Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Natural Immunity Boosters as Therapeutic Interventions in the Era of the COVID-19 Pandemic

Author(s): Sibgha Noureen, Kanwal Rehman and Muhammad Sajid Hamid Akash*

Volume 22, Issue 8, 2022

Published on: 31 May, 2022

Page: [842 - 851] Pages: 10

DOI: 10.2174/1871530322666220110113028

Price: $65

Abstract

COVID-19, a pandemic caused by SARS-CoV-2, has been spread all over the world and is responsible for serious fatalities. SARS-CoV-2 belongs to the family of β-coronavirus that affects pulmonary gas exchange and triggers cytokines storm. Vigorous inflammation, hyper-coagulation, a decrease in the lymphocytic count, and an increase in the neutrophilic count are observed in the second week after the onset of the disease. Fever, dry cough, sneezing, shortness of breath, and respiratory distress are the symptoms of COVID-19. The use of sanitizers, social distancing, vaccination, wearing gloves and face masks, and other preventative measures are all important in preventing coronavirus outbreaks. People with weak immunity are more susceptible to coronavirus. Various natural immunity boosters are known for their immune boosting properties; among them are vitamin C, D, and B complex, medicinal mushrooms, plant-based stuff, and minerals play important roles by increasing the beneficial flora of the human body. All these natural immunity boosters improve the innate and adaptive immune response against coronavirus. Hence, we conclude that the use of natural immunity boosters prevents the attack of coronavirus and makes a person stronger against the suspected attack of COVID-19 and/or other viral diseases.

Keywords: COVID-19, immune system, SARS-CoV2, immunity boosters, antivirals, vitamins, natural immunity booster.

Graphical Abstract
[1]
Singh, N.A.; Kumar, P. Jyoti.; Kumar, N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. Phytother. Res., 2021, 35(5), 2745-2757.
[http://dx.doi.org/10.1002/ptr.7019] [PMID: 33511704]
[2]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Gangal, N. Reconsidering traditional medicinal plants to combat COVID-19. AIJR Preprints, 2020, 1-6.
[4]
Marion, T.N.; Krishnan, M.R.; Desai, D.D.; Jou, N.T.; Tillman, D.M. Monoclonal anti-DNA antibodies: structure, specificity, and biology. Methods, 1997, 11(1), 3-11.
[http://dx.doi.org/10.1006/meth.1996.0381] [PMID: 8990083]
[5]
Arshad, M.S.; Khan, U.; Sadiq, A.; Khalid, W.; Hussain, M.; Yasmeen, A.; Asghar, Z.; Rehana, H. Coronavirus Disease (COVID-19) and immunity booster green foods: a mini review. Food Sci. Nutr., 2020, 8(8), 3971-3976.
[http://dx.doi.org/10.1002/fsn3.1719] [PMID: 32837716]
[6]
Kumar, P.; Kumar, M.; Bedi, O.; Gupta, M.; Kumar, S.; Jaiswal, G.; Rahi, V.; Yedke, N.G.; Bijalwan, A.; Sharma, S.; Jamwal, S. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology, 2021, 29(4), 1001-1016.
[http://dx.doi.org/10.1007/s10787-021-00826-7] [PMID: 34110533]
[7]
Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol., 2020, 215, 108427.
[http://dx.doi.org/10.1016/j.clim.2020.108427] [PMID: 32325252]
[8]
He, Y.; Wang, J.; Li, F.; Shi, Y. Main clinical features of Covid-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 infections. Front. Microbiol., 2020, 11, 1302.
[http://dx.doi.org/10.3389/fmicb.2020.01302] [PMID: 32582134]
[9]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.; Rottier, P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[10]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[11]
Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, 5(4), 562-569.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[12]
Choudhary, S.; Sreenivasulu, K.; Mitra, P.; Misra, S.; Sharma, P. Role of genetic variants and gene expression in the susceptibility and severity of Covid-19. Ann. Lab. Med., 2021, 41(2), 129-138.
[http://dx.doi.org/10.3343/alm.2021.41.2.129] [PMID: 33063674]
[13]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[14]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[15]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[16]
Lauring, A.S.; Hodcroft, E.B. Genetic variants of SARS-CoV-2-what do they mean? JAMA, 2021, 325(6), 529-531.
[http://dx.doi.org/10.1001/jama.2020.27124] [PMID: 33404586]
[17]
Lai, M.M.; Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res., 1997, 48, 1-100.
[http://dx.doi.org/10.1016/S0065-3527(08)60286-9] [PMID: 9233431]
[18]
Yang, N.; Shen, H.M. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int. J. Biol. Sci., 2020, 16(10), 1724-1731.
[http://dx.doi.org/10.7150/ijbs.45498] [PMID: 32226290]
[19]
Parasher, A. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad. Med. J., 2021, 97(1147), 312-320.
[http://dx.doi.org/10.1136/postgradmedj-2020-138577] [PMID: 32978337]
[20]
Cascella, M. Features, Evaluation, and Treatment of Coronavirus (COVID. StatPearls Publishing LLC: Treasure Island (FL) , 2021.
[21]
Cheng, Y. Kidney impairment is associated with in-hospital death of COVID-19 patients. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.18.20023242]
[22]
Guan, G. Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia. Chinese J. Hepatol., 2020, 28(2), E002.
[23]
Wang, D. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585]
[24]
Cao, W.; Li, T. COVID-19: towards understanding of pathogenesis. Cell Res., 2020, 30(5), 367-369.
[http://dx.doi.org/10.1038/s41422-020-0327-4] [PMID: 32346073]
[25]
Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol. Sin., 2020, 35(3), 266-271.
[http://dx.doi.org/10.1007/s12250-020-00207-4] [PMID: 32125642]
[26]
Tetro, J.A. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect., 2020, 22(2), 72-73.
[http://dx.doi.org/10.1016/j.micinf.2020.02.006] [PMID: 32092539]
[27]
Haga, S.; Yamamoto, N.; Nakai-Murakami, C.; Osawa, Y.; Tokunaga, K.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc. Natl. Acad. Sci. USA, 2008, 105(22), 7809-7814.
[http://dx.doi.org/10.1073/pnas.0711241105] [PMID: 18490652]
[28]
Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health, 2020, 17(5), 1729.
[http://dx.doi.org/10.3390/ijerph17051729] [PMID: 32155789]
[29]
Beiu, C. Frequent hand washing for Covid-19 prevention can cause hand dermatitis: management tips. Cureus, 2020, 12(4), e7506.
[30]
Das, U.N. Can bioactive lipids inactivate coronavirus (COVID-19)? Arch. Med. Res., 2020, 51(3), 282-286.
[http://dx.doi.org/10.1016/j.arcmed.2020.03.004] [PMID: 32229155]
[31]
Razai, M.S.; Doerholt, K.; Ladhani, S.; Oakeshott, P. Coronavirus disease 2019 (COVID-19): a guide for UK GPs. BMJ, 2020, 368, m800.
[http://dx.doi.org/10.1136/bmj.m800] [PMID: 32144127]
[32]
Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet, 2020, 395(10228), 931-934.
[http://dx.doi.org/10.1016/S0140-6736(20)30567-5] [PMID: 32164834]
[33]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[34]
Chen, S.; Yang, J.; Yang, W.; Wang, C.; Bärnighausen, T. COVID-19 control in China during mass population movements at New Year. Lancet, 2020, 395(10226), 764-766.
[http://dx.doi.org/10.1016/S0140-6736(20)30421-9] [PMID: 32105609]
[35]
Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N.I.; Jarvis, C.I.; Russell, T.W.; Munday, J.D.; Kucharski, A.J.; Edmunds, W.J.; Funk, S.; Eggo, R.M. Centre for the mathematical modelling of infectious diseases COVID-19 working group. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health, 2020, 8(4), e488-e496.
[http://dx.doi.org/10.1016/S2214-109X(20)30074-7] [PMID: 32119825]
[36]
Murdoch, D.R.; French, N.P. COVID-19: another infectious disease emerging at the animal-human interface. N. Z. Med. J., 2020, 133(1510), 12-15.
[PMID: 32078596]
[37]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. C4591001 Clinical trial group. safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[38]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. COVE study group efficacy and safety of the mRNA-1273 sars-cov-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[39]
Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; Offergeld, K.; Scheper, G.; Taylor, K.L.; Robb, M.L.; Treanor, J.; Barouch, D.H.; Stoddard, J.; Ryser, M.F.; Marovich, M.A.; Neuzil, K.M.; Corey, L.; Cauwenberghs, N.; Tanner, T.; Hardt, K.; Ruiz-Guiñazú, J.; Le Gars, M.; Schuitemaker, H.; Van Hoof, J.; Struyf, F.; Douoguih, M. ENSEMBLE study group safety and efficacy of single-dose Ad26. COV2. S vaccine against Covid-19. N. Engl. J. Med., 2021, 384(23), 2187-2201.
[http://dx.doi.org/10.1056/NEJMoa2101544] [PMID: 33882225]
[40]
Join, I.; Calendar, P. Boosting Immunity: Functional Medicine Tips on Prevention & Optimizing Immune Function During the COVID- 19 (Coronavirus) Outbreak. Available from: https://www. ifm.org/news-insights/boosting-immunity-functional-medicine-tips-preven-tion-immunity-boosting-Covid-19-coronavirus-outbreak/
[41]
Zhang, Y.; Zhou, W.E.; Yan, J.Q.; Liu, M.; Zhou, Y.; Shen, X.; Ma, Y.L.; Feng, X.S.; Yang, J.; Li, G.H. A review of the extraction and determination methods of thirteen essential vitamins to the human body: an update from 2010. Molecules, 2018, 23(6), E1484.
[http://dx.doi.org/10.3390/molecules23061484] [PMID: 29921801]
[42]
O’Leary, F.; Samman, S. Vitamin B12 in health and disease. Nutrients, 2010, 2(3), 299-316.
[http://dx.doi.org/10.3390/nu2030299] [PMID: 22254022]
[43]
Stover, P.J. Vitamin B12 and older adults. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(1), 24-27.
[http://dx.doi.org/10.1097/MCO.0b013e328333d157] [PMID: 19904199]
[44]
Shakoor, H.; Feehan, J.; Mikkelsen, K.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be well: A potential role for vitamin B in COVID-19. Maturitas, 2021, 144, 108-111.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.007] [PMID: 32829981]
[45]
Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[46]
Gu, J.; Han, B.; Wang, J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology, 2020, 158(6), 1518-1519.
[http://dx.doi.org/10.1053/j.gastro.2020.02.054] [PMID: 32142785]
[47]
Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients, 2017, 9(11), 1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[48]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[49]
Li, J. Evidence is stronger than you think: a meta-analysis of vitamin C use in patients with sepsis. Crit. Care, 2018, 22(1), 258.
[http://dx.doi.org/10.1186/s13054-018-2191-x] [PMID: 30305111]
[50]
Medrano, M.; Carrillo-Cruz, E.; Montero, I.; Perez-Simon, J.A. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int. J. Mol. Sci., 2018, 19(9), 2663.
[http://dx.doi.org/10.3390/ijms19092663] [PMID: 30205552]
[51]
Braiman, M. Latitude dependence of the COVID-19 mortality rate-a possible relationship to vitamin d deficiency? 2020. Available from:
[http://dx.doi.org/10.2139/ssrn.3561958]
[52]
Martineau, A.R. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ, 2017, 356, i6583.
[http://dx.doi.org/10.1136/bmj.i6583]
[53]
Schilling, R. Coping with Covid-19 coronavirus. 2020. Wellcome Open Res., 2020, 5, 241.
[54]
Wimalawansa, S.J. COVID-19 might be fought by 2 doses of Vitamin D (200,000-300,000 IU each)-Feb 2020. Eur. J. Biomed. Pharm. Sci., 2020, 7(3), 432-438.
[55]
Li, Z.X.; Zhao, G.D.; Xiong, W.; Linghu, K.G.; Ma, Q.S.; Cheang, W.S.; Yu, H.; Wang, Y. Immunomodulatory effects of a new whole ingredients extract from Astragalus: a combined evaluation on chemistry and pharmacology. Chin. Med., 2019, 14(1), 12.
[http://dx.doi.org/10.1186/s13020-019-0234-0] [PMID: 30962814]
[56]
Wang, D.; Guo, H.; Chang, J.; Wang, D.; Liu, B.; Gao, P.; Wei, W. Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front. Microbiol., 2018, 9, 2407.
[http://dx.doi.org/10.3389/fmicb.2018.02407] [PMID: 30349523]
[57]
Gupta, S.; Mishra, K.P.; Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch. Virol., 2017, 162(3), 611-623.
[http://dx.doi.org/10.1007/s00705-016-3166-3] [PMID: 27896563]
[58]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098.
[PMID: 32329419]
[59]
Lissiman, E.; Bhasale, A.L.; Cohen, M. Garlic for the common cold. Cochrane Database Syst. Rev., 2014, 2014(11), CD006206.
[60]
Arreola, R. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res., 2015, 2015, 401630.
[http://dx.doi.org/10.1155/2015/401630]
[61]
Alagawany, M.; Elnesr, S.; Farag, M. Use of liquorice (Glycyrrhiza glabra) in poultry nutrition: Global impacts on performance, carcass and meat quality. Worlds Poult. Sci. J., 2019, 75(2), 293-304.
[http://dx.doi.org/10.1017/S0043933919000059]
[62]
Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B, 2015, 5(4), 310-315.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[63]
Kritis, P.; Karampela, I.; Kokoris, S.; Dalamaga, M. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabol Open, 2020, 8, 100066.
[http://dx.doi.org/10.1016/j.metop.2020.100066] [PMID: 33205039]
[64]
Careddu, D.; Pettenazzo, A. Pelargonium sidoides extract EPs 7630: a review of its clinical efficacy and safety for treating acute respiratory tract infections in children. Int. J. Gen. Med., 2018, 11, 91-98.
[http://dx.doi.org/10.2147/IJGM.S154198] [PMID: 29563828]
[65]
Schapowal, A.; Klein, P.; Johnston, S.L. Echinacea reduces the risk of recurrent respiratory tract infections and complications: a meta-analysis of randomized controlled trials. Adv. Ther., 2015, 32(3), 187-200.
[http://dx.doi.org/10.1007/s12325-015-0194-4] [PMID: 25784510]
[66]
Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas, 2021, 143, 1-9.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.003] [PMID: 33308613]
[67]
Maywald, M.; Rink, L. Zinc homeostasis and immunosenescence. J. Trace Elem. Med. Biol., 2015, (29), 24-30.
[http://dx.doi.org/10.1016/j.jtemb.2014.06.003] [PMID: 25022332]
[68]
Lassi, Z.S.; Moin, A.; Bhutta, Z.A. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst. Rev., 2016, 12, CD005978.
[http://dx.doi.org/10.1002/14651858.CD005978.pub3]
[69]
Martinez-Estevez, N.S.; Alvarez-Guevara, A.N.; Rodriguez-Martinez, C.E. Effects of zinc supplementation in the prevention of respiratory tract infections and diarrheal disease in Colombian children: A 12-month randomised controlled trial. Allergol. Immunopathol. (Madr.), 2016, 44(4), 368-375.
[http://dx.doi.org/10.1016/j.aller.2015.12.006] [PMID: 27255474]
[70]
Rerksuppaphol, S.; Rerksuppaphol, L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr. Rep., 2019, 11(2), 7954.
[http://dx.doi.org/10.4081/pr.2019.7954] [PMID: 31214301]
[71]
Fakhrolmobasheri, M.; Nasr-Esfahany, Z.; Khanahmad, H.; Zeinalian, M. Selenium supplementation can relieve the clinical complications of COVID-19 and other similar viral infections. Int. J. Vitam. Nutr. Res., 2021, 91(3-4), 197-199.
[http://dx.doi.org/10.1024/0300-9831/a000663] [PMID: 32513070]
[72]
Shojadoost, B.; Kulkarni, R.R.; Yitbarek, A.; Laursen, A.; Taha-Abdelaziz, K.; Negash Alkie, T.; Barjesteh, N.; Quinteiro-Filho, W.M.; Smith, T.K.; Sharif, S. Dietary selenium supplementation enhances antiviral immunity in chickens challenged with low pathogenic avian influenza virus subtype H9N2. Vet. Immunol. Immunopathol., 2019, 207, 62-68.
[http://dx.doi.org/10.1016/j.vetimm.2018.12.002] [PMID: 30593352]
[73]
Steinbrenner, H.; Al-Quraishy, S.; Dkhil, M.A.; Wunderlich, F.; Sies, H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv. Nutr., 2015, 6(1), 73-82.
[http://dx.doi.org/10.3945/an.114.007575] [PMID: 25593145]
[74]
Lin, Z.; Li, Y.; Gong, G.; Xia, Y.; Wang, C.; Chen, Y.; Hua, L.; Zhong, J.; Tang, Y.; Liu, X.; Zhu, B. Restriction of H1N1 influenza virus infection by selenium nanoparticles loaded with ribavirin via resisting caspase-3 apoptotic pathway. Int. J. Nanomedicine, 2018, 13, 5787-5797.
[http://dx.doi.org/10.2147/IJN.S177658] [PMID: 30310281]
[75]
Dai, X.; Stanilka, J.M.; Rowe, C.A.; Esteves, E.A.; Nieves, C., Jr; Spaiser, S.J.; Christman, M.C.; Langkamp-Henken, B.; Percival, S.S. Consuming Lentinula edodes (Shiitake) mushrooms daily improves human immunity: A randomized dietary intervention in healthy young adults. J. Am. Coll. Nutr., 2015, 34(6), 478-487.
[http://dx.doi.org/10.1080/07315724.2014.950391] [PMID: 25866155]
[76]
Barros, A.B.; Ferrão, J.; Fernandes, T. A safety assessment of Coriolus versicolor biomass as a food supplement. Food Nutr. Res., 2016, 60(1), 29953.
[http://dx.doi.org/10.3402/fnr.v60.29953] [PMID: 26969586]
[77]
Li, D.G.; Ren, Z.X. Cordyceps sinensis promotes immune regulation and enhances bacteriostatic activity of PA-824 via IL-10 in Mycobacterium tuberculosis disease. Braz. J. Med. Biol. Res., 2017, 50(9), e6188.
[http://dx.doi.org/10.1590/1414-431x20176188] [PMID: 28793052]
[78]
Chang, Y.; Zhang, M.; Jiang, Y.; Liu, Y.; Luo, H.; Hao, C.; Zeng, P.; Zhang, L. Preclinical and clinical studies of Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Discov. Med., 2017, 23(127), 207-219.
[PMID: 28595034]
[79]
Blagodatski, A.; Yatsunskaya, M.; Mikhailova, V.; Tiasto, V.; Kagansky, A.; Katanaev, V.L. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget, 2018, 9(49), 29259-29274.
[http://dx.doi.org/10.18632/oncotarget.25660] [PMID: 30018750]
[80]
Ayeka, P.A. Potential of mushroom compounds as immunomodulators in cancer immunotherapy: a review. Evid. Based Complement. Alternat. Med., 2018, 2018, 7271509.
[http://dx.doi.org/10.1155/2018/7271509]
[81]
Jayachandran, M.; Xiao, J.; Xu, B. A critical review on health promoting benefits of edible mushrooms through gut microbiota. Int. J. Mol. Sci., 2017, 18(9), 1934.
[http://dx.doi.org/10.3390/ijms18091934] [PMID: 28885559]
[82]
Diling, C.; Chaoqun, Z.; Jian, Y.; Jian, L.; Jiyan, S.; Yizhen, X.; Guoxiao, L. Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota. Front. Immunol., 2017, 8, 666.
[http://dx.doi.org/10.3389/fimmu.2017.00666] [PMID: 28713364]
[83]
Hawkins, J.; Baker, C.; Cherry, L.; Dunne, E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complement. Ther. Med., 2019, 42, 361-365.
[http://dx.doi.org/10.1016/j.ctim.2018.12.004] [PMID: 30670267]
[84]
Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food-a review. J. Funct. Foods, 2015, 18, 941-958.
[http://dx.doi.org/10.1016/j.jff.2014.07.012]
[85]
Al-Hariri, M. Immune’s-boosting agent: Immunomodulation potentials of propolis. J. Family Community Med., 2019, 26(1), 57-60.
[http://dx.doi.org/10.4103/jfcm.JFCM_46_18] [PMID: 30697106]
[86]
Elsayed, Y.; Khan, N.A. Immunity-boosting spices and the novel coronavirus. ACS Chem. Neurosci., 2020, 11(12), 1696-1698.
[http://dx.doi.org/10.1021/acschemneuro.0c00239] [PMID: 32452670]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy