Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Therapeutic Application of Microsponges-based Drug Delivery Systems

Author(s): Mahfoozur Rahman, Waleed H. Almalki, Sunil K. Panda, Aman K. Das, Saad Alghamdi, Kriti Soni, Abdul Hafeez, Mayank Handa, Sarwar Beg* and Ziyaur Rahman*

Volume 28, Issue 8, 2022

Published on: 25 March, 2022

Page: [595 - 608] Pages: 14

DOI: 10.2174/1381612828666220118121536

Price: $65

Open Access Journals Promotions 2
Abstract

Microsponges delivery systems (MDS) are highly porous, cross-linked polymeric systems that activate due to temperature, pH, or when rubbed. MDS offer a wide range of advantages, like controlled drug release, site-specific action, stability over a broad range of pH, less irritation, cost-effectiveness, and improved patient compliance. They can be transformed into various dosage forms like creams, gels, and lotions. MDS are suitable for the treatment of topical disorders like acne, psoriasis, dandruff, eczema, scleroderma, hair loss, skin cancer, and other dreadful diseases. The applications of MDS in drug delivery are not limited to topical drug delivery but are also explored for oral, parenteral, and pulmonary drug deliveries. Microsponges have been studied for colon targeting of drugs and genes. Additionally, MDS have several applications such as sunscreen, cosmetics, and over-the-counter (OTC) products. Furthermore, MDS do not actuate any irritation, genotoxicity, immunogenicity, or cytotoxicity. Therefore, this review extensively highlights microsponges, their advantages, key factors affecting their characteristics, their therapeutic applications in topical disorders and in cancer, their use as cosmetics, as well as recent advances in MDS and the associated challenges.

Keywords: Microsponges, nanosponges, oral delivery, topical applications, skin irritation, intestinal membrane.

Next »
[1]
Weiss SC. Conventional topical delivery systems. Dermatol Ther 2011; 24(5): 471-6.
[http://dx.doi.org/10.1111/j.1529-8019.2012.01458.x] [PMID: 22353153]
[2]
Ingale DJ, Aloorkar NH, Kulkarn IAS, Patil RAP. Microsponges as innovative drug delivery systems. Int J Pharm Sci Nanotechnol 2012; 5(1): 1597-606.
[3]
Pradhan SK. Microsponges as the versatile tool for drug delivery system. Int J Res Pharm Chem 2011; 1(2): 243-58.
[4]
Kaity S, Maiti S, Ghosh AK, Pal D, Ghosh A, Banerjee S. Microsponges: A novel strategy for drug delivery system. J Adv Pharm Technol Res 2010; 1(3): 283-90.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[5]
Srivastava R, Pathak K. Microsponges: a futuristic approach for oral drug delivery. Expert Opin Drug Deliv 2012; 9(7): 863-78.
[http://dx.doi.org/10.1517/17425247.2012.693072] [PMID: 22663167]
[6]
Jadhav N, Patel V, Mungekar S, Bhamare G, Karpe M, Kadams V. Microsponge Delivery System: An updated review, current status and future prospects. J Sci Innov Res 2013; 2(6): 1097-110.
[7]
Ahire PV, Darekar AB, Saudagar RB. Review on microsponges as a novel drug delivery system. Int J Curr Pharm Rev Res 2017; 8(3): 293-7.
[http://dx.doi.org/10.25258/ijcprr.v8i03.9219]
[8]
Kumari P, Mishra SK. A comprehensive review on novel microsponges drug delivery approach. Asian J Pharm Clin Res 2016; 9(1): 25-30.
[9]
Osmani RA, Aloorkar NH, Kulkarni AS, Harkare BR, Bhosale RR. A new cornucopia in topical drug delivery: Microsponge technology. Asian J Pharm Sci Technol 2014; 4: 48-60.
[10]
Bharathi M, Mullaikodi O, Rajalingam D, Gnanasekar N, Kesavan M. Bharathi M, Mullaikodi O, Rajalingam D, Gnanasekar N, Kesavan M. A review on microsponge drug delivery system. Int J Rev Life Sci 2020; 10(2): 53-9. Available from: https://scienztech.org/ijrls/article/view/1280
[http://dx.doi.org/10.26452/ijrls.v10i2.1280]
[11]
shivajiPatil RuddhavKemkar VPatilSSMicrosponge drug delivery system: A novel dosage form. Am J PharmTech Res 2012; 2(July): 227-51.
[12]
VISHWAKARMA P Choudhary R. Microsponges: A novel strategy to control the delivery rate of active agents with reduced skin irritancy. J Drug Deliv Ther 2019; 9(6-s): 238-47.
[http://dx.doi.org/10.22270/jddt.v9i6-s.3757]
[13]
Aldawsari H. Microsponges as promising vehicle for drug delivery and targeting: Preparation, characterization and applications. Afr J Pharm Pharmacol 2013; 7(17): 873-81.
[http://dx.doi.org/10.5897/AJPP12.1329]
[14]
Mahant S, Kumar S, Nanda S, Rao R. Microsponges for dermatological applications: Perspectives and challenges. Asian Journal of Pharmaceutical Sciences 2020; 15(3): 273-91.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004] [PMID: 32636947]
[15]
Joshi M. Role of Eudragit in targeted drug delivery. Int J Curr Pharm Res 2013; 5(2): 58-62.
[16]
Singh S. Neelam , Arora S, Singla Y An overview of multifaceted significance of eudragit polymers in drug delivery systems Asian J Pharm Clin Res 2015; 1-6.
[17]
Obeidat WM, Abu Znait AH, Sallam ASA. Novel combination of anionic and cationic polymethacrylate polymers for sustained release tablet preparation. Drug Dev Ind Pharm 2008; 34(6): 650-60.
[http://dx.doi.org/10.1080/03639040701836578] [PMID: 18568916]
[18]
Rekhi GS, Jambhekar SS. Ethylcellulose - A Polymer Review. Drug Dev Ind Pharm 1995; 21(1): 61-77. Available from: http://www.tandfonline.com/doi/full/10.3109/03639049509048096
[http://dx.doi.org/10.3109/03639049509048096]
[19]
Ahmadi P, Jahanban-Esfahlan A, Ahmadi A, Tabibiazar M, Mohammadifar M. Development of ethyl cellulose-based formulations: A perspective on the novel technical methods. Food Rev Int 2020; 1-48.
[http://dx.doi.org/10.1080/87559129.2020.1741007]
[20]
Li K, Stöver HDH. Synthesis of monodisperse poly(divinyl-benzene) microspheres. J Polym Sci A Polym Chem 1993; 31(13): 3257-63. Available from: https://onlinelibrary.wiley.com/doi/10.1002/pola.1993.080311313
[http://dx.doi.org/10.1002/pola.1993.080311313]
[21]
Cong H, Xing J, Ding X, Zhang S, Shen Y, Yu B. Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation. Talanta 2020; 210: 120586.
[http://dx.doi.org/10.1016/j.talanta.2019.120586] [PMID: 31987199]
[22]
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019; 120: 109191. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014305719305920
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.018]
[23]
Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate. Int J Pharm 2002; 241(2): 301-10.
[http://dx.doi.org/10.1016/S0378-5173(02)00244-2] [PMID: 12100857]
[24]
Junqueira MV, Bruschi ML. A review about the drug delivery from microsponges. AAPS PharmSciTech 2018; 19(4): 1501-11.
[http://dx.doi.org/10.1208/s12249-018-0976-5] [PMID: 29484616]
[25]
Bae SE, Son JS, Park K, Han DK. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release 2009; 133(1): 37-43.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.006] [PMID: 18838089]
[26]
Kabiri K, Omidian H, Zohuriaan-Mehr MJ. Novel approach to highly porous superabsorbent hydrogels: Synergistic effect of porogens on porosity and swelling rate. Polym Int 2003; 52(7): 1158-64.
[http://dx.doi.org/10.1002/pi.1218]
[27]
Hong Y, Liu X. Pre-gelatinized modification of starch physical modifications of starch. Singapore: Springer Singapore 2018; pp. 51-61. Available from: http://link.springer.com/10.1007/978-981-13-0725-6_4
[http://dx.doi.org/10.1007/978-981-13-0725-6_4]
[28]
Yutani R, Komori Y, Takeuchi A, Teraoka R, Kitagawa S. Prominent efficiency in skin delivery of resveratrol by novel sucrose oleate microemulsion. J Pharm Pharmacol 2016; 68(1): 46-55. Available from: https://academic.oup.com/jpp/article/68/1/46-55/6128296
[http://dx.doi.org/10.1111/jphp.12497] [PMID: 26757020]
[29]
Huang B, Aslan E, Jiang Z, et al. Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Addit Manuf 2020; 36(February): 101452.
[http://dx.doi.org/10.1016/j.addma.2020.101452]
[30]
Pravin Gupta DKMK. Microsponge technology as a versatile drug delivery vehicle Glob J Pharm Educ Res 2017; 6(1-2).
[31]
Handa M, Tiwari S, Yadav AK, et al. Therapeutic potential of nanoemulsions as feasible wagons for targeting Alzheimer’s disease Drug Discov Today 2021. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644621003251
[http://dx.doi.org/10.1016/j.drudis.2021.07.020]
[32]
Handa M, Sharma A, Verma RK, Shukla R. Polycaprolactone based nano-carrier for co-administration of moxifloxacin and rutin and its In-vitro evaluation for sepsis. J Drug Deliv Sci Technol 2019; 54(June): 101286.
[http://dx.doi.org/10.1016/j.jddst.2019.101286]
[33]
Jain V, Singh R. Dicyclomine-loaded Eudragit®-based microsponge with potential for colonic delivery: preparation and characterization. Trop J Pharm Res 2010; 9(1) Available from: http://www.ajol.info/index.php/tjpr/article/view/52039
[http://dx.doi.org/10.4314/tjpr.v9i1.52039]
[34]
Badhe KP, Saudagar RB. A review on microsponge a novel drug delivery system. Asian J Pharm Res 2016; 6(1): 51-7.
[http://dx.doi.org/10.5958/2231-5713.2016.00008.8]
[35]
Kawashima Y, Niwa T, Takeuchi H, Hino T, Ito Y. Control of prolonged drug release and compression properties of ibuprofen microsponges with acrylic polymer, eudragit rs, by changing their intraparticle porosity. Chem Pharm Bull (Tokyo) 1992; 40(1): 196-201. Available from: http://www.jstage.jst.go.jp/article/cpb1958/40/1/40_1_196/_article
[http://dx.doi.org/10.1248/cpb.40.196] [PMID: 1576674]
[36]
Osmani RAM, Aloorkar NH, Thaware BU, Kulkarni PK, Moin A, Hani U, et al. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. Asian J Pharm Sci 2015; 10(5): 442-51.
[http://dx.doi.org/10.1016/j.ajps.2015.06.003]
[37]
Jyoti J, Kumar S. Innovative and novel strategy: Microsponges for topical drug delivery. J Drug Deliv Ther 2018; 8(5): 28-34. Available from: http://jddtonline.info/index.php/jddt/article/view/1885
[http://dx.doi.org/10.22270/jddt.v8i5.1885]
[38]
Parikh BN, Gothi GD, Patel TD, Chavda HV, Patel CN. Microsponge as novel topical drug delivery system. J Glob Pharma Technol 2010; 2(1): 17-29.
[39]
Akashdeep G, Archana D, Divya J. Microsponges laden gels for topical delivery: A novel approach. Pharma Innov J TPI 2016; 5(6, Part A): 39.
[40]
Soumya S, Sahu D. A review on novel drug delivery system: Microsponges. Int J Drug Deliv Technol 2017; 7(04): 298-303.
[41]
Mishra P, Handa M, Ujjwal RR, Singh V, Kesharwani P, Shukla R. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf B Biointerfaces 2021; 208: 112050. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092777652100494X
[http://dx.doi.org/10.1016/j.colsurfb.2021.112050] [PMID: 34418723]
[42]
Shukla R, Handa M, Pardhi VP. Introduction to Pharmaceutical Product DevelopmentPharmaceutical Drug Product Development and Process Optimization Includes bibliographical references and index. Apple Academic Press 2020; pp. 1-32. Available from: https://www.taylorfrancis.com/books/9781000731323/chapters/10.1201/9780367821678-1
[http://dx.doi.org/10.1201/9780367821678-1]
[43]
Bhatia M, Saini M. Formulation and evaluation of curcumin microsponges for oral and topical drug delivery. Prog Biomater 2018; 7(3): 239-48.
[http://dx.doi.org/10.1007/s40204-018-0099-9] [PMID: 30242738]
[44]
Obiedallah MM, Abdel-Mageed AM, Elfaham TH. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm J 2018; 26(7): 909-20.
[http://dx.doi.org/10.1016/j.jsps.2018.01.005] [PMID: 30416345]
[45]
Castro GA, Ferreira LAM. Novel vesicular and particulate drug delivery systems for topical treatment of acne. Expert Opin Drug Deliv 2008; 5(6): 665-79. Available from: http://www.tandfonline.com/doi/full/10.1517/17425247.5.6.665
[http://dx.doi.org/10.1517/17425247.5.6.665] [PMID: 18532922]
[46]
Usatine RP, Quan MA. Pearls in the management of acne Prim Care Clin Off Pract 2000; 27(2): 289-308. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0095454305701962
[47]
Kanlayavattanakul M, Lourith N. Therapeutic agents and herbs in topical application for acne treatment. Int J Cosmet Sci 2011; 33(4): 289-97.
[http://dx.doi.org/10.1111/j.1468-2494.2011.00647.x] [PMID: 21401650]
[48]
Krautheim A, Gollnick HPM. Acne: topical treatment. Clin Dermatol 2004; 22(5): 398-407. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0738081X04000422
[http://dx.doi.org/10.1016/j.clindermatol.2004.03.009] [PMID: 15556726]
[49]
Jelvehgari M, Siahi-Shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: preparation, characterization and release studies. Int J Pharm 2006; 308(1-2): 124-32.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.001] [PMID: 16359833]
[50]
Gollnick H, Schramm M. Topical drug treatment in acne. Dermatology 1998; 196(1): 119-25. Available from: https://www.karger.com/Article/FullText/17844
[http://dx.doi.org/10.1159/000017844] [PMID: 9557245]
[51]
Osmani RA, Aloorkar NH, Kulkarni AS, et al. Novel cream containing microsponges of anti-acne agent: Formulation development and evaluation. Curr Drug Deliv 2015; 12(5): 504-16.
[http://dx.doi.org/10.2174/1567201812666150212122421] [PMID: 25675339]
[52]
Carrasquillo OY, Pabón-Cartagena G, Falto-Aizpurua LA, et al. Treatment of erythrodermic psoriasis with biologics: A systematic review. J Am Acad Dermatol 2020; 83(1): 151-8.
[http://dx.doi.org/10.1016/j.jaad.2020.03.073] [PMID: 32247872]
[53]
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32(1): 227-55. Available from: https://www.annualreviews.org/doi/10.1146/annurev-immunol-032713-120225
[http://dx.doi.org/10.1146/annurev-immunol-032713-120225] [PMID: 24655295]
[54]
Rahman M, Akhter S, Ahmad J, Ahmad MZ, Beg S, Ahmad FJ. Nanomedicine-based drug targeting for psoriasis: potentials and emerging trends in nanoscale pharmacotherapy. Expert Opin Drug Deliv 2015; 12(4): 635-52.
[http://dx.doi.org/10.1517/17425247.2015.982088] [PMID: 25439967]
[55]
Feldman SR, Horn EJ, Balkrishnan R, et al. International Psoriasis Council. Psoriasis: improving adherence to topical therapy. J Am Acad Dermatol 2008; 59(6): 1009-16. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0190962208010700
[http://dx.doi.org/10.1016/j.jaad.2008.08.028] [PMID: 18835062]
[56]
Devi N, Kumar S, Prasad M, Rao R. Eudragit RS100 based microsponges for dermal delivery of clobetasol propionate in psoriasis management. J Drug Deliv Sci Technol 2020; 55: 101347.
[http://dx.doi.org/10.1016/j.jddst.2019.101347]
[57]
D’auria E, Banderali G, Barberi S, et al. Atopic dermatitis: recent insight on pathogenesis and novel therapeutic target. Asian Pacific J Allergy Immunol 2016; 34(2): 98-108. Available from: http://thailand.digitaljournals.org/index.php/APJAI/article/view/30240
[58]
Katoh N, Ohya Y, Ikeda M, et al. Committee for clinical practice guidelines for the management of atopic dermatitis 2018, the Japanese society of allergology, the Japanese dermatology association. Japanese guidelines for atopic dermatitis 2020. Allergol Int 2020; 69(3): 356-69.
[http://dx.doi.org/10.1016/j.alit.2020.02.006] [PMID: 32265116]
[59]
Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol 2017; 139(6): 1723-34.
[http://dx.doi.org/10.1016/j.jaci.2017.04.004] [PMID: 28583445]
[60]
Saini S, Pansare M. New insights and treatments in atopic dermatitis. Pediatr Clin North Am 2021; 41(4): 653-65.
[http://dx.doi.org/10.1016/j.iac.2021.07.005] [PMID: 34602235]
[61]
Zaki Rizkalla CM. latif Aziz R, Soliman II. In vitro and in vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery. AAPS PharmSciTech 2011; 12(3): 989-1001.
[http://dx.doi.org/10.1208/s12249-011-9663-5] [PMID: 21800216]
[62]
Pradhan M, Singh D, Murthy SN, Singh MR. Design, characterization and skin permeating potential of Fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids 2015; 101: 56-63.
[http://dx.doi.org/10.1016/j.steroids.2015.05.012] [PMID: 26049018]
[63]
D’souza J, More H. Topical anti-inflammatory gels of fluocinolone acetonide entrapped in eudragit based microsponge delivery system. Res J Pharm Technol 2008; 1(4): 502-6.
[64]
Prakash A, Benfield P. Topical mometasone. A review of its pharmacological properties and therapeutic use in the treatment of dermatological disorders. Drugs 1998; 55(1): 145-63.
[http://dx.doi.org/10.2165/00003495-199855010-00009] [PMID: 9463794]
[65]
Peharda V, Gruber F, Prpić L, Kaštelan M, Brajac I. Comparison of mometasone furoate 0.1% ointment and betamethasone dipropionate 0.05% ointment in the treatment of psoriasis vulgaris. Acta Dermatovenerol Croat 2000; 8(4): 223-6.
[66]
Rekha U, Manjula BP. Formulation and evaluation of microsponges for topical drug delivery of mometasone furoate. Int J Pharm Pharm Sci 2011; 3(4): 133-7.
[67]
Sun Q, Leng J, Tang L, Wang L, Fu C. A comprehensive review of the chemistry, pharmacokinetics, pharmacology, clinical applications, adverse events, and quality control of indigo naturalis. Front Pharmacol 2021; 12: 664022. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2021.664022/full
[http://dx.doi.org/10.3389/fphar.2021.664022] [PMID: 34135755]
[68]
Hu YS, Han X, Yu PJ, Jiao MM, Liu XH, Shi JB. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg Chem 2020; 98: 103735. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045206820301280
[http://dx.doi.org/10.1016/j.bioorg.2020.103735] [PMID: 32171986]
[69]
Kumar P, Yadav N, Chaudhary B, et al. Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem Biol Interact 2022; 351: 109745.
[http://dx.doi.org/10.1016/j.cbi.2021.109745]]
[70]
Simões MCF, Sousa JJS, Pais AACC. Skin cancer and new treatment perspectives: a review Cancer Lett 2015; 357(1): 8-42. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0304383514006557
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[71]
Bickers DR, Athar M. Novel approaches to chemoprevention of skin cancer. J Dermatol 2000; 27(11): 691-5. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1346-8138.2000. tb02259.x
[http://dx.doi.org/10.1111/j.1346-8138.2000.tb02259.x] [PMID: 11138532]
[72]
Haque T, Rahman KM, Thurston DE, Hadgraft J, Lane ME. Topical therapies for skin cancer and actinic keratosis. Eur J Pharm Sci 2015; 77: 279-89.
[http://dx.doi.org/10.1016/j.ejps.2015.06.013] [PMID: 26091570]
[73]
Korting HC, Schäfer-Korting M. Carriers in the topical treatment of skin disease. Handb Exp Pharmacol 2010; (197): 435-68.
[http://dx.doi.org/10.1007/978-3-642-00477-3_15] [PMID: 20217539]
[74]
Jain SK, Kaur M, Kalyani P, Mehra A, Kaur N, Panchal N. Microsponges enriched gel for enhanced topical delivery of 5-fluorouracil. J Microencapsul 2019; 36(7): 677-91. Available from: https://www.tandfonline.com/doi/full/10.1080/02652048.2019.1667447
[http://dx.doi.org/10.1080/02652048.2019.1667447] [PMID: 31509035]
[75]
Levy S, Furst K, Chern W. A pharmacokinetic evaluation of 0.5% and 5% fluorouracil topical cream in patients with actinic keratosis. Clin Ther 2001; 23(6): 908-20.
[http://dx.doi.org/10.1016/S0149-2918(01)80078-3] [PMID: 11440290]
[76]
Lochhead RY. Basic physical sciences for the formulation of cosmetic products Cosmetic Science and Technology. Elsevier 2017; pp. 39-76. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128020050000033
[http://dx.doi.org/10.1016/B978-0-12-802005-0.00003-3]
[77]
Wolf R. A glance into the crystal ball: winners and losers in cosmetics. Clin Dermatol 2001; 19(4): 516-23.
[http://dx.doi.org/10.1016/S0738-081X(01)00185-7] [PMID: 11535396]
[78]
Katz LM, Dewan K, Bronaugh RL. Nanotechnology in cosmetics. Food Chem Toxicol 2015; 85: 127-37.
[http://dx.doi.org/10.1016/j.fct.2015.06.020] [PMID: 26159063]
[79]
Lionetti N, Rigano L. Labeling of cosmetic products. Cosmetics 2018.
[http://dx.doi.org/10.3390/cosmetics5010022]
[80]
Rosen MR. Delivery System Handbook for Personal Care and Cosmetic Products: Technology. Applications and Formulations 2005.
[81]
Kafi R, Kwak HSR, Schumacher WE, et al. Improvement of naturally aged skin with vitamin A (retinol). Arch Dermatol 2007; 143(5): 606-12.
[http://dx.doi.org/10.1001/archderm.143.5.606] [PMID: 17515510]
[82]
Bhuptani RS, Patravale VB. Starch microsponges for enhanced retention and efficacy of topical sunscreen. Mater Sci Eng C 2019; 104: 109882.
[http://dx.doi.org/10.1016/j.msec.2019.109882] [PMID: 31500041]
[83]
Shukla R, Handa M, Lokesh SB, Ruwali M, Kohli K, Kesharwani P. Conclusion and future prospective of polymeric nanoparticles for cancer therapy Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics. Elsevier Inc. 2019; pp. 389-408.
[http://dx.doi.org/10.1016/B978-0-12-816963-6.00018-2]
[84]
Gupta A, Tiwari G, Tiwari R, Srivastava R, Rai AK. Enteric coated HPMC capsules plugged with 5-FU loaded microsponges: a potential approach for treatment of colon cancer. Braz J Pharm Sci 2015; 51(3): 591-605. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502015000300591& lng=en&tlng=en
[http://dx.doi.org/10.1590/S1984-82502015000300011]
[85]
Dhawale SC, Bankar AS, Patro MN. Formulation and evaluation porous microspheres of 5- fluorouracil for colon targeting. Int J Pharm Tech Res 2010.
[86]
Younis MA, El-Zahry MR, Tallat MA, Tawfeek HM. Sulpiride gastro-retentive floating microsponges; analytical study, in vitro optimization and in vivo characterization. J Drug Target 2020; 28(4): 386-97.
[http://dx.doi.org/10.1080/1061186X.2019.1663526] [PMID: 31478760]
[87]
Kasuya F, Igarashi K, Fukui M. Metabolism of chlorpheniramine in rat and human by use of stable isotopes. Xenobiotica 1991; 21(1): 97-109.
[http://dx.doi.org/10.3109/00498259109039454] [PMID: 2003371]
[88]
Motov S, Butt M, Masoudi A, et al. Comparison of oral ibuprofen and acetaminophen with either analgesic alone for pediatric emergency department patients with acute pain. J Emerg Med 2020; 58(5): 725-32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0736467920301062
[http://dx.doi.org/10.1016/j.jemermed.2020.02.010] [PMID: 32247660]
[89]
Devrim B, Canefe K. Preparation and evaluation of modified release ibuprofen microspheres with acrylic polymers (Eudragit) by quasi-emulsion solvent diffusion method: effect of variables. Acta Pol Pharm 2006; 63(6): 521-34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17438870
[PMID: 17438870]
[90]
Çomoglu T, Gönül N, Baykara T. The effects of pressure and direct compression on tabletting of microsponges. Int J Pharm 2002; 242(1-2): 191-5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517302001552
[http://dx.doi.org/10.1016/S0378-5173(02)00155-2] [PMID: 12176245]
[91]
Comoğlu T, Gönül N, Baykara T. Preparation and in vitro evaluation of modified release ketoprofen microsponges. Farmaco 2003; 58(2): 101-6.
[http://dx.doi.org/10.1016/S0014-827X(02)00007-1] [PMID: 12581775]
[92]
Yusuf M, Khan M, Khan RA, Ahmed B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 2013; 21(3): 300-11.
[http://dx.doi.org/10.3109/1061186X.2012.747529] [PMID: 23231324]
[93]
Cui F, Yang M, Jiang Y, et al. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J Control Release 2003; 91(3): 375-84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S016836590300275X
[http://dx.doi.org/10.1016/S0168-3659(03)00275-X] [PMID: 12932715]
[94]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8(1): 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[95]
S S S A, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system--review. J Pharm Pharm Sci 2012; 15(1): 103-11.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[96]
Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm 2010; 402(1-2): 254-7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037851731000726X
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.025] [PMID: 20888402]
[97]
Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 2014; 11(6): 931-41. Available from: http://www.tandfonline.com/doi/full/10.1517/17425247.2014.911729
[http://dx.doi.org/10.1517/17425247.2014.911729] [PMID: 24811423]
[98]
Hu SH, Liu TY, Liu DM, Chen SY. Nano-ferrosponges for controlled drug release. J Control Release 2007; 121(3): 181-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.002] [PMID: 17644206]
[99]
Zhang H, Pan D, Duan X. Synthesis, characterization, and magnetically controlled release behavior of novel core-shell structural magnetic ibuprofen-intercalated LDH nanohybrids. J Phys Chem C 2009; 113(28): 12140-8. Available from: https://pubs.acs.org/doi/10.1021/jp901060v
[http://dx.doi.org/10.1021/jp901060v]
[100]
King CA, Shamshina JL, Zavgorodnya O, Cutfield T, Block LE, Rogers RD. Porous chitin microbeads for more sustainable cosmetics. ACS Sustain Chem& Eng 2017; 5(12): 11660-7. Available from: https://pubs.acs.org/doi/10.1021/acssuschemeng.7b03053
[http://dx.doi.org/10.1021/acssuschemeng.7b03053]
[101]
Shah CN, Shah DP. Microsponges: A revolutionary path breaking modified drug delivery of topical drugs. Int J Pharm Res 2014; 6(2): 1-3.
[102]
Kumar PM, Ghosh A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci 2017; 96: 243-54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928098716304213
[http://dx.doi.org/10.1016/j.ejps.2016.09.038] [PMID: 27697504]
[103]
Arya P, Pathak K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics. Int J Pharm 2014; 460(1-2): 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.045] [PMID: 24184218]
[104]
Kadhim ZM, Mahmood HS, Alaayedi M, Ghareeb MM. Formulation of flurbiprofen as microsponge drug delivery system Int J Pharm Res 2020; 12(3).
[105]
Singhvi G, Manchanda P, Hans N, Dubey SK, Gupta G. Microsponge: An emerging drug delivery strategy. Drug Dev Res 2019; 80(2): 200-8. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ddr.21492
[http://dx.doi.org/10.1002/ddr.21492] [PMID: 30456763]
[106]
Borawake PD, Kauslya A, Shinde JV, Chavan RS. Microsponge as an emerging technique in novel drug delivery system. J Drug Deliv Ther 2021; 11(1): 171-82.
[http://dx.doi.org/10.22270/jddt.v11i1.4492]
[107]
Ambikar RB, Bhosale AV. Formulation and evaluation of eudragit rl100 polymeric drug loaded microsponge for ophthalmic use. J Pharm Res Int 2021; 45-51. Available from: https://www.journaljpri.com/index.php/JPRI/article/view/31440
[http://dx.doi.org/10.9734/jpri/2021/v33i24B31440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy