Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Mini-Review Article

An Overview of the Challenges Associated with the Use of Fruit and Cereal-based Probiotic Carriers and their Recently Developed Solutions

Author(s): Samuel Kumi Okyere*

Volume 1, Issue 1, 2023

Published on: 04 February, 2022

Article ID: e070122200102 Pages: 11

DOI: 10.2174/2666862901666220107152746

Abstract

Probiotic foods are functional foods that play important roles in the health of humans and animals. Over centuries, the main route for probiotics transfer into humans and animals is through fermented dairy products. However, currently, the selection of new probiotic strains and the development of new administration carriers due to consumer preference and conditions are on the rise, especially with the emergence of vegetarians. However, a number of uncertainties concerning the type of probiotic strain and the carrier exist. Therefore, this review seeks to elaborate on some plant-based probiotic carriers and discuss their shortfalls, as well as report on some recent methods being used to protect probiotics in foods to serve as a basis for researchers and probiotic producing industries to correctly select the best strains for a particular carrier and modify existing plant-based probiotic carriers to promote survivability of probiotics in order to meet the high demands for plant-based probiotic products, especially by vegetarians. This review reports that transferring health benefits and maintaining bacterial cell viability for longer storage have been a major shortfall in the plant-based probiotic products industry due to challenges, such as easy loss of cell viability and sensory attributes as a result of fermentation activities by probiotic bacteria. Hence, for reducing these problems, the review suggeststhat the adoption of techniques, such as selection of resistant probiotic bacteria, prebiotics, encapsulation, and use of appropriate packaging and storage conditions, would improve probiotic bacteria cell viability and maintain the sensory attributes in plant-based probiotic products, thus increasing consumer acceptance.

Keywords: Probiotics, plant-based carriers, plant-based products, shortcomings, interventions, animals, dairy products, prebiotics, encapsulation.

Graphical Abstract
[1]
Binda S, Hill C, Johansen E, et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front Microbiol 2020; 11: 1662.
[http://dx.doi.org/10.3389/fmicb.2020.01662] [PMID: 32793153]
[2]
FAO/WHO. Guidelines for the Evaluation of Probiotics in Food Food and Agriculture Organization (FAO), World Health Organization. Geneva, Switzerland: WHO 2002.
[3]
Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11(8): 506-14.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[4]
Nguyen J. Bifidobacterium vs Lactobacillus probiotics: what’s the difference? GeneFoods Available from: https://www.mygenefood.com/blog/bifidobacterium-vs-lactobacillus-strains/ (Accessed March 17, 2020)
[5]
Elghandour MMY, Tan ZL, Abu Hafsa SH, et al. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: a review. J Appl Microbiol 2020; 128(3): 658-74.
[http://dx.doi.org/10.1111/jam.14416] [PMID: 31429174]
[6]
Sonnenborn U. Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 2016; 363(19): fnw212.
[http://dx.doi.org/10.1093/femsle/fnw212] [PMID: 27619890]
[7]
Lee NK, Kim WS, Paik HD. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 2019; 28(5): 1297-305.
[http://dx.doi.org/10.1007/s10068-019-00691-9] [PMID: 31695928]
[8]
Fenster K, Freeburg B, Hollard C, Wong C, Rønhave Laursen R, Ouwehand AC. The production and delivery of probiotics: a review of a practical approach. Microorganisms 2019; 7(3): 83.
[http://dx.doi.org/10.3390/microorganisms7030083] [PMID: 30884906]
[9]
Alfonzo A, Miceli C, Nasca A, et al. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation. Food Microbiol 2017; 62: 256-69.
[http://dx.doi.org/10.1016/j.fm.2016.10.014] [PMID: 27889157]
[10]
Toder K. Web review of todar’s online textbook of bacteriology. The good, the bad, and the deadly. SCIENCE Magazine 2020; 304: 1421. Available from: http://textbookofbacteriology.net/lactics.html Accessed on 17th September, 2020
[11]
Von Wright A, Axelsson L. Lactic Acid Bacteria: An Introduction. Lactic Acid Bacteria: Microbiological and Functional Aspects. London: CRC Press 2000; pp. 1-16.
[12]
Holzapfel WH, Schillinger U. Introduction to pre- and probiotics. Food Res Int 2002; 35: 109-16.
[http://dx.doi.org/10.1016/S0963-9969(01)00171-5]
[13]
Corcoran BM, Stanton C, Fitzgerald GF, Ross RP. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 2005; 71(6): 3060-7.
[http://dx.doi.org/10.1128/AEM.71.6.3060-3067.2005] [PMID: 15933002]
[14]
Benson J-A. Characteristics of the best probiotics. PROGURT Available from: https://www.progurt.com/blogs/news/characteristics-of-the-best-probiotics (Accessed November 06, 2021)
[15]
Kechagia M, Basoulis D, Konstantopoulou S, et al. Health benefits of probiotics: a review. ISRN Nutr 2013; 2013: 481651.
[http://dx.doi.org/10.5402/2013/481651] [PMID: 24959545]
[16]
Popova M, Molimard P, Courau S, et al. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. J Appl Microbiol 2012; 113(6): 1305-18.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05394.x] [PMID: 22788970]
[17]
European Food Safety Authority (EFSA). Guidance of the NDA Panel: guidance on the scientific requirements for health claims related to gut and immune function. EFSA J 2011; 9: 1984.
[http://dx.doi.org/10.2903/j.efsa.2011.1984]
[18]
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017; 9(9): 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[19]
Anonymous . World gastroenterology organisation practice guideline: Probiotics and prebiotics. Arab J Gastroenterol 2009; 10(1): 33-42.
[http://dx.doi.org/10.1016/j.ajg.2009.03.001] [PMID: 24842134]
[20]
Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol 2002; 34(4): 245-53.
[http://dx.doi.org/10.1111/j.1574-695X.2002.tb00632.x] [PMID: 12443824]
[21]
Miljkovic M, Strahinic I, Tolinacki M, et al. AggLb is the largest cell-aggregation factor from Lactobacillus paracasei Subsp. paracasei BGNJ1-64, functions in collagen adhesion, and pathogen exclusion in vitro. PLoS One 2015; 10(5): e0126387.
[http://dx.doi.org/10.1371/journal.pone.0126387] [PMID: 25955159]
[22]
Hütt P, Lapp E, Štšepetova J, et al. Characterisation of probiotic properties in human vaginal lactobacilli strains. Microb Ecol Health Dis 2016; 27: 30484.
[PMID: 27527701]
[23]
Vahedi Shahandashti R, Kasra Kermanshahi R, Ghadam P. The inhibitory effect of bacteriocin produced by Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014 on planktonic cells and biofilms of Serratia marcescens. Turk J Med Sci 2016; 46(4): 1188-96.
[http://dx.doi.org/10.3906/sag-1505-51] [PMID: 27513424]
[24]
Taherian M, Mahin Samadi P, Rastegar H, et al. An overview on probiotics as an alternative strategy for prevention and treatment of human diseases. Iran J Pharm Res 2019; 18 (Suppl. 1): 31-50.
[PMID: 32802088]
[25]
Ahlberg SH, Joutsjoki V, Korhonen HJ. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int J Food Microbiol 2015; 207: 87-102.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.042] [PMID: 26001523]
[26]
Ferreira Dos Santos T, Alves Melo T, Almeida ME, Passos Rezende R, Romano CC. Immunomodulatory effects of lactobacillus plantarum Lp62 on intestinal epithelial and mononuclear cells. BioMed Res Int 2016; 2016: 8404156.
[http://dx.doi.org/10.1155/2016/8404156] [PMID: 27446958]
[27]
Jang SE, Jeong JJ, Choi SY, Hyunji K, Myung JH, Kim DH. Lactobacillus rhamnosus HN001 and lactobacillus acidophilus La-14 attenuate gardnerella vaginalis-infected bacterial vaginosis in mice. Nutrients 2017; 9: 1-14.
[http://dx.doi.org/10.3390/nu9060531]
[28]
Vasiljevic T, Shah N. Probiotics-from Metchnikoff to Bioactives. Int Dairy J 2008; 18: 714-28.
[http://dx.doi.org/10.1016/j.idairyj.2008.03.004]
[29]
Duffield SD, Clarke P. Current use of probiotics to prevent necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 2019; 104(2): F228.
[http://dx.doi.org/10.1136/archdischild-2018-316199] [PMID: 30464004]
[30]
Allaker RP, Stephen AS. Use of probiotics and oral health. Curr Oral Health Rep 2017; 4(4): 309-18.
[http://dx.doi.org/10.1007/s40496-017-0159-6] [PMID: 29201598]
[31]
Sun N, Ni X, Wang H, et al. Probiotic lactobacillus johnsonii BS15 prevents memory dysfunction induced by chronic high-fluorine intake through modulating intestinal environment and improving gut development. Probiotics Antimicrob Proteins 2020; 12(4): 1420-38.
[http://dx.doi.org/10.1007/s12602-020-09644-9] [PMID: 32166711]
[32]
Xin J, Zeng D, Wang H, et al. Lactobacillus johnsonii BS15 improves intestinal environment against fluoride-induced memory impairment in mice-a study based on the gut-brain axis hypothesis. PeerJ 2020; 8: e10125.
[http://dx.doi.org/10.7717/peerj.10125] [PMID: 33083147]
[33]
Wong CB, Kobayashi Y, Xiao J. Probiotics for Preventing Cognitive Impairment in Alzheimer’s Disease, Gut Microbiota - Brain Axis, Alper Evrensel and Barış Önen Ünsalver.uk: Intech Open 2018.
[http://dx.doi.org/10.5772/intechopen.79088]
[34]
Zhong DY, Li L, Ma RM, Deng YH. The effect of probiotics in stroke treatment. Evid Based Complement Alternat Med 2021; 2021: 4877311.
[http://dx.doi.org/10.1155/2021/4877311] [PMID: 34745285]
[35]
Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris) 2019; 175(10): 724-41.
[http://dx.doi.org/10.1016/j.neurol.2019.08.005] [PMID: 31521398]
[36]
Sun Z, Sun X, Li J, et al. Using probiotics for type 2 diabetes mellitus intervention: advances, questions, and potential. Crit Rev Food Sci Nutr 2020; 60(4): 670-83.
[http://dx.doi.org/10.1080/10408398.2018.1547268] [PMID: 30632770]
[37]
Wu H, Chiou J. Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients 2021; 13(8): 2878.
[http://dx.doi.org/10.3390/nu13082878] [PMID: 34445037]
[38]
Sun J, Ling Z, Wang F, et al. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett 2016; 613: 30-5.
[http://dx.doi.org/10.1016/j.neulet.2015.12.047] [PMID: 26733300]
[39]
Akhoundzadeh K, Vakili A, Shadnoush M, Sadeghzadeh J. Effects of the oral ingestion of probiotics on brain damage in a transient model of focal cerebral ischemia in mice. Iran J Med Sci 2018; 43(1): 32-40.
[PMID: 29398750]
[40]
Li L, Wang M, Chen J, et al. Preventive effects of bacillus licheniformis on heat stroke in rats by sustaining intestinal barrier function and modulating gut microbiota. Front Microbiol 2021; 12: 630841.
[http://dx.doi.org/10.3389/fmicb.2021.630841] [PMID: 33889138]
[41]
Raygan F, Rezavandi Z, Bahmani F, et al. The effects of probiotic supplementation on metabolic status in type 2 diabetic patients with coronary heart disease. Diabetol Metab Syndr 2018; 10: 51.
[http://dx.doi.org/10.1186/s13098-018-0353-2] [PMID: 29946368]
[42]
Raygan F, Ostadmohammadi V, Bahmani F, Asemi Z. The effects of vitamin D and probiotic co-supplementation on mental health parameters and metabolic status in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84(Pt A): 50-5.
[http://dx.doi.org/10.1016/j.pnpbp.2018.02.007] [PMID: 29432877]
[43]
Raygan F, Ostadmohammadi V, Asemi Z. The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2019; 38(4): 1594-8.
[http://dx.doi.org/10.1016/j.clnu.2018.07.017] [PMID: 30057015]
[44]
Aggarwal N, Breedon AME, Davis CM, Hwang IY, Chang MW. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr Opin Biotechnol 2020; 65: 171-9.
[http://dx.doi.org/10.1016/j.copbio.2020.02.016] [PMID: 32304955]
[45]
Zhou Z, Chen X, Sheng H, et al. Engineering probiotics as living diagnostics and therapeutics for improving human health. Microb Cell Fact 2020; 19(1): 56.
[http://dx.doi.org/10.1186/s12934-020-01318-z]
[46]
Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med 2018; 10(445): eaa02586.
[http://dx.doi.org/10.1126/scitranslmed.aao2586] [PMID: 29899022]
[47]
Baker D. Probiotics for fertility. Natural fertility and wellness 2020 Jan 31; Available from: https://www.naturalfertilityandwellness.com/probiotics-for-fertility/ Accessed on 13th December, 2020
[48]
Simon MC, Strassburger K, Nowotny B, et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care 2015; 38(10): 1827-34.
[http://dx.doi.org/10.2337/dc14-2690] [PMID: 26084343]
[49]
Bagarolli RA, Tobar N, Oliveira AG, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 2017; 50: 16-25.
[http://dx.doi.org/10.1016/j.jnutbio.2017.08.006] [PMID: 28968517]
[50]
Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr Res Rev 2018; 31(1): 35-51.
[http://dx.doi.org/10.1017/S095442241700018X] [PMID: 29037268]
[51]
Shamasbi SG, Ghanbari-Homayi S, Mirghafourvand M. The effect of probiotics, prebiotics, and synbiotics on hormonal and inflammatory indices in women with polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Nutr 2020; 59(2): 433-50.
[http://dx.doi.org/10.1007/s00394-019-02033-1] [PMID: 31256251]
[52]
Costabile A, Buttarazzi I, Kolida S, et al. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS One 2017; 12(12): e0187964.
[http://dx.doi.org/10.1371/journal.pone.0187964] [PMID: 29228000]
[53]
Lee Y, Ba Z, Roberts RF, et al. Effects of Bifidobacterium animalis subsp. lactis BB-12® on the lipid/lipoprotein profile and short chain fatty acids in healthy young adults: a randomized controlled trial. Nutr J 2017; 16(1): 39.
[http://dx.doi.org/10.1186/s12937-017-0261-6] [PMID: 28662676]
[54]
Lee GR, Maarouf M, Hendricks AJ, Lee DE, Shi VY. Topical probiotics: the unknowns behind their rising popularity. Dermatol Online J 2019; 25(5): 5.
[http://dx.doi.org/10.5070/D3255044062] [PMID: 31220895]
[55]
Bustamante M, Oomah BD, Oliveira WP, Burgos-Díaz C, Rubilar M, Shene C. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia Microbiol (Praha) 2020; 65(2): 245-64.
[http://dx.doi.org/10.1007/s12223-019-00759-3] [PMID: 31773556]
[56]
López-Velázquez G, Parra-Ortiz M, Mora L, et al. Effects of fructans from Mexican Agave in newborns fed with infant formula: a randomized controlled trial. Nutrients 2015; 7(11): 8939-51.
[http://dx.doi.org/10.3390/nu7115442] [PMID: 26529006]
[57]
Bateni E, Tester R, Al-Ghazzewi F, Bateni S, Alvani K, Piggott J. The use of konjac glucomannan hydrolysates (GMH) to improve the health of the skin and reduce acne vulgaris. Am J Dermatol Venereol 2013; 2: 10-4.
[58]
Kandylis P, Pissaridi K, Bekatorou A, Kanellaki M, Koutinas AA. Dairy and non-dairy probiotic beverages. Curr Opin Food Sci 2016; 7: 58-63.
[http://dx.doi.org/10.1016/j.cofs.2015.11.012]
[59]
Song D, Ibrahim S, Hayek S. Recent Application of Probiotics in Food and Agricultural Science. INTECH 2012.
[http://dx.doi.org/10.5772/50121]
[60]
Khan SU. Probiotics in dairy foods: a review. Nutr Food Sci 2014; 44: 71-88.
[http://dx.doi.org/10.1108/NFS-04-2013-0051]
[61]
Whittemore H. Lactobacillus rhamnosus GG (ATCC 53103) and its Probiotic Use. Micro Wiki 2013 May 2; Available from: https://microbewiki.kenyon.edu/index.php/Lactobacillus_rhamnosus_GG_(ATCC_53103)_and_its_Probiotic_Use Accessed on 3rd January, 2021
[62]
Nielsen B, Gürakan GC, Unlü G. Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob Proteins 2014; 6(3-4): 123-35.
[http://dx.doi.org/10.1007/s12602-014-9168-0] [PMID: 25261107]
[63]
Yerlikaya O. Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks. Food Sci Technol 2014; 34: 221-9.
[http://dx.doi.org/10.1590/fst.2014.0050]
[64]
Karimi R, Mortazavian AM, DaCruz AG. Viability of probiotic microorganisms in cheese during production and storage: a review. Dairy Sci Technol 2011; 91: 283-308.
[http://dx.doi.org/10.1007/s13594-011-0005-x]
[65]
Araújo EA, dos Santos Pires AC, Maximiliano SP, Gwénaël J, de Carvalho AF. Probiotics in Dairy Fermented Products, Probiotics, Everlon Cid Rigobelo. Intech Open 2012.
[http://dx.doi.org/10.5772/51939]
[66]
Ong L, Henriksson A, Shah NP. Proteolytic pattern and organic acid profiles of probiotic Cheddar cheese as influenced by probiotic strains of Lactobacillus acidophilus, Lb. paracasei, Lb. casei or Bifidobacterium sp. Int Dairy J 2007; 17: 67-78.
[http://dx.doi.org/10.1016/j.idairyj.2005.12.009]
[67]
Prasanna PHP, Grandison AS, Charalampopoulos D. Bifidobacteria in milk products: an overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 2014; 55: 247-62.
[http://dx.doi.org/10.1016/j.foodres.2013.11.013]
[68]
Matsuyama M, Harb T, David M, Davies PSW, Hill RJ. Effect of fortified milk on growth and nutritional status in young children: a systematic review and meta-analysis. Public Health Nutr 2017; 20(7): 1214-25.
[http://dx.doi.org/10.1017/S1368980016003189] [PMID: 27938461]
[69]
Donkor O, Nilmini S, Stolic P, Vasiljevic T, Shah N. Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. Int Dairy J 2007; 17: 657-65.
[http://dx.doi.org/10.1016/j.idairyj.2006.08.006]
[70]
Danuta KK, Dolatowskib JZ. Probiotic meat products and human nutrition. Process Biochem 2012; 47: 1761-72.
[http://dx.doi.org/10.1016/j.procbio.2012.09.017]
[71]
Verduci E, D’Elios S, Cerrato L, et al. Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages. Nutrients 2019; 11(8): 1739.
[http://dx.doi.org/10.3390/nu11081739] [PMID: 31357608]
[72]
Gupta S, Abu-Ghannam N. Probiotic fermentation of plant based products: Possibilities and opportunities. Crit Rev Food Sci Nutr 2012; 52(2): 183-99.
[http://dx.doi.org/10.1080/10408398.2010.499779] [PMID: 22059963]
[73]
Pereira F, Lucia A. Turning fruit juice into probiotic beverages. Fruit Juices 2018; 279-87.
[74]
Fernandez MA, Marette A. Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic properties. Adv Nutr 2017; 8(1): 155S-64S.
[http://dx.doi.org/10.3945/an.115.011114] [PMID: 28096139]
[75]
Xu X, Bao Y, Wu B, Lao F, Hu X, Wu J. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chem 2019; 289: 250-8.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.068] [PMID: 30955609]
[76]
Worku KF, Kurabachew H, Hassen Y. Probiotication of fruit juices by supplemented culture of lactobacillus acidophilus. Intl J Food Sci Nutr Eng 2019; 9: 45-8.
[77]
Panghal A, Kumar V, Dhull SB, Gat Y, Chhikara N. Utilization of dairy industry waste-whey in formulation of papaya rts beverage. Curr Res Nutr Food Sci J 2017; 5: 168-74.
[http://dx.doi.org/10.12944/CRNFSJ.5.2.14]
[78]
Nagpal R, Kumar A, Kumar M. Fortification and fermentation of fruit juices with probiotic lactobacilli. Ann Microbiol 2012; 62: 1573-8.
[http://dx.doi.org/10.1007/s13213-011-0412-5]
[79]
Perez MB, Saguir FM. Transfer and subsequent growth and metabolism of Lactobacillus plantarum in orange juice medium during storage at 4 and 30°C. Lett Appl Microbiol 2012; 54(5): 398-403.
[http://dx.doi.org/10.1111/j.1472-765X.2012.03235.x] [PMID: 22409293]
[80]
Luckow T, Sheehan V, Fitzgerald G, Delahunty C. Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite 2006; 47(3): 315-23.
[http://dx.doi.org/10.1016/j.appet.2006.04.006] [PMID: 16857295]
[81]
Ranadheera CS, Prasanna PHP, Vidanarachchi JK. Fruit juice as probiotic carriersFruit Juices: Types, Nutritional Composition and Health Benefits. Hauppauge, New York, USA: Nova Science Publishers 2014; pp. 1-19.
[82]
Patel M, Vihol NJ, Patel AD, Patel HC. Effect of integrated nutrient management on quality parameters of sapota [Manilkara achrus (Mill) Forsberg] CV. Kalipatti. Int J Chem Stud 2017; 5: 889-91.
[83]
Tripathi MK, Giri SK. Probiotic functional foods: Survival of probiotics during processing and storage. J Funct Foods 2014; 9: 225-41.
[http://dx.doi.org/10.1016/j.jff.2014.04.030]
[84]
Pakbin B, Razavi SH, Mahmoudi R, Gajarbeygi P. Producing probiotic peach juice. Biotech Health Sci 2014; 1: 1-5.
[85]
Sivudu SN, Umamahesh K, Reddy OVS. A Comparative study on probiotication of mixed watermelon and tomato juice by using probiotic strains of lactobacilli. Int J Curr Microbiol Appl Sci 2014; 3: 977-84.
[86]
Di Cagno R, Coda R, De Angelis M, Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol 2013; 33(1): 1-10.
[http://dx.doi.org/10.1016/j.fm.2012.09.003] [PMID: 23122495]
[87]
Pereira ALF, Almeida FDL, de Jesus ALT, de Costa JMC, Rodrigues S. Storage stability and acceptance of probiotic beverage from cashew apple juice. Food Bioprocess Technol 2013; 6: 3155-65.
[http://dx.doi.org/10.1007/s11947-012-1032-1]
[88]
Reid G. Probiotics and prebiotics – Progress and challenges. Int Dairy J 2008; 18: 969-75.
[http://dx.doi.org/10.1016/j.idairyj.2007.11.025]
[89]
Yahyaoui G, Bouzaiene A, Aouidi T, Abdelkarim FA, Moktar H. Traditional cereal food as container of probiotic bacteria Lb. rhamnosus GG”: optimization by response surface methodology. J Food Qual 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/1742143]
[90]
Enujiugha VN, Badejo AA. Probiotic potentials of cereal-based beverages. Crit Rev Food Sci Nutr 2017; 57(4): 790-804.
[http://dx.doi.org/10.1080/10408398.2014.930018] [PMID: 26558644]
[91]
Charalampopoulos D, Wang R, Pandiella SS, Webb C. Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol 2002; 79(1-2): 131-41.
[http://dx.doi.org/10.1016/S0168-1605(02)00187-3] [PMID: 12382693]
[92]
Kalui CM, Mathara JM, Kutima PM. Probiotic potential of spontaneously fermented cereal based foods – A review. Afr J Biotechnol 2010; 9: 2490-8.
[93]
Awaisheh SS. Probiotic food products classes, types, and processing. Probiotics Everlon Cid Rigobelo uk: Intech Open 2012.
[http://dx.doi.org/10.5772/51267]
[94]
Setta MC, Matemu A, Mbega ER. Potential of probiotics from fermented cereal-based beverages in improving health of poor people in Africa. J Food Sci Technol 2020; 57(11): 3935-46.
[http://dx.doi.org/10.1007/s13197-020-04432-3] [PMID: 33071315]
[95]
Nuraida L. A review: health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Hum Wellness 2015; 4: 47-55.
[http://dx.doi.org/10.1016/j.fshw.2015.06.001]
[96]
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14(8): 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[97]
Rashidinejad A, Bahrami A, Rehman A, et al. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 1-25.
[PMID: 33251846]
[98]
Ehsani A, Banihabib EK, Hashemi M, Saravani M, Yarahmadi E. Evaluation of various properties of symbiotic yoghurt of buffalo milk. J Food Process Preserv 2016; 40: 1466-73.
[http://dx.doi.org/10.1111/jfpp.12732]
[99]
Shokryazdan P, Faseleh Jahromi M, Navidshad B, Liang JB. Effects of prebiotics on immune system and cytokine expression. Med Microbiol Immunol (Berl) 2017; 206(1): 1-9.
[http://dx.doi.org/10.1007/s00430-016-0481-y] [PMID: 27704207]
[100]
do Espírito Santo AP, Cartolano NS, Silva TF, et al. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. Int J Food Microbiol 2012; 154(3): 135-44.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.12.025] [PMID: 22264421]
[101]
Feng K, Huang RM, Wu RQ, et al. A novel route for doublelayered encapsulation of probiotics with improved viability under adverse conditions. Food Chem 2020; 310: 125977.
[http://dx.doi.org/10.1016/j.foodchem.2019.125977] [PMID: 31837527]
[102]
White J, Sharareh H. Development of probiotic fruit juices using Lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber. Fermentation (Basel) 2018; 4: 27.
[http://dx.doi.org/10.3390/fermentation4020027]
[103]
Coman MM, Verdenelli MC, Cecchini C, et al. Effect of buckwheat flour and oat bran on growth and cell viability of the probiotic strains Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their combination SYNBIO®, in synbiotic fermented milk. Int J Food Microbiol 2013; 167(2): 261-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.09.015] [PMID: 24140807]
[104]
Vasile A, Paraschiv D, Dima S, Bahrim G. Growth and cell viability improve of the Probiotic Strain Lactobacillus casei sp. paracasei in the presence of oat bran and buckwheat Flour. Innov Rom Food Biotechnol 2011; 9: 52-9.
[105]
Demirci T, Aktaş K, Sözeri D, Öztürk HI, Akın N. Rice bran improve probiotic viability in yoghurt and provide added antioxidative benefits. J Funct Foods 2017; 36: 396-403.
[http://dx.doi.org/10.1016/j.jff.2017.07.019]
[106]
Pourjafar H, Noori N, Gandomi H, Basti AA, Ansari F. Viability of microencapsulated and non-microencapsulated Lactobacilli in a commercial beverage. Biotechnol Rep (Amst) 2020; 25: e00432.
[http://dx.doi.org/10.1016/j.btre.2020.e00432] [PMID: 32099822]
[107]
Anekella K, Orsat V. Optimization of microencapsulation of probiotics in raspberry juice by spray drying. Lebensm Wiss Technol 2013; 50: 17-24.
[http://dx.doi.org/10.1016/j.lwt.2012.08.003]
[108]
Nualkaekul S, Cook MT, Khutoryanskiy VV, Charalampopoulos D. Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Res Int 2013; 53: 304-11.
[http://dx.doi.org/10.1016/j.foodres.2013.04.019]
[109]
Krasaekoopt W, Watcharapoka S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juic. Lebensm Wiss Technol 2014; 57: 761-6.
[http://dx.doi.org/10.1016/j.lwt.2014.01.037]
[110]
Holkem AT, Raddatz GC, Barin JS, et al. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. Lebensm Wiss Technol 2017; 76: 216-21.
[http://dx.doi.org/10.1016/j.lwt.2016.07.013]
[111]
De Araújo E-M, Raddatz GC, Cichoski AJ, et al. Effect of resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. J Funct Foods 2016; 21: 321-9.
[http://dx.doi.org/10.1016/j.jff.2015.12.025]
[112]
Kia EM, Ghasempour Z, Ghanbari S, Pirmohammadi R, Ehsani A. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and microencapsulated Lactobacillus paracasei ‎in gellan-caseinate mixture. Br Food J 2018; 120: 1516-28.
[http://dx.doi.org/10.1108/BFJ-12-2017-0668]
[113]
Loyeau P, Spotti M, Braber MNV, et al. Microencapsulation of Bifidobacterium animalis subsp. lactis INL1 using whey proteins and dextrans conjugates as wall materials. Food Hydrocoll 2018; 85: 129-35.
[http://dx.doi.org/10.1016/j.foodhyd.2018.06.051]
[114]
Shi LE, Li ZH, Li DT, et al. Encapsulation of probiotic Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J Food Eng 2013; 117: 99-104.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.02.012]
[115]
Ji R, Wu J, Zhang J, et al. Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Front Microbiol 2019; 10: 1389.
[http://dx.doi.org/10.3389/fmicb.2019.01389] [PMID: 31316479]
[116]
Lee Y, Ji YR, Lee S, Choi MJ, Cho Y. Microencapsulation of probiotic lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J Microbiol Biotechnol 2019; 29(5): 721-30.
[http://dx.doi.org/10.4014/jmb.1903.03018] [PMID: 31030452]
[117]
Silva PTD, Fries LLM, Menezes CRD, et al. Microencapsulation of probiotics by spray drying: Evaluation of survival in simulated gastrointestinal conditions and availability under different storage temperatures. Cienc Rural 2015; 45: 1342-7.
[http://dx.doi.org/10.1590/0103-8478cr20140211]
[118]
Schell D, Beermann C. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Res Int 2014; 62: 308-14.
[http://dx.doi.org/10.1016/j.foodres.2014.03.016]
[119]
Tang HW, Abbasiliasi S, Murugan P, Tam YJ, Ng HS, Tan JS. Influence of freeze-drying and spray-drying preservation methods on survivability rate of different types of protectants encapsulated Lactobacillus acidophilus FTDC 3081. Biosci Biotechnol Biochem 2020; 84(9): 1913-20.
[http://dx.doi.org/10.1080/09168451.2020.1770572] [PMID: 32448058]
[120]
Turuvekere Sadguruprasad L, Basavaraj M. Statistical modelling for optimized lyophilization of Lactobacillus acidophilus strains for improved viability and stability using response surface methodology. AMB Express 2018; 8(1): 129.
[http://dx.doi.org/10.1186/s13568-018-0659-3] [PMID: 30097787]
[121]
Meybodi NM, Mortazavian AM, Arab M, Nematollahi A. Probiotic viability in yoghurt: a review of influential factors. Int Dairy J 2020; 109: 104793.
[http://dx.doi.org/10.1016/j.idairyj.2020.104793]
[122]
Călinoiu LF, Vodnar DC, Precup G. The probiotic bacteria viability under different conditions. Bulletin UASVM Food Science and Technology 2016; 73: 55-60.
[http://dx.doi.org/10.15835/buasvmcn-fst:12448]
[123]
Moineau-Jean A, Champagne CP, Roy D, Raymond Y, LaPointe G. Effect of Greek-style yoghurt manufacturing processes on starter and probiotic bacteria populations during storage. Int Dairy J 2019; 93: 35-44.
[http://dx.doi.org/10.1016/j.idairyj.2019.02.003]
[124]
Afzaal M, Khan AU, Saeed F, et al. Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci Nutr 2019; 7(12): 3931-40.
[http://dx.doi.org/10.1002/fsn3.1254] [PMID: 31890171]
[125]
Abesinghe AMNL, Priyashantha H, Prasanna HP, Kurukulasuriya MS, Ranadheera CS, Vidanarachchi JK. Inclusion of probiotics into fermented buffalo (Bubalus bubalis) Milk: an overview of challenges and opportunities. Fermentation (Basel) 2020; 6: 121.
[http://dx.doi.org/10.3390/fermentation6040121]
[126]
Mani-López E, Palou E, López-Malo A. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J Dairy Sci 2014; 97(5): 2578-90.
[http://dx.doi.org/10.3168/jds.2013-7551] [PMID: 24745665]
[127]
Senaka Ranadheera C, Evans CA, Adams MC, Baines SK. Probiotic viability and physico-chemical and sensory properties of plain and stirred fruit yogurts made from goat’s milk. Food Chem 2012; 135(3): 1411-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.025] [PMID: 22953874]
[128]
Celik OF, O’Sullivan DJ. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria. J Dairy Sci 2013; 96(6): 3506-16.
[http://dx.doi.org/10.3168/jds.2012-6327] [PMID: 23587387]
[129]
Brinques GB, Ayub MAZ. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J Food Eng 2011; 103: 123-8.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.10.006]

© 2024 Bentham Science Publishers | Privacy Policy