.org/10.1017/S0033291720000069] [PMID: 32036811]
[16]
Sánchez-Alegría, K.; Flores-León, M.; Avila-Muñoz, E.; Rodríguez-Corona, N.; Arias, C. PI3K signaling in neurons: A central node for the control of multiple functions. Int. J. Mol. Sci., 2018, 19(12), 3725.
[http://dx.doi.org/10.3390/ijms19123725] [PMID: 30477115]
[17]
Williams, J.M.; Owens, W.A.; Turner, G.H.; Saunders, C.; Dipace, C.; Blakely, R.D.; France, C.P.; Gore, J.C.; Daws, L.C.; Avison, M.J.; Galli, A. Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol., 2007, 5(10), e274.
[http://dx.doi.org/10.1371/journal.pbio.0050274] [PMID: 17941718]
[18]
Darcq, E.; Kieffer, B.L. PI3K signaling in the locus coeruleus: A new molecular pathway for ADHD research. EMBO Mol. Med., 2015, 7(7), 859-861.
[http://dx.doi.org/10.15252/emmm.201505266] [PMID: 25925427]
[19]
Aston-Jones, G.; Rajkowski, J.; Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry, 1999, 46(9), 1309-1320.
[http://dx.doi.org/10.1016/S0006-3223(99)00140-7] [PMID: 10560036]
[20]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[21]
Kim, J-I.; Lee, H-R.; Sim, S.E.; Baek, J.; Yu, N-K.; Choi, J-H.; Ko, H-G.; Lee, Y-S.; Park, S-W.; Kwak, C.; Ahn, S.J.; Choi, S.Y.; Kim, H.; Kim, K.H.; Backx, P.H.; Bradley, C.A.; Kim, E.; Jang, D.J.; Lee, K.; Kim, S.J.; Zhuo, M.; Collingridge, G.L.; Kaang, B.K. PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat. Neurosci., 2011, 14(11), 1447-1454.
[http://dx.doi.org/10.1038/nn.2937] [PMID: 22019731]
[22]
D’Andrea, I.; Fardella, V.; Fardella, S.; Pallante, F.; Ghigo, A.; Iacobucci, R.; Maffei, A.; Hirsch, E.; Lembo, G.; Carnevale, D. Lack of kinase-independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling. EMBO Mol. Med., 2015, 7(7), 904-917.
[http://dx.doi.org/10.15252/emmm.201404697] [PMID: 25882071]
[23]
Alves, C.B.; Almeida, A.S.; Marques, D.M.; Faé, A.H.L.; Machado, A.C.L.; Oliveira, D.L.; Portela, L.V.C.; Porciúncula, L.O. Caffeine and adenosine A2A receptors rescue neuronal development in vitro of frontal cortical neurons in a rat model of attention deficit and hyperactiv-ity disorder. Neuropharmacology, 2020, 166, 107782.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107782] [PMID: 31756336]
[24]
Tarver, J.; Daley, D.; Sayal, K. Attention-deficit hyperactivity disorder (ADHD): An updated review of the essential facts. Child Care Health Dev., 2014, 40(6), 762-774.
[http://dx.doi.org/10.1111/cch.12139] [PMID: 24725022]
[25]
Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry, 2005, 57(11), 1313-1323.
[http://dx.doi.org/10.1016/j.biopsych.2004.11.024] [PMID: 15950004]
[26]
Faraone, S.V.; Mick, E. Molecular genetics of attention deficit hyperactivity disorder. Psychiatr. Clin. North Am., 2010, 33(1), 159-180.
[http://dx.doi.org/10.1016/j.psc.2009.12.004] [PMID: 20159345]
[27]
Fernández-Jaén, A.; Fernández-Mayoralas, D.M.; Calleja-Pérez, B.; Muñoz-Jareño, N.; López-Arribas, S. Genomic endophenotypes of attention deficit hyperactivity disorder. Rev. Neurol., 2012, 54(Suppl. 1), S81-S87.
[PMID: 22374776]
[28]
Gizer, I.R.; Ficks, C.; Waldman, I.D. Candidate gene studies of ADHD: A meta-analytic review. Hum. Genet., 2009, 126(1), 51-90.
[http://dx.doi.org/10.1007/s00439-009-0694-x] [PMID: 19506906]
[29]
Purper-Ouakil, D.; Wohl, M.; Mouren, M.C.; Verpillat, P.; Adès, J.; Gorwood, P. Meta-analysis of family-based association studies be-tween the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatr. Genet., 2005, 15(1), 53-59.
[http://dx.doi.org/10.1097/00041444-200503000-00009] [PMID: 15722958]
[30]
Manor, I.; Eisenberg, J.; Tyano, S.; Sever, Y.; Cohen, H.; Ebstein, R.P.; Kotler, M. Family-based association study of the serotonin trans-porter promoter region polymorphism (5-HTTLPR) in attention deficit hyperactivity disorder. Am. J. Med. Genet., 2001, 105(1), 91-95.
[http://dx.doi.org/10.1002/1096-8628(20010108)105:1<91:AID-AJMG1069>3.0.CO;2-V] [PMID: 11425009]
[31]
Grant, P.; Kuepper, Y.; Wielpuetz, C.; Hennig, J. Differential associations of dopamine-related polymorphisms with discrete components of reaction time variability: Relevance for attention deficit/hyperactivity disorder. Neuropsychobiology, 2014, 69(4), 220-226.
[http://dx.doi.org/10.1159/000360367] [PMID: 24942140]
[32]
Kitagishi, Y.; Minami, A.; Nakanishi, A.; Ogura, Y.; Matsuda, S. Neuron membrane trafficking and protein kinases involved in autism and ADHD. Int. J. Mol. Sci., 2015, 16(2), 3095-3115.
[http://dx.doi.org/10.3390/ijms16023095] [PMID: 25647412]
[33]
Checa-Ros, A.; Jeréz-Calero, A.; Molina-Carballo, A.; Campoy, C.; Muñoz-Hoyos, A. Current evidence on the role of the gut microbiome in ADHD pathophysiology and therapeutic implications. Nutrients, 2021, 13(1), 249.
[http://dx.doi.org/10.3390/nu13010249] [PMID: 33467150]
[34]
Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141(2), 599-609. e13.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052] [PMID: 21683077]
[35]
Dam, S.A.; Mostert, J.C.; Szopinska-Tokov, J.W.; Bloemendaal, M.; Amato, M.; Arias-Vasquez, A. The role of the gut-brain axis in atten-tion-deficit/hyperactivity disorder. Gastroenterology Clinics, 2019, 48(3), 407-431.
[http://dx.doi.org/10.1016/j.gtc.2019.05.001] [PMID: 31383279]
[36]
Kim, P.; Choi, C.S.; Park, J.H.; Joo, S.H.; Kim, S.Y.; Ko, H.M.; Kim, K.C.; Jeon, S.J.; Park, S.H.; Han, S.H.; Ryu, J.H.; Cheong, J.H.; Han, J.Y.; Ko, K.N.; Shin, C.Y. Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J. Neurosci. Res., 2014, 92(5), 658-670.
[http://dx.doi.org/10.1002/jnr.23275] [PMID: 24510599]
[37]
Yde Ohki, C.M.; Grossmann, L.; Alber, E.; Dwivedi, T.; Berger, G.; Werling, A.M.; Walitza, S.; Grünblatt, E. The stress-Wnt-signaling axis: A hypothesis for attention-deficit hyperactivity disorder and therapy approaches. Transl. Psychiatry, 2020, 10(1), 315.
[http://dx.doi.org/10.1038/s41398-020-00999-9] [PMID: 32948744]
[38]
Aebi, M.; van Donkelaar, M.M.; Poelmans, G.; Buitelaar, J.K.; Sonuga-Barke, E.J.; Stringaris, A.; Consortium, I.; Faraone, S.V.; Franke, B.; Steinhausen, H.C.; van Hulzen, K.J. Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior sub-types in attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2016, 171(5), 573-588.
[http://dx.doi.org/10.1002/ajmg.b.32346] [PMID: 26184070]
[39]
Stergiakouli, E.; Hamshere, M.; Holmans, P.; Langley, K.; Zaharieva, I.; Hawi, Z.; Kent, L.; Gill, M.; Williams, N.; Owen, M.J.; O’Donovan, M.; Thapar, A. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am. J. Psychiatry, 2012, 169(2), 186-194.
[http://dx.doi.org/10.1176/appi.ajp.2011.11040551] [PMID: 22420046]
[40]
Williams, N.M.; Franke, B.; Mick, E.; Anney, R.J.; Freitag, C.M.; Gill, M.; Thapar, A.; O’Donovan, M.C.; Owen, M.J.; Holmans, P.; Kent, L.; Middleton, F.; Zhang-James, Y.; Liu, L.; Meyer, J.; Nguyen, T.T.; Romanos, J.; Romanos, M.; Seitz, C.; Renner, T.J.; Walitza, S.; Warnke, A.; Palmason, H.; Buitelaar, J.; Rommelse, N.; Vasquez, A.A.; Hawi, Z.; Langley, K.; Sergeant, J.; Steinhausen, H.C.; Roeyers, H.; Biederman, J.; Zaharieva, I.; Hakonarson, H.; Elia, J.; Lionel, A.C.; Crosbie, J.; Marshall, C.R.; Schachar, R.; Scherer, S.W.; Todorov, A.; Smalley, S.L.; Loo, S.; Nelson, S.; Shtir, C.; Asherson, P.; Reif, A.; Lesch, K.P.; Faraone, S.V. Genome-wide analysis of copy number var-iants in attention deficit hyperactivity disorder: The role of rare variants and duplications at 15q13.3. Am. J. Psychiatry, 2012, 169(2), 195-204.
[http://dx.doi.org/10.1176/appi.ajp.2011.11060822] [PMID: 22420048]
[41]
Thapar, A. Discoveries on the genetics of ADHD in the 21st century: New findings and their implications. Am. J. Psychiatry, 2018, 175(10), 943-950.
[http://dx.doi.org/10.1176/appi.ajp.2018.18040383] [PMID: 30111187]
[42]
Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Bækvad-Hansen, M.; Cerrato, F.; Chambert, K.; Churchhouse, C.; Dumont, A.; Eriksson, N.; Gandal, M.; Goldstein, J.I.; Grasby, K.L.; Grove, J.; Gudmundsson, O.O.; Hansen, C.S.; Hauberg, M.E.; Hollegaard, M.V.; Howrigan, D.P.; Huang, H.; Maller, J.B.; Martin, A.R.; Martin, N.G.; Moran, J.; Pallesen, J.; Palmer, D.S.; Pedersen, C.B.; Pedersen, M.G.; Poterba, T.; Poulsen, J.B.; Ripke, S.; Robinson, E.B.; Satterstrom, F.K.; Stefansson, H.; Stevens, C.; Turley, P.; Walters, G.B.; Won, H.; Wright, M.J.; Andreassen, O.A.; Asherson, P.; Burton, C.L.; Boomsma, D.I.; Cormand, B.; Dalsgaard, S.; Franke, B.; Gelernter, J.; Geschwind, D.; Hakonarson, H.; Haavik, J.; Kranzler, H.R.; Kuntsi, J.; Langley, K.; Lesch, K.P.; Middeldorp, C.; Reif, A.; Rohde, L.A.; Roussos, P.; Schachar, R.; Sklar, P.; Sonuga-Barke, E.J.S.; Sul-livan, P.F.; Thapar, A.; Tung, J.Y.; Waldman, I.D.; Medland, S.E.; Stefansson, K.; Nordentoft, M.; Hougaard, D.M.; Werge, T.; Mors, O.; Mortensen, P.B.; Daly, M.J.; Faraone, S.V.; Børglum, A.D.; Neale, B.M. Discovery of the first genome-wide significant risk loci for atten-tion deficit/hyperactivity disorder. Nat. Genet., 2019, 51(1), 63-75.
[http://dx.doi.org/10.1038/s41588-018-0269-7] [PMID: 30478444]
[43]
Pirdehghan, A.; Aghakoochak, A.; Karimi, M.; Kazemi, L. Relation between low birth weight with attention deficit and hyper activity dis-order in children. Majallah-i Danishgah-i Ulum-i Pizishki-i Gurgan, 2015, 17(2)
[44]
Driga, A-M.; Drigas, A. ADHD in the early years: Pre-natal and early causes and alternative ways of dealing. Int. J. Online Biomed. Engin., 2019, 15(13)
[http://dx.doi.org/10.3991/ijoe.v15i13.11203]
[45]
Chu, S-M.; Tsai, M-H.; Hwang, F-M.; Hsu, J-F.; Huang, H.R.; Huang, Y-S. The relationship between attention deficit hyperactivity disor-der and premature infants in Taiwanese: A case control study. BMC Psychiatry, 2012, 12(1), 85.
[http://dx.doi.org/10.1186/1471-244X-12-85] [PMID: 22824325]
[46]
Nasrollahzadeh Masoomian, M.; Asadollahi, Z.; Sepehri, F.; Fatehi, A.; Salehi Shahrbabaki, M.H.; Bidaki, R. The relationship between attention deficit/hyperactivity and immaturity in children ages 13-7 years old referring to health centers in the city of rafsanjan in 1392. Studies in Medical Sciences, 2016, 27(6), 515-522.
[47]
Wallis, D.; Russell, H.F.; Muenke, M. Review: Genetics of attention deficit/hyperactivity disorder. J. Pediatr. Psychol., 2008, 33(10), 1085-1099.
[http://dx.doi.org/10.1093/jpepsy/jsn049] [PMID: 18522996]
[48]
Millichap, J.G.; Yee, M.M. The diet factor in attention-deficit/hyperactivity disorder. Pediatrics, 2012, 129(2), 330-337.
[http://dx.doi.org/10.1542/peds.2011-2199] [PMID: 22232312]
[49]
Cormier, E.; Elder, J.H. Diet and child behavior problems: Fact or fiction? Pediatr. Nurs., 2007, 33(2), 138-143.
[PMID: 17542236]
[50]
Ozlem, E. What causes ADHD. AAP Grand Rounds, 2012, 27(6), 72.
[http://dx.doi.org/10.1542/gr.27-6-72]
[51]
Peterson, B.S.; Rauh, V.A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Walsh, K.; Miller, R.L.; Arias, F.; Semanek, D.; Perera, F. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry, 2015, 72(6), 531-540.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.57] [PMID: 25807066]
[52]
Hong, S-B. Im, M.H.; Kim, J.W.; Park, E.J.; Shin, M.S.; Kim, B.N.; Yoo, H.J.; Cho, I.H.; Bhang, S.Y.; Hong, Y.C.; Cho, S.C. Environmen-tal lead exposure and attention deficit/hyperactivity disorder symptom domains in a community sample of South Korean school-age chil-dren. Environ. Health Perspect., 2015, 123(3), 271-276.
[http://dx.doi.org/10.1289/ehp.1307420] [PMID: 25280233]
[53]
Biederman, J.; Faraone, S.V. Attention-deficit hyperactivity disorder. Lancet, 2005, 366(9481), 237-248.
[http://dx.doi.org/10.1016/S0140-6736(05)66915-2] [PMID: 16023516]
[54]
Elbaz, F.; Zahra, S.; Hanafy, H. Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD). Egypt. J. Med. Hum. Genet., 2017, 18(2), 153-163.
[http://dx.doi.org/10.1016/j.ejmhg.2016.04.009]
[55]
Wang, Y.; Huang, L.; Zhang, L.; Qu, Y.; Mu, D. Iron status in attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. PLoS One, 2017, 12(1), e0169145.
[http://dx.doi.org/10.1371/journal.pone.0169145] [PMID: 28046016]
[56]
Huang, Y-H.; Zeng, B-Y.; Li, D-J.; Cheng, Y-S.; Chen, T-Y.; Liang, H-Y.; Yang, W-C.; Lin, P-Y.; Chen, Y-W.; Tseng, P-T.; Lin, C.H. Sig-nificantly lower serum and hair magnesium levels in children with attention deficit hyperactivity disorder than controls: A systematic re-view and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 90, 134-141.
[http://dx.doi.org/10.1016/j.pnpbp.2018.11.012] [PMID: 30496768]
[57]
Cornu, C.; Mercier, C.; Ginhoux, T.; Masson, S.; Mouchet, J.; Nony, P.; Kassai, B.; Laudy, V.; Berquin, P.; Franc, N.; Le Heuzey, M.F.; Desombre, H.; Revol, O. A double-blind placebo-controlled randomised trial of omega-3 supplementation in children with moderate ADHD symptoms. Eur. Child Adolesc. Psychiatry, 2018, 27(3), 377-384.
[http://dx.doi.org/10.1007/s00787-017-1058-z] [PMID: 28993963]
[58]
San Mauro Martín, I.; Blumenfeld Olivares, J.A.; Garicano Vilar, E.; Echeverry López, M.; García Bernat, M.; Quevedo Santos, Y.; Blanco López, M.; Elortegui Pascual, P.; Borregon Rivilla, E.; Rincón Barrado, M. Nutritional and environmental factors in attention-deficit hyper-activity disorder (ADHD): A cross-sectional study. Nutr. Neurosci., 2018, 21(9), 641-647.
[http://dx.doi.org/10.1080/1028415X.2017.1331952] [PMID: 28602133]
[59]
Heilskov Rytter, M.J.; Andersen, L.B.B.; Houmann, T.; Bilenberg, N.; Hvolby, A.; Mølgaard, C.; Michaelsen, K.F.; Lauritzen, L. Diet in the treatment of ADHD in children - a systematic review of the literature. Nord. J. Psychiatry, 2015, 69(1), 1-18.
[http://dx.doi.org/10.3109/08039488.2014.921933] [PMID: 24934907]
[60]
Borge, T.C.; Biele, G.; Papadopoulou, E.; Andersen, L.F.; Jacka, F.; Eggesbø, M.; Caspersen, I.H.; Aase, H.; Meltzer, H.M.; Brantsæter, A.L. The associations between maternal and child diet quality and child ADHD - findings from a large Norwegian pregnancy cohort study. BMC Psychiatry, 2021, 21(1), 139.
[http://dx.doi.org/10.1186/s12888-021-03130-4] [PMID: 33685413]
[61]
Sonuga-Barke, E.J.; Brandeis, D.; Cortese, S.; Daley, D.; Ferrin, M.; Holtmann, M.; Stevenson, J.; Danckaerts, M.; van der Oord, S.; Dö-pfner, M.; Dittmann, R.W.; Simonoff, E.; Zuddas, A.; Banaschewski, T.; Buitelaar, J.; Coghill, D.; Hollis, C.; Konofal, E.; Lecendreux, M.; Wong, I.C.; Sergeant, J. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled tri-als of dietary and psychological treatments. Am. J. Psychiatry, 2013, 170(3), 275-289.
[http://dx.doi.org/10.1176/appi.ajp.2012.12070991] [PMID: 23360949]
[62]
Lange, K.W.; Hauser, J.; Lange, K.M.; Makulska-Gertruda, E.; Nakamura, Y.; Reissmann, A.; Sakaue, Y.; Takano, T.; Takeuchi, Y. The role of nutritional supplements in the treatment of ADHD: what the evidence says. Curr. Psychiatry Rep., 2017, 19(2), 8.
[http://dx.doi.org/10.1007/s11920-017-0762-1] [PMID: 28168597]
[63]
Tanriover, G.; Seval-Celik, Y.; Ozsoy, O.; Akkoyunlu, G.; Savcioglu, F.; Hacioglu, G.; Demir, N.; Agar, A. The effects of docosahexaenoic acid on glial derived neurotrophic factor and neurturin in bilateral rat model of Parkinson’s disease. Folia Histochem. Cytobiol., 2010, 48(3), 434-441.
[http://dx.doi.org/10.2478/v10042-010-0047-6] [PMID: 21071351]
[64]
Yan, Y.; Jiang, W.; Spinetti, T.; Tardivel, A.; Castillo, R.; Bourquin, C.; Guarda, G.; Tian, Z.; Tschopp, J.; Zhou, R. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity, 2013, 38(6), 1154-1163.
[http://dx.doi.org/10.1016/j.immuni.2013.05.015] [PMID: 23809162]
[65]
Robertson, R.C.; Seira Oriach, C.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; Paul Ross, R.; Stanton, C. Omega-3 polyunsatu-rated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav. Immun., 2017, 59, 21-37.
[http://dx.doi.org/10.1016/j.bbi.2016.07.145] [PMID: 27423492]
[66]
Very, N.; Vercoutter-Edouart, A.S.; Lefebvre, T.; Hardivillé, S.; El Yazidi-Belkoura, I. Cross-dysregulation of O-GlcNAcylation and PI3K/Akt/mTOR axis in human chronic diseases. Front. Endocrinol. (Lausanne), 2018, 9, 602.
[http://dx.doi.org/10.3389/fendo.2018.00602] [PMID: 30356686]
[67]
Jean, S.; Kiger, A.A. Classes of phosphoinositide 3-kinases at a glance. J. Cell Sci., 2014, 127(Pt 5), 923-928.
[http://dx.doi.org/10.1242/jcs.093773] [PMID: 24587488]
[68]
Kriplani, N.; Hermida, M.A.; Brown, E.R.; Leslie, N.R.; Class, I. Class I PI 3-kinases: Function and evolution. Adv. Biol. Regul., 2015, 59, 53-64.
[http://dx.doi.org/10.1016/j.jbior.2015.05.002] [PMID: 26159297]
[69]
Maffei, A.; Lembo, G.; Carnevale, D. PI3Kinases in Diabetes Mellitus and Its Related Complications. Int. J. Mol. Sci., 2018, 19(12), 4098.
[http://dx.doi.org/10.3390/ijms19124098] [PMID: 30567315]
[70]
Falasca, M.; Maffucci, T. Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem. J., 2012, 443(3), 587-601.
[http://dx.doi.org/10.1042/BJ20120008] [PMID: 22507127]
[71]
Devereaux, K.; Dall’Armi, C.; Alcazar-Roman, A.; Ogasawara, Y.; Zhou, X.; Wang, F.; Yamamoto, A.; De Camilli, P.; Di Paolo, G. Regula-tion of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One, 2013, 8(10), e76405.
[http://dx.doi.org/10.1371/journal.pone.0076405] [PMID: 24098492]
[72]
Burke, J.E.; Williams, R.L. Synergy in activating class I PI3Ks. Trends Biochem. Sci., 2015, 40(2), 88-100.
[http://dx.doi.org/10.1016/j.tibs.2014.12.003] [PMID: 25573003]
[73]
Leevers, S.J.; Vanhaesebroeck, B.; Waterfield, M.D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell Biol., 1999, 11(2), 219-225.
[http://dx.doi.org/10.1016/S0955-0674(99)80029-5] [PMID: 10209156]
[74]
Posor, Y.; Eichhorn-Grünig, M.; Haucke, V. Phosphoinositides in endocytosis. Biochimica Et Biophysica Acta (BBA)-. Mol. Cell Biol. Lipids, 2015, 1851(6), 794-804.
[http://dx.doi.org/10.1016/j.bbalip.2014.09.014]
[75]
Leslie, N.R. The redox regulation of PI 3-kinase-dependent signaling. Antioxid. Redox Signal., 2006, 8(9-10), 1765-1774.
[http://dx.doi.org/10.1089/ars.2006.8.1765] [PMID: 16987030]
[76]
Zhang, Y.; Du, Y.; Le, W.; Wang, K.; Kieffer, N.; Zhang, J. Redox control of the survival of healthy and diseased cells. Antioxid. Redox Signal., 2011, 15(11), 2867-2908.
[http://dx.doi.org/10.1089/ars.2010.3685] [PMID: 21457107]
[77]
Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[78]
Chen, S-P.; Zhou, Y-Q.; Liu, D-Q.; Zhang, W.; Manyande, A.; Guan, X-H.; Tian, Y.K.; Ye, D-W.; Omar, D.M. PI3K/Akt pathway: a poten-tial therapeutic target for chronic pain. Curr. Pharm. Des., 2017, 23(12), 1860-1868.
[http://dx.doi.org/10.2174/1381612823666170210150147] [PMID: 28190392]
[79]
Wang, D.; Zhou, W.; Chen, J.; Wei, W. Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J. Cell. Physiol., 2019.
[http://dx.doi.org/10.1002/jcp.28215] [PMID: 30710358]
[80]
Shih, M-H.; Kao, S-C.; Wang, W.; Yaster, M.; Tao, Y-X. Spinal cord NMDA receptor-mediated activation of mammalian target of rapamy-cin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J. Pain, 2012, 13(4), 338-349.
[http://dx.doi.org/10.1016/j.jpain.2011.12.006] [PMID: 22341316]
[81]
Cunha, T.M.; Roman-Campos, D.; Lotufo, C.M.; Duarte, H.L.; Souza, G.R.; Verri, W.A., Jr; Funez, M.I.; Dias, Q.M.; Schivo, I.R.; Domingues, A.C.; Sachs, D.; Chiavegatto, S.; Teixeira, M.M.; Hothersall, J.S.; Cruz, J.S.; Cunha, F.Q.; Ferreira, S.H. Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4442-4447.
[http://dx.doi.org/10.1073/pnas.0914733107] [PMID: 20147620]
[82]
Guan, X.; Fu, Q.; Xiong, B.; Song, Z.; Shu, B.; Bu, H.; Xu, B.; Manyande, A.; Cao, F.; Tian, Y. Activation of PI3Kγ/Akt pathway mediates bone cancer pain in rats. J. Neurochem., 2015, 134(3), 590-600.
[http://dx.doi.org/10.1111/jnc.13139] [PMID: 25919859]
[83]
Houslay, D.M.; Anderson, K.E.; Chessa, T.; Kulkarni, S.; Fritsch, R.; Downward, J.; Backer, J.M.; Stephens, L.R.; Hawkins, P.T. Coinci-dent signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kβ in myeloid cells. Sci. Signal., 2016, 9(441), ra82-ra82.
[http://dx.doi.org/10.1126/scisignal.aae0453] [PMID: 27531651]
[84]
Huang, W.; Zhao, Y.; Zhu, X.; Cai, Z.; Wang, S.; Yao, S.; Qi, Z.; Xie, P. Fluoxetine upregulates phosphorylated-AKT and phosphorylated-ERK1/2 proteins in neural stem cells: evidence for a crosstalk between AKT and ERK1/2 pathways. J. Mol. Neurosci., 2013, 49(2), 244-249.
[http://dx.doi.org/10.1007/s12031-012-9822-5] [PMID: 22674052]
[85]
Hong, S-K.; Jeong, J.H.; Chan, A.M.; Park, J-I. AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion. Exp. Cell Res., 2013, 319(12), 1732-1743.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.008] [PMID: 23701950]
[86]
Bonnas, C.; Specht, K.; Spleiss, O.; Froehner, S.; Dietmann, G.; Krüger, J.M.; Arbogast, S.; Feuerhake, F. Effects of cold ischemia and inflammatory tumor microenvironment on detection of PI3K/AKT and MAPK pathway activation patterns in clinical cancer samples. Int. J. Cancer, 2012, 131(7), 1621-1632.
[http://dx.doi.org/10.1002/ijc.27422] [PMID: 22213219]
[87]
Lien, E.C.; Lyssiotis, C.A.; Cantley, L.C. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Metabol. Cancer; Springer, 2016, pp. 39-72.
[http://dx.doi.org/10.1007/978-3-319-42118-6_3]
[88]
Koundouros, N.; Poulogiannis, G. Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front. Oncol., 2018, 8, 160.
[http://dx.doi.org/10.3389/fonc.2018.00160] [PMID: 29868481]
[89]
Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014, 505(7484), 495-501.
[http://dx.doi.org/10.1038/nature12912] [PMID: 24390350]
[90]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[91]
Manning, B.D.; Toker, A. AKT/PKB signaling: navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[92]
Brunet, A.; Datta, S.R.; Greenberg, M.E. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol., 2001, 11(3), 297-305.
[http://dx.doi.org/10.1016/S0959-4388(00)00211-7] [PMID: 11399427]
[93]
Jacinto, E.; Facchinetti, V.; Liu, D.; Soto, N.; Wei, S.; Jung, S.Y.; Huang, Q.; Qin, J.; Su, B. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell, 2006, 127(1), 125-137.
[http://dx.doi.org/10.1016/j.cell.2006.08.033] [PMID: 16962653]
[94]
Thomas, G.V.; Tran, C.; Mellinghoff, I.K.; Welsbie, D.S.; Chan, E.; Fueger, B.; Czernin, J.; Sawyers, C.L. Hypoxia-inducible factor deter-mines sensitivity to inhibitors of mTOR in kidney cancer. Nat. Med., 2006, 12(1), 122-127.
[http://dx.doi.org/10.1038/nm1337] [PMID: 16341243]
[95]
Wang, H.; Deng, X.; Zhang, J.; Ou, Z.; Mai, J.; Ding, S.; Huo, S. Elevated expression of zinc finger protein 703 promotes cell proliferation and metastasis through PI3K/AKT/GSK-3β signalling in oral squamous cell carcinoma. Cell. Physiol. Biochem., 2017, 44(3), 920-934.
[http://dx.doi.org/10.1159/000485360] [PMID: 29176314]
[96]
Horwood, J.M.; Dufour, F.; Laroche, S.; Davis, S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in syn-aptic plasticity and memory in the rat. Eur. J. Neurosci., 2006, 23(12), 3375-3384.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04859.x] [PMID: 16820027]
[97]
Kocsis, K.; Frank, R.; Szabó, J.; Knapp, L.; Kis, Z.; Farkas, T.; Vécsei, L.; Toldi, J. Acetyl-l-carnitine restores synaptic transmission and enhances the inducibility of stable LTP after oxygen-glucose deprivation. Neuroscience, 2016, 332, 203-211.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.046] [PMID: 27378558]
[98]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[99]
Dibble, C.C.; Cantley, L.C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol., 2015, 25(9), 545-555.
[http://dx.doi.org/10.1016/j.tcb.2015.06.002] [PMID: 26159692]
[100]
Magnuson, B.; Ekim, B.; Fingar, D.C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J., 2012, 441(1), 1-21.
[http://dx.doi.org/10.1042/BJ20110892] [PMID: 22168436]
[101]
Malka-Mahieu, H.; Newman, M.; Désaubry, L.; Robert, C.; Vagner, S. Molecular pathways: the eIF4F translation initiation complex—new opportunities for cancer treatment. Clin. Cancer Res., 2017, 23(1), 21-25.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2362] [PMID: 27789529]
[102]
Bruhn, M.A.; Pearson, R.B.; Hannan, R.D.; Sheppard, K.E. AKT-independent PI3-K signaling in cancer - emerging role for SGK3. Cancer Manag. Res., 2013, 5, 281-292.
[PMID: 24009430]
[103]
Sohn, J-W.; Oh, Y.; Kim, K.W.; Lee, S.; Williams, K.W.; Elmquist, J.K. Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Mol. Metab., 2016, 5(8), 669-679.
[http://dx.doi.org/10.1016/j.molmet.2016.06.004] [PMID: 27656404]
[104]
Troutman, T.D.; Bazan, J.F.; Pasare, C. Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle, 2012, 11(19), 3559-3567.
[http://dx.doi.org/10.4161/cc.21572] [PMID: 22895011]
[105]
Aksoy, E.; Taboubi, S.; Torres, D.; Delbauve, S.; Hachani, A.; Whitehead, M.A.; Pearce, W.P.; Berenjeno, I.M.; Nock, G.; Filloux, A.; Beyaert, R.; Flamand, V.; Vanhaesebroeck, B. The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat. Immunol., 2012, 13(11), 1045-1054.
[http://dx.doi.org/10.1038/ni.2426] [PMID: 23023391]
[106]
Saponaro, C.; Cianciulli, A.; Calvello, R.; Dragone, T.; Iacobazzi, F.; Panaro, M.A. The PI3K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacol. Immunotoxicol., 2012, 34(5), 858-865.
[http://dx.doi.org/10.3109/08923973.2012.665461] [PMID: 22397361]
[107]
Zhao, M.; Zhou, A.; Xu, L.; Zhang, X. The role of TLR4-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience, 2014, 269, 93-101.
[http://dx.doi.org/10.1016/j.neuroscience.2014.03.039] [PMID: 24680857]
[108]
Kim, W-K.; Hwang, S-Y.; Oh, E-S.; Piao, H.Z.; Kim, K-W.; Han, I-O. TGF-β1 represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J. Immunol., 2004, 172(11), 7015-7023.
[http://dx.doi.org/10.4049/jimmunol.172.11.7015] [PMID: 15153523]
[109]
Koh, S-H.; Park, H-H. Neurogenesis in stroke recovery. Transl. Stroke Res., 2017, 8(1), 3-13.
[http://dx.doi.org/10.1007/s12975-016-0460-z] [PMID: 26987852]
[110]
Gonzalez-Perez, O. Neural stem cells in the adult human brain. Biol. Biomed. Rep., 2012, 2(1), 59-69.
[PMID: 23181200]
[111]
Koh, S-H.; Lo, E.H. The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J. Clin. Neurol., 2015, 11(4), 297-304.
[http://dx.doi.org/10.3988/jcn.2015.11.4.297] [PMID: 26320845]
[112]
Rivière, J-B.; Mirzaa, G.M.; O’Roak, B.J.; Beddaoui, M.; Alcantara, D.; Conway, R.L.; St-Onge, J.; Schwartzentruber, J.A.; Gripp, K.W.; Nikkel, S.M.; Worthylake, T.; Sullivan, C.T.; Ward, T.R.; Butler, H.E.; Kramer, N.A.; Albrecht, B.; Armour, C.M.; Armstrong, L.; Caluseriu, O.; Cytrynbaum, C.; Drolet, B.A.; Innes, A.M.; Lauzon, J.L.; Lin, A.E.; Mancini, G.M.; Meschino, W.S.; Reggin, J.D.; Saggar, A.K.; Lerman-Sagie, T.; Uyanik, G.; Weksberg, R.; Zirn, B.; Beaulieu, C.L.; Majewski, J.; Bulman, D.E.; O’Driscoll, M.; Shendure, J.; Gra-ham, J.M., Jr; Boycott, K.M.; Dobyns, W.B. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spec-trum of related megalencephaly syndromes. Nat. Genet., 2012, 44(8), 934-940.
[http://dx.doi.org/10.1038/ng.2331] [PMID: 22729224]
[113]
Jansen, L.A.; Mirzaa, G.M.; Ishak, G.E.; O’Roak, B.J.; Hiatt, J.B.; Roden, W.H.; Gunter, S.A.; Christian, S.L.; Collins, S.; Adams, C.; Rivi-ère, J.B.; St-Onge, J.; Ojemann, J.G.; Shendure, J.; Hevner, R.F.; Dobyns, W.B. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain, 2015, 138(Pt 6), 1613-1628.
[http://dx.doi.org/10.1093/brain/awv045] [PMID: 25722288]
[114]
Xiao, Z.; Peng, J.; Yang, L.; Kong, H.; Yin, F. Interleukin-1β plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J. Neuroimmunol., 2015, 282, 110-117.
[http://dx.doi.org/10.1016/j.jneuroim.2015.04.003] [PMID: 25903737]
[115]
Brandt, C.; Hillmann, P.; Noack, A.; Römermann, K.; Öhler, L.A.; Rageot, D.; Beaufils, F.; Melone, A.; Sele, A.M.; Wymann, M.P.; Fab-bro, D.; Löscher, W. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.002] [PMID: 30081001]
[116]
Heras-Sandoval, D.; Pérez-Rojas, J.M.; Hernández-Damián, J.; Pedraza-Chaverri, J. The role of PI3K/AKT/mTOR pathway in the modula-tion of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal., 2014, 26(12), 2694-2701.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.019] [PMID: 25173700]
[117]
Yang, L.; Wang, H.; Liu, L.; Xie, A. The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in Parkinson’s disease dementia. Front. Neurosci., 2018, 12, 73.
[http://dx.doi.org/10.3389/fnins.2018.00073] [PMID: 29515352]
[118]
Li, S.; Chen, X.; Mao, L.; Zahid, K.R.; Wen, J.; Zhang, L.; Zhang, M.; Duan, J.; Duan, J.; Yin, X.; Wang, Y.; Zhao, L.; Tang, X.; Wang, X.; Xu, G. Histone deacetylase 1 promotes glioblastoma cell proliferation and invasion via activation of PI3K/AKT and MEK/ERK signaling pathways. Brain Res., 2018, 1692, 154-162.
[http://dx.doi.org/10.1016/j.brainres.2018.05.023] [PMID: 29782850]
[119]
Daniel, P.M.; Filiz, G.; Brown, D.V.; Christie, M.; Waring, P.M.; Zhang, Y.; Haynes, J.M.; Pouton, C.; Flanagan, D.; Vincan, E.; Johns, T.G.; Montgomery, K.; Phillips, W.A.; Mantamadiotis, T. PI3K activation in neural stem cells drives tumorigenesis which can be amelio-rated by targeting the cAMP response element binding protein. Neuro-oncol., 2018, 20(10), 1344-1355.
[http://dx.doi.org/10.1093/neuonc/noy068] [PMID: 29718345]
[120]
Seitz, C.; Hugle, M.; Cristofanon, S.; Tchoghandjian, A.; Fulda, S. The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine syner-gize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int. J. Cancer, 2013, 132(11), 2682-2693.
[http://dx.doi.org/10.1002/ijc.27935] [PMID: 23151917]
[121]
Liu, Q.; Qiu, J.; Liang, M.; Golinski, J.; van Leyen, K.; Jung, J.E.; You, Z.; Lo, E.H.; Degterev, A.; Whalen, M.J. Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis., 2014, 5(2), e1084-e1084.
[http://dx.doi.org/10.1038/cddis.2014.69] [PMID: 24577082]
[122]
Ribeiro, M.; Rosenstock, T.R.; Oliveira, A.M.; Oliveira, C.R.; Rego, A.C. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells. Free Radic. Biol. Med., 2014, 74, 129-144.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.023] [PMID: 24992836]
[123]
Kim, D.I. Lee, K.H.; Gabr, A.A.; Choi, G.E.; Kim, J.S.; Ko, S.H.; Han, H.J. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim. Biophys. Acta, 2016, 1863(11), 2820-2834.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.003] [PMID: 27599716]
[124]
Kilic, E.; Kilic, U.; Wang, Y.; Bassetti, C.L.; Marti, H.H.; Hermann, D.M. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J., 2006, 20(8), 1185-1187.
[http://dx.doi.org/10.1096/fj.05-4829fje] [PMID: 16641198]
[125]
Nguyen, N.; Lee, S.B.; Lee, Y.S.; Lee, K-H.; Ahn, J-Y. Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem. Res., 2009, 34(5), 942-951.
[http://dx.doi.org/10.1007/s11064-008-9848-9] [PMID: 18846424]
[126]
Ha, K-S.; Kim, K-M.; Kwon, Y-G.; Bai, S-K.; Nam, W-D.; Yoo, Y-M.; Kim, P.K.; Chung, H-T.; Billiar, T.R.; Kim, Y-M. Nitric oxide pre-vents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J., 2003, 17(9), 1036-1047.
[http://dx.doi.org/10.1096/fj.02-0738com] [PMID: 12773486]
[127]
Namikawa, K.; Honma, M.; Abe, K.; Takeda, M.; Mansur, K.; Obata, T.; Miwa, A.; Okado, H.; Kiyama, H. Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J. Neurosci., 2000, 20(8), 2875-2886.
[http://dx.doi.org/10.1523/JNEUROSCI.20-08-02875.2000] [PMID: 10751440]
[128]
Park, H-H.; Lee, K-Y.; Kim, S.H.; Lee, Y.J.; Koh, S-H. L-DOPA-induced neurotoxicity is reduced by the activation of the PI3K signaling pathway. Toxicology, 2009, 265(3), 80-86.
[http://dx.doi.org/10.1016/j.tox.2009.09.011] [PMID: 19786063]
[129]
Zheng, R.; Zhang, Z-H.; Chen, C.; Chen, Y.; Jia, S-Z.; Liu, Q.; Ni, J-Z.; Song, G-L. Selenomethionine promoted hippocampal neurogenesis via the PI3K-Akt-GSK3β-Wnt pathway in a mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2017, 485(1), 6-15.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.069] [PMID: 28109879]
[130]
Huang, L.; Sherchan, P.; Wang, Y.; Reis, C.; Applegate, R.L., II; Tang, J.; Zhang, J.H. Phosphoinositide 3-kinase gamma contributes to neuroinflammation in a rat model of surgical brain injury. J. Neurosci., 2015, 35(29), 10390-10401.
[http://dx.doi.org/10.1523/JNEUROSCI.0546-15.2015] [PMID: 26203135]
[131]
Ribic, A.; Liu, X.; Crair, M.C.; Biederer, T. Structural organization and function of mouse photoreceptor ribbon synapses involve the im-munoglobulin protein synaptic cell adhesion molecule 1. J. Comp. Neurol., 2014, 522(4), 900-920.
[http://dx.doi.org/10.1002/cne.23452] [PMID: 23982969]
[132]
Murakami, S.; Sakurai-Yageta, M.; Maruyama, T.; Murakami, Y. Trans-homophilic interaction of CADM1 activates PI3K by forming a complex with MAGuK-family proteins MPP3 and Dlg. PLoS One, 2014, 9(2), e82894.
[http://dx.doi.org/10.1371/journal.pone.0082894] [PMID: 24503895]
[133]
Ugrumov, M.V. Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and func-tional significance. J. Chem. Neuroanat., 2009, 38(4), 241-256.
[http://dx.doi.org/10.1016/j.jchemneu.2009.08.004] [PMID: 19698780]
[134]
Lute, B.J.; Khoshbouei, H.; Saunders, C.; Sen, N.; Lin, R.Z.; Javitch, J.A.; Galli, A. PI3K signaling supports amphetamine-induced dopa-mine efflux. Biochem. Biophys. Res. Commun., 2008, 372(4), 656-661.
[http://dx.doi.org/10.1016/j.bbrc.2008.05.091] [PMID: 18510945]
[135]
Bourque, M.; Liu, B.; Dluzen, D.E.; Di Paolo, T. Sex differences in methamphetamine toxicity in mice: effect on brain dopamine signaling pathways. Psychoneuroendocrinology, 2011, 36(7), 955-969.
[http://dx.doi.org/10.1016/j.psyneuen.2010.12.007] [PMID: 21236583]
[136]
Carvelli, L.; Morón, J.A.; Kahlig, K.M.; Ferrer, J.V.; Sen, N.; Lechleiter, J.D.; Leeb-Lundberg, L.M.; Merrill, G.; Lafer, E.M.; Ballou, L.M.; Shippenberg, T.S.; Javitch, J.A.; Lin, R.Z.; Galli, A. PI 3-kinase regulation of dopamine uptake. J. Neurochem., 2002, 81(4), 859-869.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00892.x] [PMID: 12065645]
[137]
Weaver, S.A.; Ward, S.G. Phosphoinositide 3-kinases in the gut: a link between inflammation and cancer? Trends Mol. Med., 2001, 7(10), 455-462.
[http://dx.doi.org/10.1016/S1471-4914(01)02107-4] [PMID: 11597520]
[138]
Lv, T.; Wang, S-D.; Bai, J. Thioredoxin-1 was required for CREB activity by methamphetamine in rat pheochromocytoma cells. Cell. Mol. Neurobiol., 2013, 33(3), 319-325.
[http://dx.doi.org/10.1007/s10571-012-9897-0] [PMID: 23239345]
[139]
Hong, S-I.; Kim, M-J.; You, I-J.; Kwon, S-H.; Ma, S-X.; Hwang, J-Y.; Seo, J-Y.; Ko, Y-H.; Lee, B.R.; Lee, S-Y.; Jang, C-G. Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens. Psychopharmacology (Berl.), 2016, 233(8), 1405-1413.
[http://dx.doi.org/10.1007/s00213-016-4231-z] [PMID: 26887589]
[140]
Ulke, C.; Rullmann, M.; Huang, J.; Luthardt, J.; Becker, G-A.; Patt, M.; Meyer, P.M.; Tiepolt, S.; Hesse, S.; Sabri, O.; Strauß, M. Adult attention-deficit/hyperactivity disorder is associated with reduced norepinephrine transporter availability in right attention networks: a (S,S)-O-[11C]methylreboxetine positron emission tomography study. Transl. Psychiatry, 2019, 9(1), 301.
[http://dx.doi.org/10.1038/s41398-019-0619-y] [PMID: 31732713]
[141]
Sukmajaya, A.C.; Lusida, M.I. Soetjipto; Setiawati, Y. Systematic review of gut microbiota and attention-deficit hyperactivity disorder (ADHD). Ann. Gen. Psychiatry, 2021, 20(1), 12.
[http://dx.doi.org/10.1186/s12991-021-00330-w] [PMID: 33593384]
[142]
Andersen, S.L. Changes in the second messenger cyclic AMP during development may underlie motoric symptoms in attention defi-cit/hyperactivity disorder (ADHD). Behav. Brain Res., 2002, 130(1-2), 197-201.
[http://dx.doi.org/10.1016/S0166-4328(01)00417-X] [PMID: 11864735]
[143]
Fraporti, T.T.; Contini, V.; Tovo-Rodrigues, L.; Recamonde-Mendoza, M.; Rovaris, D.L.; Rohde, L.A.; Hutz, M.H.; Salatino-Oliveira, A.; Genro, J.P. Synergistic effects between ADORA2A and DRD2 genes on anxiety disorders in children with ADHD. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 93, 214-220.
[http://dx.doi.org/10.1016/j.pnpbp.2019.03.021] [PMID: 30946941]
[144]
Zhang, X.; Du, Q.; Yang, Y.; Wang, J.; Liu, Y.; Zhao, Z.; Zhu, Y.; Liu, C. Salidroside alleviates ischemic brain injury in mice with ischem-ic stroke through regulating BDNK mediated PI3K/Akt pathway. Biochem. Pharmacol., 2018, 156, 99-108.
[http://dx.doi.org/10.1016/j.bcp.2018.08.015] [PMID: 30114387]
[145]
Sun, H.; Wang, Z.; Sebastian Yakisich, J. Natural products targeting autophagy via the PI3K/Akt/mTOR pathway as anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(7), 1048-1056.
[http://dx.doi.org/10.2174/18715206113139990130] [PMID: 23293890]
[146]
Funaya, N.; Haginaka, J. Matrine- and oxymatrine-imprinted monodisperse polymers prepared by precipitation polymerization and their applications for the selective extraction of matrine-type alkaloids from Sophora flavescens Aiton. J. Chromatogr. A, 2012, 1248, 18-23.
[http://dx.doi.org/10.1016/j.chroma.2012.05.081] [PMID: 22695694]
[147]
Lan, X.; Zhao, J.; Zhang, Y.; Chen, Y.; Liu, Y.; Xu, F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol. Res., 2020, 151, 104541.
[http://dx.doi.org/10.1016/j.phrs.2019.104541] [PMID: 31733326]
[148]
Wu, B.; Yue, H.; Zhou, G.H.; Zhu, Y.Y.; Wu, T.H.; Wen, J.F.; Cho, K.W.; Jin, S.N. Protective effects of oxymatrine on homocysteine-induced endothelial injury: Involvement of mitochondria-dependent apoptosis and Akt-eNOS-NO signaling pathways. Eur. J. Pharmacol., 2019, 864, 172717.
[http://dx.doi.org/10.1016/j.ejphar.2019.172717] [PMID: 31586637]
[149]
Jiao-Yan, Y.; Qing-Qing, L.; Xi, L.; Mei, Z.; Ting, S.; Na, H.; Wei, J.; Rui-Tao, Z.; Peng, Y.; Qi, Y. Oxymatrine improves blood-brain bar-rier integrity after cerebral ischemia-reperfusion injury by downregulating CAV1 and MMP9 expression. Phytomedicine, 2021, 84, 153505.
[http://dx.doi.org/10.1016/j.phymed.2021.153505] [PMID: 33626426]
[150]
Liu, Y.; Wang, H.; Liu, N.; Du, J.; Lan, X.; Qi, X.; Zhuang, C.; Sun, T.; Li, Y.; Yu, J. Oxymatrine protects neonatal rat against hypoxic-ischemic brain damage via PI3K/Akt/GSK3β pathway. Life Sci., 2020, 254, 116444.
[http://dx.doi.org/10.1016/j.lfs.2019.04.070] [PMID: 31102745]
[151]
Zhao, J.; Shi, Z.; Liu, S.; Li, J.; Huang, W. Ginsenosides Rg1 from Panax ginseng: a potential therapy for acute liver failure patients? Evid. Based Complement. Alternat. Med., 2014, 2014, 538059.
[http://dx.doi.org/10.1155/2014/538059] [PMID: 25431611]
[152]
Tu, L.; Wang, Y.; Chen, D.; Xiang, P.; Shen, J.; Li, Y.; Wang, S. Protective effects of notoginsenoside r1 via regulation of the pi3k-akt-mtor/jnk pathway in neonatal cerebral hypoxic–ischemic brain injury. Neurochem. Res., 2018, 43(6), 1210-1226.
[http://dx.doi.org/10.1007/s11064-018-2538-3] [PMID: 29696512]
[153]
AlQathama, A.; Prieto, J.M. Natural products with therapeutic potential in melanoma metastasis. Nat. Prod. Rep., 2015, 32(8), 1170-1182.
[http://dx.doi.org/10.1039/C4NP00130C] [PMID: 26018751]
[154]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci., 2019, 11, 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155] [PMID: 31293414]
[155]
Chen, X.; Gu, N.; Xue, C.; Li, B.R. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol. Med. Rep., 2018, 17(2), 3239-3245.
[PMID: 29257319]
[156]
Saito, S.; Tanaka, M.; Satoh-Asahara, N.; Carare, R.O.; Ihara, M. Taxifolin: a potential therapeutic agent for cerebral amyloid angiopathy. Front. Pharmacol., 2021, 12, 643357.
[http://dx.doi.org/10.3389/fphar.2021.643357] [PMID: 33643053]
[157]
Oi, N.; Chen, H.; Ok Kim, M.; Lubet, R.A.; Bode, A.M.; Dong, Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev. Res. (Phila.), 2012, 5(9), 1103-1114.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0397] [PMID: 22805054]
[158]
He, M.; Min, J-W.; Kong, W-L.; He, X-H.; Li, J-X.; Peng, B-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 2016, 115, 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[159]
Liu, X.; Jiang, Q.; Liu, H.; Luo, S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol. Res., 2019, 52(1), 7.
[http://dx.doi.org/10.1186/s40659-019-0214-y] [PMID: 30797236]
[160]
Ahn, J.; Ahn, H.S.; Cheong, J.H.; Peña, I.D. Natural product-derived treatments for attention-deficit/hyperactivity disorder: safety, effica-cy, and therapeutic potential of combination therapy. Neural Plast., 2016, 2016, 1320423.
[http://dx.doi.org/10.1155/2016/1320423] [PMID: 26966583]
[161]
Pham, H.T.N.; Tran, H.N.; Nguyen, P.T.; Le, X.T.; Nguyen, K.M.; Phan, S.V.; Yoneyama, M.; Ogita, K.; Yamaguchi, T.; Folk, W.R.; Ya-maguchi, M.; Matsumoto, K. Bacopa monnieri (L.) Wettst. Extract improves memory performance via promotion of neurogenesis in the hippocampal dentate gyrus of adolescent mice. Int. J. Mol. Sci., 2020, 21(9), 3365.
[http://dx.doi.org/10.3390/ijms21093365] [PMID: 32397562]
[162]
Petcharat, K.; Singh, M.; Ingkaninan, K.; Attarat, J.; Yasothornsrikul, S. Bacopa monnieri protects SH-SY5Y cells against tert-Butyl hy-droperoxide-induced cell death via the ERK and PI3K pathways. Siriraj Med J., 2015, 67(1), 20-26.
[PMID: 29152617]
[163]
Le, X.T.; Nguyet Pham, H.T.; Van Nguyen, T.; Minh Nguyen, K.; Tanaka, K.; Fujiwara, H.; Matsumoto, K. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of bacopaside I and underlying mechanism. J. Ethnopharmacol., 2015, 164, 37-45.
[http://dx.doi.org/10.1016/j.jep.2015.01.041] [PMID: 25660331]
[164]
Liu, P-K.; Weng, Z-M.; Ge, G-B.; Li, H-L.; Ding, L-L.; Dai, Z-R.; Hou, X-D.; Leng, Y-H.; Yu, Y.; Hou, J. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. Int. J. Biol. Macromol., 2018, 118(Pt B), 2216-2223.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.085] [PMID: 30009906]
[165]
Lejri, I.; Grimm, A.; Eckert, A. Ginkgo biloba extract increases neurite outgrowth and activates the Akt/mTOR pathway. PLoS One, 2019, 14(12), e0225761.
[http://dx.doi.org/10.1371/journal.pone.0225761] [PMID: 31790465]
[166]
Nada, S.E.; Shah, Z.A. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2. Neurobiol. Dis., 2012, 46(1), 180-189.
[http://dx.doi.org/10.1016/j.nbd.2012.01.006] [PMID: 22297164]
[167]
Nada, S.E.; Tulsulkar, J.; Shah, Z.A. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761®) after perma-nent ischemic stroke in mice. Mol. Neurobiol., 2014, 49(2), 945-956.
[http://dx.doi.org/10.1007/s12035-013-8572-x] [PMID: 24154866]
[168]
Ong, W-Y.; Farooqui, T.; Koh, H-L.; Farooqui, A.A.; Ling, E-A. Protective effects of ginseng on neurological disorders. Front. Aging Neurosci., 2015, 7, 129.
[http://dx.doi.org/10.3389/fnagi.2015.00129] [PMID: 26236231]
[169]
Nguyen, C.T.; Luong, T.T.; Kim, G-L.; Pyo, S.; Rhee, D-K. Korean red ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling. J. Ginseng Res., 2015, 39(1), 69-75.
[http://dx.doi.org/10.1016/j.jgr.2014.06.005] [PMID: 25535479]
[170]
Razlog, R.; Pellow, J.; White, S.J. A pilot study on the efficacy of Valeriana officinalis mother tincture and Valeriana officinalis 3X in the treatment of attention deficit hyperactivity disorder. Health SA Gesondheid, 2011, 17(1), 1-7.
[171]
Pellow, J.; Solomon, E.M.; Barnard, C.N. Complementary and alternative medical therapies for children with attention-deficit/hyperactivity disorder (ADHD). Altern. Med. Rev., 2011, 16(4), 323-337.
[PMID: 22214252]
[172]
Arnold, L.E.; Amato, A.; Bozzolo, H.; Hollway, J.; Cook, A.; Ramadan, Y.; Crowl, L.; Zhang, D.; Thompson, S.; Testa, G.; Kliewer, V.; Wigal, T.; McBurnett, K.; Manos, M. Acetyl-L-carnitine (ALC) in attention-deficit/hyperactivity disorder: a multi-site, placebo-controlled pilot trial. J. Child Adolesc. Psychopharmacol., 2007, 17(6), 791-802.
[http://dx.doi.org/10.1089/cap.2007.018] [PMID: 18315451]
[173]
Zhang, L.; Ding, K.; Wang, H.; Wu, Y.; Xu, J. Traumatic brain injury-induced neuronal apoptosis is reduced through modulation of PI3K and autophagy pathways in mouse by FTY720. Cell. Mol. Neurobiol., 2016, 36(1), 131-142.
[http://dx.doi.org/10.1007/s10571-015-0227-1] [PMID: 26099903]
[174]
Chu, S.; Chen, P.; Hsieh, Y.; Yu, C.; Lin, M.; Lin, Y.; Kuo, D. Involvement of hypothalamic PI3K-STAT3 signalling in regulating amphet-amine-mediated appetite suppression. Br. J. Pharmacol., 2014, 171, 3223-3233.
[http://dx.doi.org/10.1111/bph.12667] [PMID: 24597972]
[175]
Joo, S.W.; Kim, H-W. Treatment of children and adolescents with attention deficit hyperactivity disorder and/or Tourette’s disorder with clonidine extended release. Psychiatry Investig., 2018, 15(1), 90-93.
[http://dx.doi.org/10.4306/pi.2018.15.1.90] [PMID: 29422931]
[176]
Takenouchi, Y.; Tsuboi, K.; Ohsuka, K.; Nobe, K.; Ohtake, K.; Okamoto, Y.; Kasono, K. Chronic treatment with α-lipoic acid improves endothelium-dependent vasorelaxation of aortas in high-fat diet-fed mice. Biol. Pharm. Bull., 2019, 42(9), 1456-1463.
[http://dx.doi.org/10.1248/bpb.b18-00800] [PMID: 31474707]
[177]
Tandel, H.; Shah, D.; Vanza, J.; Misra, A. Lipid based formulation approach for BCS class-II drug: Modafinil in the treatment of ADHD. J. Drug Deliv. Sci. Technol., 2017, 37, 166-183.
[http://dx.doi.org/10.1016/j.jddst.2016.12.012]
[178]
Cao, Y.; Li, Q.; Liu, L.; Wu, H.; Huang, F.; Wang, C.; Lan, Y.; Zheng, F.; Xing, F.; Zhou, Q.; Li, Q.; Shi, H.; Zhang, B.; Wang, Z.; Wu, X. Modafinil protects hippocampal neurons by suppressing excessive autophagy and apoptosis in mice with sleep deprivation. Br. J. Pharmacol., 2019, 176(9), 1282-1297.
[http://dx.doi.org/10.1111/bph.14626] [PMID: 30767208]
[179]
Cianciulli, A.; Porro, C.; Calvello, R.; Trotta, T.; Lofrumento, D.D.; Panaro, M.A. Microglia mediated neuroinflammation: Focus on PI3K modulation. Biomolecules, 2020, 10(1), 137.
[http://dx.doi.org/10.3390/biom10010137] [PMID: 31947676]
[180]
Walker, C.L.; Xu, X-M. PTEN inhibitor bisperoxovanadium protects oligodendrocytes and myelin and prevents neuronal atrophy in adult rats following cervical hemicontusive spinal cord injury. Neurosci. Lett., 2014, 573, 64-68.
[http://dx.doi.org/10.1016/j.neulet.2014.02.039] [PMID: 24582904]
[181]
Gutiérrez-Martín, Y.; Bustillo, D.; Gómez-Villafuertes, R.; Sánchez-Nogueiro, J.; Torregrosa-Hetland, C.; Binz, T.; Gutiérrez, L.M.; Miras-Portugal, M.T.; Artalejo, A.R. P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells. J. Biol. Chem., 2011, 286(13), 11370-11381.
[http://dx.doi.org/10.1074/jbc.M110.139410] [PMID: 21292765]
[182]
Gómez-Villafuertes, R.; del Puerto, A.; Díaz-Hernández, M.; Bustillo, D.; Díaz-Hernández, J.I.; Huerta, P.G.; Artalejo, A.R.; Garrido, J.J.; Miras-Portugal, M.T. Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogen-esis in neuroblastoma cells. FEBS J., 2009, 276(18), 5307-5325.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07228.x] [PMID: 19682070]
[183]
Wu, P-Y.; Lin, Y-C.; Chang, C-L.; Lu, H-T.; Chin, C-H.; Hsu, T-T.; Chu, D.; Sun, S.H. Functional decreases in P2X7 receptors are associ-ated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell. Signal., 2009, 21(6), 881-891.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.036] [PMID: 19385050]
[184]
Amoroso, F.; Capece, M.; Rotondo, A.; Cangelosi, D.; Ferracin, M.; Franceschini, A.; Raffaghello, L.; Pistoia, V.; Varesio, L.; Adinolfi, E. The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene, 2015, 34(41), 5240-5251.
[http://dx.doi.org/10.1038/onc.2014.444] [PMID: 25619831]
[185]
Yu, S.; Hei, Y.; Liu, W. Upregulation of seladin-1 and nestin expression in bone marrow mesenchymal stem cell transplantation via the ERK1/2 and PI3K/Akt signaling pathways in an Alzheimer’s disease model. Oncol. Lett., 2018, 15(5), 7443-7449.
[PMID: 29731895]
[186]
Hu, M.; Li, F.; Wang, W. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through PI3K/Akt signaling path-way. Drug Des. Devel. Ther., 2018, 12, 565-573.
[http://dx.doi.org/10.2147/DDDT.S156920] [PMID: 29588573]
[187]
Gorbenko, O.; Panayotou, G.; Volkova, D.; Zhyvoloup, O.; Kukharenko, O.; Gout, I.; Filonenko, V. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4. Mol. Cell. Biochem., 2010, 337(1-2), 299-305.
[http://dx.doi.org/10.1007/s11010-009-0312-1] [PMID: 19911253]
[188]
Zhao, H.F.; Wang, J.; Shao, W.; Wu, C.P.; Chen, Z.P.; To, S-T.; Li, W.P. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol. Cancer, 2017, 16(1), 100.
[http://dx.doi.org/10.1186/s12943-017-0670-3] [PMID: 28592260]
[189]
Waite, K.; Eickholt, B.J. The neurodevelopmental implications of PI3K signaling. Phosphoinositide 3-kinase in Health and Disease; Springer, 2010, pp. 245-265.
[http://dx.doi.org/10.1007/82_2010_82]
[190]
Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural dietary supplementation of anthocya-nins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alz-heimer’s disease. Mol. Neurobiol., 2018, 55(7), 6076-6093.
[http://dx.doi.org/10.1007/s12035-017-0798-6] [PMID: 29170981]
[191]
Chen, Y.L.; Monteith, N.; Law, P-Y.; Loh, H.H. Dynamic association of p300 with the promoter of the G protein-coupled rat delta opioid receptor gene during NGF-induced neuronal differentiation. Biochem. Biophys. Res. Commun., 2010, 396(2), 294-298.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.083] [PMID: 20399742]
[192]
Shojaee, S.; Chan, L.N.; Buchner, M.; Cazzaniga, V.; Cosgun, K.N.; Geng, H.; Qiu, Y.H.; von Minden, M.D.; Ernst, T.; Hochhaus, A.; Cazzaniga, G.; Melnick, A.; Kornblau, S.M.; Graeber, T.G.; Wu, H.; Jumaa, H.; Müschen, M. PTEN opposes negative selection and ena-bles oncogenic transformation of pre-B cells. Nat. Med., 2016, 22(4), 379-387.
[http://dx.doi.org/10.1038/nm.4062] [PMID: 26974310]
[193]
Gaesser, J.M.; Fyffe-Maricich, S.L. Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp. Neurol., 2016, 283(Pt B), 501-511.
[http://dx.doi.org/10.1016/j.expneurol.2016.03.008] [PMID: 26957369]
[194]
Mirzaa, G.M. Poduri, A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology, American Journal of Medical Genetics Part C: Seminars in Medical Genetics; Wiley Online Library, 2014, pp. 156-172.
[195]
Chen, Y.L.; Law, P-Y.; Loh, H.H. NGF/PI3K signaling-mediated epigenetic regulation of delta opioid receptor gene expression. Biochem. Biophys. Res. Commun., 2008, 368(3), 755-760.
[http://dx.doi.org/10.1016/j.bbrc.2008.01.164] [PMID: 18269915]
[196]
Guan, X-H.; Lu, X-F.; Zhang, H-X.; Wu, J-R.; Yuan, Y.; Bao, Q.; Ling, D-Y.; Cao, J-L. Phosphatidylinositol 3-kinase mediates pain be-haviors induced by activation of peripheral ephrinBs/EphBs signaling in mice. Pharmacol. Biochem. Behav., 2010, 95(3), 315-324.
[http://dx.doi.org/10.1016/j.pbb.2010.02.007] [PMID: 20170671]
[197]
Zhang, T.; Shi, Z.; Wang, Y.; Wang, L.; Zhang, B.; Chen, G.; Wan, Q.; Chen, L. Akt3 deletion in mice impairs spatial cognition and hippo-campal CA1 long long-term potentiation through downregulation of mTOR. Acta Physiol. (Oxf.), 2019, 225(1), e13167.
[http://dx.doi.org/10.1111/apha.13167] [PMID: 30053339]
[198]
Wang, P.; He, Y.; Li, D.; Han, R.; Liu, G.; Kong, D.; Hao, J.; Class, I. Class I PI3K inhibitor ZSTK474 mediates a shift in microgli-al/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. J. Neuroinflammation, 2016, 13(1), 192.
[http://dx.doi.org/10.1186/s12974-016-0660-1] [PMID: 27549161]
[199]
Leng, Y.; Wang, Z.; Tsai, L-K.; Leeds, P.; Fessler, E.B.; Wang, J.; Chuang, D-M. FGF-21, a novel metabolic regulator, has a robust neuro-protective role and is markedly elevated in neurons by mood stabilizers. Mol. Psychiatry, 2015, 20(2), 215-223.
[http://dx.doi.org/10.1038/mp.2013.192] [PMID: 24468826]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy