Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Synthesis and Antimicrobial Activity of Functional Derivatives of thiazolo[ 2,3-c][1,2,4]triazoles

Author(s): Mikhailo Slivka*, Maksym Fizer, Ruslan Mariychuk, Marek Ostafin, Olexander Moyzesh, Galyna Koval, Oksana Holovko-Kamoshenkova, Ivan Rusyn and Vasyl Lendel

Volume 19, Issue 9, 2022

Published on: 01 February, 2022

Page: [791 - 799] Pages: 9

DOI: 10.2174/1570180819666220110145659

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Condensed triazoles are a well-known class of heterocyclic compounds due to a wide range of biological activities. The study is dedicated to the evaluation of the antimicrobial potential of new functional derivatives of thiazolo[2,3-c][1,2,4]triazoles.

Methods: Effective, easy-to-implement and low-cost routes for production of title compounds via electrophilic intramolecular heterocyclization are reported. Bactericidal and fungicidal activities against Gram-positive and Gram-negative bacteria and fungus were studied. The influence of functional groups on the biological activity of tested thiazolo[2,3-c][1,2,4]triazoles is discussed.

Results: Microbiological evaluation shows that 6-[(trichlorotellanyl)methyl]-[1,3]thiazolo[2,3- c][1,2,4]triazol-3-amine hydrogen chloride 2a and 3-(2-hydroxyphenyl)-6-[(trichloro-λ4-tellanyl)methyl]- 5,6-dihydro-[1,3]thiazolo[2,3-c][1,2,4]triazole 2g have a high bactericidal activity and Cu (I) salts of 3-(2- hydroxyphenyl)-6-iodomethyl/6-methylidene-5,6-dihydro-[1,3]thiazolo-[2,3-c][1,2,4]triazoles 5a,c have a high fungicidal activity.

Conclusion: It is concluded that these products or their derivatives may be of practical benefit as bactericidal and fungicidal agents.

Keywords: Thiazolo[2, 3-c][1, 2, 4]triazole, electrophilic heterocyclization, tellurium tetrachloride, tellurium tetrabromide, copper salt, fungicidal and bactericidal activities.

Graphical Abstract
[1]
(a) Oukoloff, K.; Lucero, B.; Francisco, K.R.; Brunden, K.R.; Ballatore, C. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design. Eur. J. Med. Chem., 2019, 165, 332-346.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.027] [PMID: 30703745]
(b) Singh, P.K.; Choudhary, S.; Kashyap, A.; Verma, H.; Kapil, S.; Kumar, M.; Arora, M.; Silakari, O. An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades. Bioorg. Chem., 2019, 88, 102919-102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102919] [PMID: 31026721]
(c) Slivka, M.V.; Korol, N.I.; Fizer, M.M. Fused bicyclic 1,2,4-triazoles with one extra sulfur atom: Synthesis, properties, and biological activity. J. Heterocycl. Chem., 2020, 57(9), 3236-3254.
[http://dx.doi.org/10.1002/jhet.4044]
(d) Fischer, G. Recent progress in 1,2,4-Triazolo[1,5-a]pyrimidine chemistry In: Advanced Heterocyclic Chemistry; A. R. Katritzky, Ed.;. Academic Press, Inc., London, 2007, pp. 143-219.
(e) Charitos, G.; Trafalis, D.T.; Dalezi, P.; Potamitis, C.; Sarli, V.; Zoumpoulakis, P.; Camoutsis, C. Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. Arab. J. Chem., 2019, 12, 4784-4794.
[http://dx.doi.org/10.1016/j.arabjc.2016.09.015]
[2]
(a) Cristina, A.; Leonte, D.; Vlase, L.; Bencze, L.C.; Imre, S.; Zaharia, V. Heterocycles 42. synthesis and characterization of new thia-zolo[3,2-b][1,2,4]triazole derivatives with anti-inflammatory potential. Farmacia, 2018, 66(1), 88-96.https://farmaciajournal.com/wp-content/uploads/2018-01-art-12-Cristina_Zaharia_88-96.pdf
(b) Toma, A. Mogoşan, C.; Vlase, L.; Leonte, D.; Zaharia, V. Heterocycles 39. Synthesis, characterization and evaluation of the anti-inflammatory activity of thiazolo[3,2-b][1,2,4]triazole derivatives bearing pyridin-3/4-yl moiety. Med. Chem. Res., 2017, 26(10), 2602-2613.
[http://dx.doi.org/10.1007/s00044-017-1959-x]
(c) Tozkoparan, B.; Aytaç, S. Gürsoy, Ş. Aktay, G. Design and synthesis of some thiazolotriazolyl esters as anti-inflammatory and anal-gesic agents. Med. Chem. Res., 2012, 21(2), 192-201.
[http://dx.doi.org/10.1007/s00044-010-9508-x]
[3]
(a) Naseer, Md. A.; Husain, A. studies on chromene based 2, 6-disubstituted-thiazolo[3,2-b][1,2,4]triazole derivatives: Synthesis and biological evaluation. JDDT, 2019, 9, 236-242.
[http://dx.doi.org/10.22270/jddt.v9i3-s.3005]
(b) Sarigol, D.; Uzgoren-Baran, A.; Tel, B.C.; Somuncuoglu, E.I.; Kazkayasi, I.; Ozadali-Sari, K.; Unsal-Tan, O.; Okay, G.; Ertan, M.; To-zkoparan, B. Novel thiazolo[3,2-b]-1,2,4-triazoles derived from naproxen with analgesic/anti-inflammatory properties: Synthesis, biologi-cal evaluation and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(10), 2518-2528.
[http://dx.doi.org/10.1016/j.bmc.2015.03.049] [PMID: 25868745]
[4]
(a) Cristina, A.; Leonte, D.; Vlase, L.; Bencze, L.C.; Imre, S.; Apan, B. Mogoșan, C.; Zaharia, V. Heterocycles 46. synthesis, characteriza-tion and biological evaluation of thiazolo[3,2-b][1,2,4]triazoles bearing benzenesulfonamide moiety. Farmacia, 2018, 66(5), 883-893.
[http://dx.doi.org/10.31925/farmacia.2018.5.20]
(b) Saundane, A.; Manjunatha, Y. Synthesis, antimicrobial and antioxidant activities of 2-oxo-6-phenyl-2-yl-4-(2′-phenyl- 5′-substituted 1H-indol-3′-yl)-1,2-dihydro pyridin-3-carbonitriles and their derivatives. Arab. J. Chem., 2016, 9, S501-S509.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.011]
[5]
El Bakali, J.; Klupsch, F.; Guédin, A.; Brassart, B.; Fontaine, G.; Farce, A.; Roussel, P.; Houssin, R.; Bernier, J.L.; Chavatte, P.; Mergny, J.L.; Riou, J.F.; Hénichart, J.P. 2,6-Diphenylthiazolo[3,2-b][1,2,4]triazoles as telomeric G-quadruplex stabilizers. Bioorg. Med. Chem. Lett., 2009, 19(13), 3434-3438.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.025] [PMID: 19473838]
[6]
Khan, I.; Khan, A.; Ahsan Halim, S.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. Int. J. Biol. Macromol., 2020, 142(1), 345-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.105] [PMID: 31593727]
[7]
(a) Barbuceanu, S.F.; Draghici, C.; Barbuceanu, F.; Bancescu, G.; Saramet, G. Design, synthesis, characterization and antimicrobial evalua-tion of some heterocyclic condensed systems with bridgehead nitrogen from thiazolotriazole class. Chem. Pharm. Bull., 2015, 63(9), 694-700.
[http://dx.doi.org/10.1248/cpb.c15-00379] [PMID: 26329862]
(b) Kumar, P.; Kumar, A.; Makrandi, J. Synthesis and evaluation of bioactivity of thiazolo[3,2-b]-[1,2,4]-triazoles and isomeric thia-zolo[2,3-c]-[1,2,4]-triazoles. J. Heterocycl. Chem., 2013, 50, 1223-1229.
[http://dx.doi.org/10.1002/jhet.1600]
(c) Komal, J.; Makrandi, J.K. A green synthesis and antibacterial activity of 2-aryl-5-(coumarin-3-yl)-thiazolo [3,2-b][1,2,4]triazoles. Indian J. Chem., 2012, 51B, 1511-1516. http://nopr.niscair.res.in/handle/123456789/14808
(d) Tratat, C.; Haroun, M.; Paparisva, A.; Geronikaki, A.; Kamoutsis, Ch.; Ciric, A.; Glamoclija, J.; Sokovic, M.; Fotakis, Ch.; Zoumpou-lakis, P.; Bhunia, S.S.; Saxena, A.K. Design, synthesis and biological evaluation of new substituted 5-benzylideno-2-adamantylthiazol[3,2-b][1,2,4]triazol-6(5H)ones. Pharmacophore models for antifungal activity. Arab. J. Chem., 2018, 11, 573-590.
[http://dx.doi.org/10.1016/j.arabjc.2016.06.007]
(e) El-Sherief, H.; Hozien, Z.; El-Mahdy, A.; Sarhan, A. One pot synthesis and reactions of novel 5-amino[1,3]thiazolo[3,2-b][1,2,4]triazoles. ARKIVOC, 2011, 2011, 71-84.
[http://dx.doi.org/10.3998/ark.5550190.0012.a06]
(f) Lobo, P.L.; Poojary, B.; Kumsi, M.; Kumari, N.S. Synthesis and antimicrobial evaluation of some new 2-(6-oxo-5,6- dihy-dro[1,3]thiazolo[3,2-b]-2-aryloxymethyl-1,2,4-triazol-5-yl)-narylacetamides. Naturforsch, 2010, 65B, 617-624.
[http://dx.doi.org/10.1515/znb-2010-0512]
(g) Slivka, M.; Korol, N.; Pantyo, V.; Baumer, V.; Lendel, V. Regio- and stereoselective synthesis of [1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium salts via electrophilic heterocyclization of 3-S-propargylthio-4H-1,2,4-triazoles and their antimicrobial activity. Heterocycl. Commun., 2017, 23, 109-113.
[http://dx.doi.org/10.1515/hc-2016-0233]
[8]
Korol, N.I.; Slivka, M.V. Recent progress in the synthesis of thiazolo[3,2-b][1,2,4]triazoles (microreview). Chem. Heterocycl. Compd., 2017, 53, 852-854.
[http://dx.doi.org/10.1007/s10593-017-2136-3]
[9]
(a) Fizer, M.M.; Slivka, M.V.; Lendel, V.G. Peculiarities of 4-methallyl-5-methallylamino-1,2,4-triazole-3-thione halogenation. Chem. Heterocycl. Compd., 2019, 55, 478-480.
[http://dx.doi.org/10.1007/s10593-019-02484-8]
(b) Fizer, M.; Slivka, M.; Fizer, O. Selective bromocyclization of 5-amino-4-alkenyl-1,2,4-triazole-3-thione. BRIAC, 2022, 12(1), 498-507.
[http://dx.doi.org/10.33263/BRIAC121.498507]
(c) Kochikyan, T.V.; Samvelyan, M.A.; Petrosyan, A.M.; Langer, P.D. Synthesis and properties of thiazolo[2,3-c][1,2,4]triazoles. Russ. J. Org. Chem., 2015, 51, 1469-1473.
[http://dx.doi.org/10.1134/S1070428015100206]
[10]
(a) Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[http://dx.doi.org/10.1021/cr100214d] [PMID: 21425870]
(b) Wirth, T.; Mizar, P. Iodoaminations of alkenes. Synthesis, 2017, 49(05), 981-986.
[http://dx.doi.org/10.1055/s-0036-1588630]
(c) Andrade, V.S.; Mattos, M.C. N-Halo reagents: Modern synthetic approaches for heterocyclic synthesis. Synthesis, 2019, 51(09), 1841-1870.
[http://dx.doi.org/10.1055/s-0037-1611746]
(d) Slivka, M.; Onysko, M. The use of electrophilic cyclization for the preparation of condensed heterocycles. Synthesis, 2021, 53.
[http://dx.doi.org/10.1055/s-0040-1706036]
[11]
(a) Khripak, S.M. Synthesizes and reactions of thieno[2,3- d]pyrimidines. Dc.Sc. Thesis; Kyiv State University: Kyiv, 1991.
(b) Karakurt, T.; Dinçer, M.; Cetin, A.; Sekerci, M. Molecular structure and vibrational bands and chemical shift assignments of 4-allyl-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione by DFT and ab initio HF calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 77(1), 189-198.
[http://dx.doi.org/10.1016/j.saa.2010.05.006] [PMID: 20542728]
(c) Fizer, M.; Slivka, M.; Rusanov, E.; Turov, A.; Lendel, V. [1,3]Thiazolo[2′3′3,4][1,2,4]triazolo[1,5-a]pyrimidines – A new heterocy-clic system accessed via bromocyclization. J. Heterocycl. Chem., 2015, 52(3), 949-952.
[http://dx.doi.org/10.1002/jhet.2073]
[12]
Murray, P.R.; Baron, E.J.; Pfaller, M.A.; Tenover, F.C.; Yolken, R.H.G.L. Manual of Clinical Microbiology; Wood, J.A., Ed.; Am. Soc. Microbiol: Washington, DC, 1995, pp. 77-124.
[13]
(a) Sabti, A.B.; Al-Fregi, A.A.; Yousif, M.Y. Synthesis and antimicrobial evaluation of some new organic tellurium compounds based on pyrazole derivatives. Molecules, 2020, 25(15), 3439-3456.
[http://dx.doi.org/10.3390/molecules25153439] [PMID: 32751090]
(b) Al-Fregi, A.A.; Al-Salami, B.K.; Al-Khazragie, Z.K.; Al-Rubaie, A.Z. Synthesis, characterization and antibacterial studies of some new tellurated azo compounds. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 33-38.
[http://dx.doi.org/10.1080/10426507.2018.1470179]
(c) Halpert, G.; Halperin Sheinfeld, M.; Monteran, L.; Sharif, K.; Volkov, A.; Nadler, R.; Schlesinger, A.; Barshak, I.; Kalechman, Y.; Blank, M.; Shoenfeld, Y.; Amital, H. The tellurium-based immunomodulator, AS101 ameliorates adjuvant-induced arthritis in rats. Clin. Exp. Immunol., 2021, 203(3), 375-384.
[http://dx.doi.org/10.1111/cei.13553] [PMID: 33205391]
(d) Cabrera, N.; Mora, J.R.; Márquez, E.; Flores-Morales, V.; Calle, L.; Cortés, E. QSAR and molecular docking modelling of anti-leishmanial activities of organic selenium and tellurium compounds. SAR QSAR Environ. Res., 2021, 32(1), 29-50.
[http://dx.doi.org/10.1080/1062936X.2020.1848914] [PMID: 33241943]
[14]
(a) Batt, C.A.; Tortorello, M. Encyclopedia of food microbiology, 2nd ed; Elsevier Ltd.: London, 2014.
(b) Marchenko, A.B. Geographical distribution of the genus Alternaria Nees on annual flower and ornamental plants. Chornomors’k. Bot. Z., 2015, 11, 338-345.
[http://dx.doi.org/10.14255/2308-9628/15.113/7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy