Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Thymoquinone Attenuates Retinal Expression of Mediators and Markers of Neurodegeneration in a Diabetic Animal Model

Author(s): Khalid M. Alkharfy*, Ajaz Ahmad, Mohammad Mairaj Siddiquei, Mohammad Ghulam and Ahmed Abu El-Asrar

Volume 16, Issue 2, 2023

Published on: 06 April, 2022

Article ID: e130122200201 Pages: 9

DOI: 10.2174/1874467215666220113105300

Price: $65

conference banner
Abstract

Background: Diabetic retinopathy (DR) is a slow eye disease that affects the retina due to a long-standing uncontrolled diabetes mellitus. Hyperglycemia-induced oxidative stress can lead to neuronal damage leading to DR.

Objective: The aim of the current investigation is to assess the protective effects of thymoquinone (TQ) as a potential compound for the treatment and/or prevention of neurovascular complications of diabetes, including DR.

Methods: Diabetes was induced in rats by the administration of streptozotocin (55 mg/kg intraperitoneally, i.p.). Subsequently, diabetic rats were treated with either TQ (2 mg/kg i.p.) or vehicle on alternate days for three weeks. A healthy control group was also run in parallel. At the end of the treatment period, animals were euthanized, and the retinas were collected and analyzed for the expression levels of brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), nerve growth factor receptor (NGFR), and caspase-3 using Western blotting techniques in the retina of diabetic rats and compared with the normal control rats. In addition, dichlorofluorescein (DCF) levels in the retina were assessed as a marker of reactive oxygen species (ROS), and blood-retinal barrier breakdown (BRB) was examined for vascular permeability. The systemic effects of TQ treatments on glycemic control, kidney and liver functions were also assessed in all groups.

Results: Diabetic animals treated with TQ showed improvements in the liver and kidney functions compared with control diabetic rats. Normalization in the levels of neuroprotective factors, including BDNF, TH, and NGFR, was observed in the retina of diabetic rats treated with TQ. In addition, TQ ameliorated the levels of apoptosis regulatory protein caspase-3 in the retina of diabetic rats and reduced disruption of the blood-retinal barrier, possibly through a reduction in reactive oxygen species (ROS) generation.

Conclusion: These findings suggest that TQ harbors a significant potential to limit the neurodegeneration and retinal damage that can be provoked by hyperglycemia in vivo.

Keywords: Thymoquinone, diabetic retinopathy, oxidative stress, neurotrophic factor, apoptosis, retinal expression.

[1]
Diabetes around the world in 2021. IDF Diabetes Atlas, Available from: http://www.diabetesatlas.org/.
[2]
Al-Lawati, J.A. Diabetes mellitus: a local and global public health emergency! Oman Med. J., 2017, 32(3), 177-179.
[http://dx.doi.org/10.5001/omj.2017.34] [PMID: 28584596]
[3]
Bruno, G.; Picariello, R.; Petrelli, A.; Panero, F.; Costa, G.; Cavallo-Perin, P.; Demaria, M.; Gnavi, R. Direct costs in diabetic and non diabetic people: the population-based Turin study, Italy. Nutr. Metab. Cardiovasc. Dis., 2012, 22(8), 684-690.
[http://dx.doi.org/10.1016/j.numecd.2011.04.007] [PMID: 21907553]
[4]
Giorda, C.B.; Manicardi, V.; Diago Cabezudo, J. The impact of diabetes mellitus on healthcare costs in Italy. Expert Rev. Pharmacoecon. Outcomes Res., 2011, 11(6), 709-719.
[http://dx.doi.org/10.1586/erp.11.78] [PMID: 22098288]
[5]
Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther., 2008, 88(11), 1254-1264.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[6]
Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet, 2010, 376(9735), 124-136.
[http://dx.doi.org/10.1016/S0140-6736(09)62124-3] [PMID: 20580421]
[7]
Olivares, A.M.; Althoff, K.; Chen, G.F.; Wu, S.; Morrisson, M.A.; DeAngelis, M.M.; Haider, N. Animal models of diabetic retinopathy. Curr. Diab. Rep., 2017, 17(10), 93.
[http://dx.doi.org/10.1007/s11892-017-0913-0] [PMID: 28836097]
[8]
Sinclair, S.H.; Schwartz, S.S. Diabetic retinopathy-an underdiagnosed and undertreated inflammatory, neuro-vascular complication of diabetes. Front. Endocrinol. (Lausanne), 2019, 10, 843.
[http://dx.doi.org/10.3389/fendo.2019.00843] [PMID: 31920963]
[9]
Liew, G.; Klein, R.; Wong, T.Y. The role of genetics in susceptibility to diabetic retinopathy. Int. Ophthalmol. Clin., 2009, 49(2), 35-52.
[http://dx.doi.org/10.1097/IIO.0b013e31819fd5d7] [PMID: 19349785]
[10]
Cunha-Vaz, J. Characterization and relevance of different diabetic retinopathy phenotypes. Dev. Ophthalmol., 2007, 39, 13-30.
[http://dx.doi.org/10.1159/000098497] [PMID: 17245076]
[11]
Nentwich, M.M.; Ulbig, M.W. Diabetic retinopathy - ocular complications of diabetes mellitus. World J. Diabetes, 2015, 6(3), 489-499.
[http://dx.doi.org/10.4239/wjd.v6.i3.489] [PMID: 25897358]
[12]
Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med., 1994, 331(22), 1480-1487.
[http://dx.doi.org/10.1056/NEJM199412013312203] [PMID: 7526212]
[13]
Kizawa, J.; Machida, S.; Kobayashi, T.; Gotoh, Y.; Kurosaka, D. Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn. J. Ophthalmol., 2006, 50(4), 367-373.
[http://dx.doi.org/10.1007/s10384-006-0326-0] [PMID: 16897223]
[14]
Sasaki, M.; Ozawa, Y.; Kurihara, T.; Kubota, S.; Yuki, K.; Noda, K.; Kobayashi, S.; Ishida, S.; Tsubota, K. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia, 2010, 53(5), 971-979.
[http://dx.doi.org/10.1007/s00125-009-1655-6] [PMID: 20162412]
[15]
Anonymous The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann. Intern. Med., 1995, 122(8), 561-568.
[http://dx.doi.org/10.7326/0003-4819-122-8-199504150-00001] [PMID: 7887548]
[16]
Cameron, N.E.; Cotter, M.A.; Basso, M.; Hohman, T.C. Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia, 1997, 40(3), 271-281.
[http://dx.doi.org/10.1007/s001250050674] [PMID: 9084964]
[17]
Karachalias, N.; Babaei-Jadidi, R.; Ahmed, N.; Thornalley, P.J. Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochem. Soc. Trans., 2003, 31(Pt 6), 1423-1425.
[http://dx.doi.org/10.1042/bst0311423] [PMID: 14641079]
[18]
Gries, F.A. Alternative therapeutic principles in the prevention of microvascular and neuropathic complications. Diabetes Res. Clin. Pract., 1995, 28(Suppl.), S201-S207.
[http://dx.doi.org/10.1016/0168-8227(95)01071-K] [PMID: 8529515]
[19]
Vague, P.; Coste, T.C.; Jannot, M.F.; Raccah, D.; Tsimaratos, M. C-peptide, Na+,K(+)-ATPase, and diabetes. Exp. Diabesity Res., 2004, 5(1), 37-50.
[http://dx.doi.org/10.1080/15438600490424514] [PMID: 15198370]
[20]
Babaei-Jadidi, R.; Karachalias, N.; Ahmed, N.; Battah, S.; Thornalley, P.J. Prevention of incipient diabetic nephropathy by high- dose thiamine and benfotiamine. Diabetes, 2003, 52(8), 2110-2120.
[http://dx.doi.org/10.2337/diabetes.52.8.2110] [PMID: 12882930]
[21]
Ahmad, A.; Alkharfy, K.M.; Jan, B.L.; Ahad, A.; Ansari, M.A.; Al-Jenoobi, F.I.; Raish, M. Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis. Exp. Lung Res., 2020, 46(3-4), 53-63.
[http://dx.doi.org/10.1080/01902148.2020.1726529] [PMID: 32053036]
[22]
Ahmad, S.; Beg, Z.H. Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem., 2013, 138(2-3), 1116-1124.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.109] [PMID: 23411222]
[23]
Alkharfy, K.M.; Ahmad, A.; Jan, B.L.; Raish, M. Thymoquinone reduces mortality and suppresses early acute inflammatory markers of sepsis in a mouse model. Biomed. Pharmacother., 2018, 98, 801-805.
[http://dx.doi.org/10.1016/j.biopha.2018.01.028] [PMID: 29571249]
[24]
Alkharfy, K.M.; Ahmad, A.; Raish, M.; Vanhoutte, P.M. Thymoquinone modulates nitric oxide production and improves organ dysfunction of sepsis. Life Sci., 2015, 143, 131-138.
[http://dx.doi.org/10.1016/j.lfs.2015.08.007] [PMID: 26285172]
[25]
Raish, M.; Ahmad, A.; Jan, B.L.; Alkharfy, K.M.; Mohsin, K.; Ahamad, S.R.; Ansari, M.A. GC-MS-based metabolomic profiling of thymoquinone in streptozotocin-induced diabetic nephropathy in rats. Nat. Prod. Commun., 2017, 12(4), 553-558.
[http://dx.doi.org/10.1177/1934578X1701200423] [PMID: 30520595]
[26]
Chen, L.; Li, B.; Chen, B.; Shao, Y.; Luo, Q.; Shi, X.; Chen, Y. Thymoquinone alleviates the experimental diabetic peripheral neuropathy by modulation of inflammation. Sci. Rep., 2016, 6, 31656-31656.
[http://dx.doi.org/10.1038/srep31656] [PMID: 27545310]
[27]
Kalam, M.A.; Raish, M.; Ahmed, A.; Alkharfy, K.M.; Mohsin, K.; Alshamsan, A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M.; Shakeel, F. Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system. Mater. Sci. Eng. C, 2017, 76, 319-329.
[http://dx.doi.org/10.1016/j.msec.2017.03.088] [PMID: 28482534]
[28]
Woo, C.C.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem. Pharmacol., 2012, 83(4), 443-451.
[http://dx.doi.org/10.1016/j.bcp.2011.09.029] [PMID: 22005518]
[29]
Ebrahimi, S.S.; Oryan, S.; Izadpanah, E.; Hassanzadeh, K. Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol. Lett., 2017, 276, 108-114.
[http://dx.doi.org/10.1016/j.toxlet.2017.05.018] [PMID: 28526446]
[30]
Dasari, B.; Prasanthi, J.R.; Marwarha, G.; Singh, B.B.; Ghribi, O. Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina. BMC Ophthalmol., 2011, 11, 22-22.
[http://dx.doi.org/10.1186/1471-2415-11-22] [PMID: 21851605]
[31]
Ishida, S.; Usui, T.; Yamashiro, K.; Kaji, Y.; Ahmed, E.; Carrasquillo, K.G.; Amano, S.; Hida, T.; Oguchi, Y.; Adamis, A.P. VEGF164 is proinflammatory in the diabetic retina. Invest. Ophthalmol. Vis. Sci., 2003, 44(5), 2155-2162.
[http://dx.doi.org/10.1167/iovs.02-0807] [PMID: 12714656]
[32]
Muranaka, K.; Yanagi, Y.; Tamaki, Y.; Usui, T.; Kubota, N.; Iriyama, A.; Terauchi, Y.; Kadowaki, T.; Araie, M. Effects of peroxisome proliferator-activated receptor gamma and its ligand on blood-retinal barrier in a streptozotocin-induced diabetic model. Invest. Ophthalmol. Vis. Sci., 2006, 47(10), 4547-4552.
[http://dx.doi.org/10.1167/iovs.05-1432] [PMID: 17003451]
[33]
Barber, A.J.; Lieth, E.; Khin, S.A.; Antonetti, D.A.; Buchanan, A.G.; Gardner, T.W. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest., 1998, 102(4), 783-791.
[http://dx.doi.org/10.1172/JCI2425] [PMID: 9710447]
[34]
Lieth, E.; Gardner, T.W.; Barber, A.J.; Antonetti, D.A. Retinal neurodegeneration: early pathology in diabetes. Clin. Exp. Ophthalmol., 2000, 28(1), 3-8.
[http://dx.doi.org/10.1046/j.1442-9071.2000.00222.x] [PMID: 11345341]
[35]
Barber, A.J.; Gardner, T.W.; Abcouwer, S.F. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2011, 52(2), 1156-1163.
[http://dx.doi.org/10.1167/iovs.10-6293] [PMID: 21357409]
[36]
Obrosova, I.G.; Fathallah, L.; Greene, D.A. Early changes in lipid peroxidation and antioxidative defense in diabetic rat retina: effect of DL-α-lipoic acid. Eur. J. Pharmacol., 2000, 398(1), 139-146.
[http://dx.doi.org/10.1016/S0014-2999(00)00286-7] [PMID: 10856458]
[37]
Carpi-Santos, R.; Maggesissi, R.S.; von Seehausen, M.P.; Calaza, K.C. Retinal exposure to high glucose condition modifies the GABAergic system: Regulation by nitric oxide. Exp. Eye Res., 2017, 162, 116-125.
[http://dx.doi.org/10.1016/j.exer.2017.07.010] [PMID: 28734674]
[38]
Zhong, Q.; Kowluru, R.A. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes, 2011, 60(4), 1304-1313.
[http://dx.doi.org/10.2337/db10-0133] [PMID: 21357467]
[39]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[40]
Ma, M.W.; Wang, J.; Zhang, Q.; Wang, R.; Dhandapani, K.M.; Vadlamudi, R.K.; Brann, D.W. NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener., 2017, 12(1), 7-7.
[http://dx.doi.org/10.1186/s13024-017-0150-7] [PMID: 28095923]
[41]
Khan, N.; Sultana, S. Inhibition of two stage renal carcinogenesis, oxidative damage and hyperproliferative response by Nigella sativa. Eur. J. Cancer Prev., 2005, 14(2), 159-168.
[http://dx.doi.org/10.1097/00008469-200504000-00012] [PMID: 15785320]
[42]
Hosseinzadeh, H.; Parvardeh, S.; Asl, M.N.; Sadeghnia, H.R.; Ziaee, T. Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine, 2007, 14(9), 621-627.
[http://dx.doi.org/10.1016/j.phymed.2006.12.005] [PMID: 17291733]
[43]
Harzallah, H.J.; Grayaa, R.; Kharoubi, W.; Maaloul, A.; Hammami, M.; Mahjoub, T. Thymoquinone, the Nigella sativa bioactive compound, prevents circulatory oxidative stress caused by 1,2-dimethylhydrazine in erythrocyte during colon postinitiation carcinogenesis. Oxid. Med. Cell. Longev., 2012, 2012, 854065-854065.
[http://dx.doi.org/10.1155/2012/854065] [PMID: 22570743]
[44]
Mariod, A.A.; Ibrahim, R.M.; Ismail, M.; Ismail, N. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chem., 2009, 116(1), 306-312.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.051]
[45]
Verge, V.M.K.; Andreassen, C.S.; Arnason, T.G.; Andersen, H. Mechanisms of disease. Diabetes and the Nervous System; Elsevier, 2014.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00032-1]
[46]
Leibrock, J.; Lottspeich, F.; Hohn, A.; Hofer, M.; Hengerer, B.; Masiakowski, P.; Thoenen, H.; Barde, Y-A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature, 1989, 341(6238), 149-152.
[http://dx.doi.org/10.1038/341149a0] [PMID: 2779653]
[47]
Barde, Y-A. The nerve growth factor family. Prog. Growth Factor Res., 1990, 2(4), 237-248.
[http://dx.doi.org/10.1016/0955-2235(90)90021-B] [PMID: 2133291]
[48]
Fujinami, A.; Ohta, K.; Obayashi, H.; Fukui, M.; Hasegawa, G.; Nakamura, N.; Kozai, H.; Imai, S.; Ohta, M. Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: Relationship to glucose metabolism and biomarkers of insulin resistance. Clin. Biochem., 2008, 41(10-11), 812-817.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.03.003] [PMID: 18402781]
[49]
Krabbe, K.S.; Nielsen, A.R.; Krogh-Madsen, R.; Plomgaard, P.; Rasmussen, P.; Erikstrup, C.; Fischer, C.P.; Lindegaard, B.; Petersen, A.M.W.; Taudorf, S.; Secher, N.H.; Pilegaard, H.; Bruunsgaard, H.; Pedersen, B.K. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia, 2007, 50(2), 431-438.
[http://dx.doi.org/10.1007/s00125-006-0537-4] [PMID: 17151862]
[50]
Kumari, S.; Namdeo, P.K.; Shubhra, A.; Tiwari, A. Epigenetic modification through acetylation in bdnf gene & potential new treatment targets in type 2 diabetic retinopathy. IJIRSET, 2018, 7, 1508-1515.
[51]
Behl, T.; Kotwani, A. Downregulated brain-derived neurotrophic factor-induced oxidative stress in the pathophysiology of diabetic retinopathy. Can. J. Diabetes, 2017, 41(2), 241-246.
[http://dx.doi.org/10.1016/j.jcjd.2016.08.228] [PMID: 27913110]
[52]
Fernyhough, P.; Huang, T-J.; Verkhratsky, A. Mechanism of mitochondrial dysfunction in diabetic sensory neuropathy. J. Peripher. Nerv. Syst., 2003, 8(4), 227-235.
[http://dx.doi.org/10.1111/j.1085-9489.2003.03028.x] [PMID: 14641647]
[53]
Boutahar, N.; Reynaud, E.; Lassabliere, F.; Borg, J. Brain-derived neurotrophic factor inhibits cell cycle reentry but not endoplasmic reticulum stress in cultured neurons following oxidative or excitotoxic stress. J. Neurosci. Res., 2010, 88(10), 2263-2271.
[http://dx.doi.org/10.1002/jnr.22384] [PMID: 20209632]
[54]
Seki, M.; Nawa, H.; Fukuchi, T.; Abe, H.; Takei, N. BDNF is upregulated by postnatal development and visual experience: quantitative and immunohistochemical analyses of BDNF in the rat retina. Invest. Ophthalmol. Vis. Sci., 2003, 44(7), 3211-3218.
[http://dx.doi.org/10.1167/iovs.02-1089] [PMID: 12824273]
[55]
Mey, J.; Thanos, S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo . Brain Res., 1993, 602(2), 304-317.
[http://dx.doi.org/10.1016/0006-8993(93)90695-J] [PMID: 8448673]
[56]
Pinzón-Duarte, G.; Arango-González, B.; Guenther, E.; Kohler, K. Effects of brain-derived neurotrophic factor on cell survival, differentiation and patterning of neuronal connections and Müller glia cells in the developing retina. Eur. J. Neurosci., 2004, 19(6), 1475-1484.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03252.x] [PMID: 15066144]
[57]
Nishimura, C.; Kuriyama, K. Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes. J. Neurochem., 1985, 45(2), 448-455.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb04008.x] [PMID: 3925083]
[58]
Northington, F.K.; Hamill, R.W.; Banerjee, S.P. Dopamine-stimulated adenylate cyclase and tyrosine hydroxylase in diabetic rat retina. Brain Res., 1985, 337(1), 151-154.
[http://dx.doi.org/10.1016/0006-8993(85)91621-X] [PMID: 2860952]
[59]
Fernstrom, M.H.; Volk, E.A.; Fernstrom, J.D.; Iuvone, P.M. Effect of tyrosine administration on dopa accumulation in light- and dark-adapted retinas from normal and diabetic rats. Life Sci., 1986, 39(22), 2049-2057.
[http://dx.doi.org/10.1016/0024-3205(86)90355-3] [PMID: 2878335]
[60]
Shirao, Y.; Kawasaki, K. Electrical responses from diabetic retina. Prog. Retin. Eye Res., 1998, 17(1), 59-76.
[http://dx.doi.org/10.1016/S1350-9462(97)00005-0] [PMID: 9537795]
[61]
Carrasco, E.; Hernández, C.; Miralles, A.; Huguet, P.; Farrés, J.; Simó, R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care, 2007, 30(11), 2902-2908.
[http://dx.doi.org/10.2337/dc07-0332] [PMID: 17704349]
[62]
Mohr, S.; Xi, X.; Tang, J.; Kern, T.S. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes, 2002, 51(4), 1172-1179.
[http://dx.doi.org/10.2337/diabetes.51.4.1172] [PMID: 11916941]
[63]
Al-Dosari, D.I.; Ahmed, M.M.; Al-Rejaie, S.S.; Alhomida, A.S.; Ola, M.S. Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients, 2017, 9(10), 1161.
[http://dx.doi.org/10.3390/nu9101161] [PMID: 29064407]
[64]
Navaratna, D.; Guo, S-Z.; Hayakawa, K.; Wang, X.; Gerhardinger, C.; Lo, E.H. Decreased cerebrovascular brain-derived neurotrophic factor-mediated neuroprotection in the diabetic brain. Diabetes, 2011, 60(6), 1789-1796.
[http://dx.doi.org/10.2337/db10-1371] [PMID: 21562076]
[65]
Li, Z.G.; Zhang, W.; Sima, A.A.F. The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res., 2005, 1037(1-2), 12-24.
[http://dx.doi.org/10.1016/j.brainres.2004.11.063] [PMID: 15777748]
[66]
Sposato, V.; Manni, L.; Chaldakov, G.N.; Aloe, L. Streptozotocin-induced diabetes is associated with changes in NGF levels in pancreas and brain. Arch. Ital. Biol., 2007, 145(2), 87-97.
[PMID: 17639781]
[67]
Xu, S.L.; Bi, C.W.C.; Choi, R.C.Y.; Zhu, K.Y.; Miernisha, A.; Dong, T.T.X.; Tsim, K.W.K. Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid. Based Complement. Alternat. Med., 2013, 2013, 127075-127075.
[http://dx.doi.org/10.1155/2013/127075] [PMID: 23878590]
[68]
De Nicoló, S.; Tarani, L.; Ceccanti, M.; Maldini, M.; Natella, F.; Vania, A.; Chaldakov, G.N.; Fiore, M. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition, 2013, 29(4), 681-687.
[http://dx.doi.org/10.1016/j.nut.2012.11.007] [PMID: 23466052]
[69]
Moss, S.E.; Klein, R.; Klein, B.E.K. The incidence of vision loss in a diabetic population. Ophthalmology, 1988, 95(10), 1340-1348.
[http://dx.doi.org/10.1016/S0161-6420(88)32991-X] [PMID: 3265775]
[70]
Mehta, D.; Malik, A.B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev., 2006, 86(1), 279-367.
[http://dx.doi.org/10.1152/physrev.00012.2005] [PMID: 16371600]
[71]
Harhaj, N.S.; Antonetti, D.A. Regulation of tight junctions and loss of barrier function in pathophysiology. Int. J. Biochem. Cell Biol., 2004, 36(7), 1206-1237.
[http://dx.doi.org/10.1016/j.biocel.2003.08.007] [PMID: 15109567]
[72]
Barber, A.J. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(2), 283-290.
[http://dx.doi.org/10.1016/S0278-5846(03)00023-X] [PMID: 12657367]
[73]
Kusari, J.; Zhou, S.X.; Padillo, E.; Clarke, K.G.; Gil, D.W. Inhibition of vitreoretinal VEGF elevation and blood-retinal barrier breakdown in streptozotocin-induced diabetic rats by brimonidine. Invest. Ophthalmol. Vis. Sci., 2010, 51(2), 1044-1051.
[http://dx.doi.org/10.1167/iovs.08-3293] [PMID: 19710406]
[74]
Zhang, S.X.; Ma, J-X.; Sima, J.; Chen, Y.; Hu, M.S.; Ottlecz, A.; Lambrou, G.N. Genetic difference in susceptibility to the blood-retina barrier breakdown in diabetes and oxygen-induced retinopathy. Am. J. Pathol., 2005, 166(1), 313-321.
[http://dx.doi.org/10.1016/S0002-9440(10)62255-9] [PMID: 15632023]
[75]
Qaum, T.; Xu, Q.; Joussen, A.M.; Clemens, M.W.; Qin, W.; Miyamoto, K.; Hassessian, H.; Wiegand, S.J.; Rudge, J.; Yancopoulos, G.D.; Adamis, A.P. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest. Ophthalmol. Vis. Sci., 2001, 42(10), 2408-2413.
[PMID: 11527957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy