Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Molecular Docking, Synthesis, Characterization and Biological Activities of Novel Thiazole Derivatives

Author(s): Neeharika Yamsani and Raja Sundararajan*

Volume 19, Issue 8, 2022

Published on: 27 January, 2022

Page: [722 - 740] Pages: 19

DOI: 10.2174/1570180819666220105151308

Price: $65

Abstract

Aim: The study aims to design and synthesize novel thiazole derivatives as potent antitubercular agents with minimal side effects.

Background: The emergence and rapid spread of multi-drug resistant infectious microbial flora embracing a variety of bacterial as well as mycobacterium strains are causing a threat to public health worldwide.

Objective: Owing to the importance, we designed compounds with thiazole functionality coupled with Schiff base and thiosemicarbazide, predicted the molecular properties and antitubercular potency of designed compounds by the in-silico method, and synthesized fifteen novel thiazole analogs, characterized and tested in vivo antitubercular, antibacterial and antioxidant potencies.

Methods: Molinspiration online tool was used to predict the molecular properties and molecular docking was used to predict the antitubercular potency. FT-IR, 1H-NMR, 13C-NMR, Mass spectroscopy and bases of elemental analysis are employed to confirm the structure of compounds. 10-Fold serial dilution method, agar streak dilution test and DPPH radical scavenging methods are used to estimate antitubercular, antibacterial and antioxidant potency of title analogs, respectively.

Results: Multi-step synthesis was used to synthesize a variety of novel thiazole derivatives coupled with Schiff base and thiosemicarbazide. Synthesized title compounds displayed a varying degree of antitubercular, antibacterial and antioxidant activities (mild to good). The title compounds possessing deactivating group exhibited superior activities than activating group, while unsubstituted analogs displayed intermediate activities. In addition, para-substituted analogs showed slightly higher activity than the corresponding meta substituted analogs.

Conclusion: Among fifteen tested title compounds, the potent compound of this series was found to be 1- (4-nitrobenzylidene)-4-(4-(4-methoxyphenyl)thiazol-2-yl)thiosemicarbazide (BTS14), which might be extended as a novel class of antitubercular and antibacterial agents.

Keywords: Thiazole, Schiff base, thiosemicarbazide, antitubercular activity, antibacterial activity, antioxidant activity.

Graphical Abstract
[1]
Halezeroğlu, S.; Okur, E. Thoracic surgery for haemoptysis in the context of tuberculosis: what is the best management approach? J. Thorac. Dis., 2014, 6(3), 182-185.
[PMID: 24624281]
[2]
Golden, M.P.; Vikram, H.R. Extrapulmonary tuberculosis: an overview. Am. Fam. Physician, 2005, 72(9), 1761-1768.
[PMID: 16300038]
[3]
Klemens, S.P.; DeStefano, M.S.; Cynamon, M.H. Therapy of multidrug-resistant tuberculosis: lessons from studies with mice. Antimicrob. Agents Chemother., 1993, 37(11), 2344-2347.
[http://dx.doi.org/10.1128/AAC.37.11.2344] [PMID: 8285617]
[4]
Maste, M.M.; Jeyarani, P.; Kalekar, M.C.; Bhat, A.R. Synthesis and evaluation of benzimidazole derivatives for antitubercular and antimi-crobial activities. Asian J. Res. Chem, 2011, 4(7), 1055-1058.
[5]
Muhammad, Z.A.; Masaret, G.S.; Amin, M.M.; Abdallah, M.A.; Farghaly, T.A. Anti-inflammatory, analgesic and anti-ulcerogenic activities of novel bis-thiadiazoles, bis-thiazoles and bis-formazanes. Med. Chem., 2017, 13(3), 226-238.
[http://dx.doi.org/10.2174/1573406412666160920091146] [PMID: 27659119]
[6]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Syn. Comm., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[7]
Jain, S.; Pattnaik, S.; Pathak, K.; Kumar, S.; Pathak, D.; Jain, S.; Vaidya, A. Anticancer potential of thiazole derivatives: a retrospective review. Mini Rev. Med. Chem., 2018, 18(8), 640-655.
[http://dx.doi.org/10.2174/1389557517666171123211321] [PMID: 29173166]
[8]
Singh, I.P.; Gupta, S.; Kumar, S. Thiazole compounds as antiviral agents: an update. Med. Chem., 2020, 16(1), 4-23.
[http://dx.doi.org/10.2174/1573406415666190614101253] [PMID: 31203807]
[9]
Sarkate, A.P.; Lokwani, D.K.; Karnik, K.S.; Shinde, D.B. Novel 2-(nitrooxy)ethyl 2-(4-(substituted phenyl)-2-((substituted phe-nyl)amino)thiazol-5-yl)acetate as anti-inflammatory, analgesic and nitric oxide releasing agents: synthesis and molecular docking studies. Antiinflamm. Antiallergy Agents Med. Chem., 2017, 16(3), 153-167.
[http://dx.doi.org/10.2174/1871523016666171115125922] [PMID: 29141568]
[10]
Chhabria, M.; Patel, S.; Dholakia, S.; Mistry, H.; Patel, S. Synthesis and antitubercular activity of a series of thiazole derivatives. Antiinfect. Agents, 2014, 12(2), 149-158.
[http://dx.doi.org/10.2174/22113525113119990119]
[11]
Bairwa, V.K.; Telvekar, V.N.; Novel, V. Novel 2-(2-benzylidenehydrazinyl)benzo[d]thiazole as potential antitubercular agents. Comb. Chem. High Throughput Screen., 2013, 16(3), 244-247.
[http://dx.doi.org/10.2174/1386207311316030009] [PMID: 23176058]
[12]
Das, R.; Asthana, G.S.; Suri, K.A.; Mehta, D.; Asthana, A. Recent developments in azole compounds as antitubercular agent. Mini Rev. Org. Chem., 2019, 16(3), 290-306.
[http://dx.doi.org/10.2174/1570193X15666180622144414]
[13]
Cordeiro, R.; Kachroo, M. Synthesis and biological evaluation of anti-tubercular activity of Schiff bases of 2-Amino thiazoles. Bioorg. Med. Chem. Lett., 2020, 30(24), 127655.
[http://dx.doi.org/10.1016/j.bmcl.2020.127655] [PMID: 33130292]
[14]
Ulusoy Güzeldemirci, N.; Karaman, B.; Küçükbasmaci, Ö. Antibacterial, antitubercular and antiviral activity evaluations of some aryli-denehydrazide derivatives bearing imidazo [2, 1-b] thiazole moiety. Tur. J. Pharm. Sci., 2017, 14(2), 157-163.
[http://dx.doi.org/10.4274/tjps.25743] [PMID: 32454607]
[15]
Biernasiuk, A. Kawczyńska, M.; Berecka-Rycerz, A.; Rosada, B.; Gumieniczek, A.; Malm, A.; Dzitko, K.; Łączkowski, K.Z. Synthesis, antimicrobial activity, and determination of the lipophilicity of ((cyclohex-3-enylmethylene) hydrazinyl) thiazole derivatives. Med. Chem. Res., 2019, 28(11), 2023-2036.
[http://dx.doi.org/10.1007/s00044-019-02433-2]
[16]
Abdelrazek, F.M.; Gomha, S.M.; Shaaban, M.E.B.; Rabee, K.A.; El-Shemy, H.N.; Abdallah, A.M.; Metz, P. One-pot three-component synthesis and molecular docking of some novel 2-thiazolyl pyridines as potent antimicrobial agents. Mini Rev. Med. Chem., 2019, 19(6), 527-538.
[http://dx.doi.org/10.2174/1389557518666181019124104] [PMID: 30360710]
[17]
Kashyap, A.; Adhikari, N.; Das, A.; Shakya, A.; Ghosh, S.K.; Singh, U.P.; Bhat, H.R. Review on synthetic chemistry and antibacterial importance of thiazole derivatives. Curr. Drug Discov. Technol., 2018, 15(3), 214-228.
[http://dx.doi.org/10.2174/1570163814666170911144036] [PMID: 28901248]
[18]
Laczkowski, K.Z.; Biernasiuk, A.; Baranowska-Laczkowska, A.; Misiura, K.; Malm, A.; Plech, T.; Paneth, A. Synthesis, antibacterial ac-tivity, interaction with nucleobase and molecular docking studies of 4-formylbenzoic acid-based thiazoles. Med. Chem., 2016, 12(6), 553-562.
[http://dx.doi.org/10.2174/1573406412666160201121310] [PMID: 26833073]
[19]
Li, Y.; Sun, N.; Ser, H.L.; Long, W.; Li, Y.; Chen, C.; Zheng, B.; Huang, X.; Liu, Z.; Lu, Y.J. Antibacterial activity evaluation and mode of action study of novel thiazole-quinolinium derivatives. RSC Advances, 2020, 10(25), 15000-15014.
[http://dx.doi.org/10.1039/D0RA00691B]
[20]
Abdel-Galil, E.; Moawad, E.B.; El-Mekabaty, A.; Said, G.E. Synthesis, characterization and antibacterial activity of some new thiazole and thiazolidinone derivatives containing phenyl benzoate moiety. Synth. Commun., 2018, 48(16), 2083-2092.
[http://dx.doi.org/10.1080/00397911.2018.1482349]
[21]
Jaishree, V.; Ramdas, N.; Sachin, J.; Ramesh, B. In vitro antioxidant properties of new thiazole derivatives. J. Saudi Chem. Soc., 2012, 16(4), 371-376.
[http://dx.doi.org/10.1016/j.jscs.2011.02.007]
[22]
Raut, D.G.; Patil, S.B.; Choudhari, P.B.; Kadu, V.D.; Lawand, A.S.; Hublikar, M.G.; Bhosale, R.B. POCl3 mediated syntheses, pharmaco-logical evaluation and molecular docking studies of some novel benzofused thiazole derivatives as a potential antioxidant and anti-inflammatory agents. Curr. Chem. Biol., 2020, 14(1), 58-68.
[http://dx.doi.org/10.2174/2212796813666191118100520]
[23]
Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V.T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; Pavlica, M.; Djuric, A.; Stanojevic, I.; Vojvodic, D.; Saso, L. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact., 2018, 286, 119-131.
[http://dx.doi.org/10.1016/j.cbi.2018.03.013] [PMID: 29574026]
[24]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mech-anism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[25]
Salar, U.; Khan, K.M.; Chigurupati, S.; Syed, S.; Vijayabalan, S.; Wadood, A.; Riaz, M.; Ghufran, M.; Perveen, S. New hybrid scaffolds based on hydrazinyl thiazole substituted coumarin; as novel leads of dual potential; in vitro α-amylase inhibitory and antioxidant (DPPH and ABTS radical scavenging) activities. Med. Chem., 2019, 15(1), 87-101.
[http://dx.doi.org/10.2174/1573406414666180903162243] [PMID: 30179139]
[26]
Przybylski, P. Huczyński, A.W.; Pyta, K.K.; Brzezinski, B.; Bartl, F. Biological properties of Schiff bases and azo derivatives of phenols. Curr. Org. Chem., 2009, 13, 124-148.
[http://dx.doi.org/10.2174/138527209787193774]
[27]
Matar, S.A.; Talib, W.H.; Mustafa, M.S.; Mubarak, M.S.; AlDamen, M.A. Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3′-diaminodipropylamine. Arab. J. Chem., 2015, 8(6), 850-857.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.039]
[28]
Naeimi, H.; Sadat Nazifi, Z.; Matin Amininezhad, S.; Amouheidari, M. Synthesis, characterization and in vitro antimicrobial activity of some new Schiff bases and their complexes. J. Antibiot. (Tokyo), 2013, 66(11), 687-689.
[http://dx.doi.org/10.1038/ja.2013.73] [PMID: 23838746]
[29]
Kumar, M.; Padmini, T.; Ponnuvel, K. Synthesis, characterization and antioxidant activities of Schiff bases are of cholesterol. J. Saudi Chem. Soc., 2017, 21, S322-S328.
[http://dx.doi.org/10.1016/j.jscs.2014.03.006]
[30]
Bakır, T.K.; Lawag, J.B. Preparation, characterization, antioxidant properties of novel Schiff bases including 5-chloroisatin-thiocarbohydrazone. Res. Chem. Intermed., 2020, 46, 2541-2557.
[http://dx.doi.org/10.1007/s11164-020-04105-y]
[31]
Kizilkaya, H.; Dag, B.; Aral, T.; Genc, N.; Erenler, R. Synthesis, characterization, and antioxidant activity of heterocyclic Schiff bases. J. Chin. Chem. Soc. (Taipei), 2020, 67(9), 1696-1701.
[http://dx.doi.org/10.1002/jccs.202000161]
[32]
Karanth, S.N.; Narayana, B.; Sarojini, B.K.; Khan, S.; Kenkere, S.S. A study on identification of nutraceutical value of new imidazolone Schiff base analogues. Lett. Drug Des. Discov., 2017, 14(12), 1358-1370.
[http://dx.doi.org/10.2174/1570180814666170412120555]
[33]
Namiecińska, E.; Sobiesiak, M.; Małecka, M.; Guga, P.; Rozalska, B.; Budzisz, E. Antimicrobial and structural properties of metal ions complexes with thiosemicarbazide motif and related heterocyclic compounds. Curr. Med. Chem., 2019, 26(4), 664-693.
[http://dx.doi.org/10.2174/0929867325666180228164656] [PMID: 29493443]
[34]
Alagarsamy, V.; Appani, R.; Sulthana, M.T.; Narendar, B.; Solomon, V. Design, synthesis and antimicrobial activities of 1-(4-oxo-3-(4-fluorophenyl)-3H-quinazolin-2-yl)-4-(substituted) thiosemicarbazide derivatives. J. Chil. Chem. Soc., 2016, 61(2), 2856-2860.
[http://dx.doi.org/10.4067/S0717-97072016000200002]
[35]
Plech, T.; Wujec, M.; Siwek, A.; Kosikowska, U.; Malm, A. Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety. Eur. J. Med. Chem., 2011, 46(1), 241-248.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.010] [PMID: 21130541]
[36]
Usta, A. Yılmaz, F.; Kapucu, G.; Baltas, N.; Mentese, E. Synthesis of some new benzimidazole derivatives with their antioxidant activi-ties. Lett. Org. Chem., 2015, 12(4), 227-232.
[http://dx.doi.org/10.2174/1570178612666150203233804]
[37]
Ma, X.L.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin., 2005, 26(4), 500-512.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00068.x] [PMID: 15780201]
[38]
Mannhold, R. Molecular drug properties-Measurement and prediction; Wiley-VHC Verlag GmbH & Co. KGaAWeinheim, Germany, , 2008; p. 30.
[39]
Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Butina, D.; Beck, G.; Sherborne, B.; Cooper, I.; Platts, J.A. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci., 2001, 90(6), 749-784.
[http://dx.doi.org/10.1002/jps.1031] [PMID: 11357178]
[40]
Björkelid, C.; Bergfors, T.; Raichurkar, A.K.V.; Mukherjee, K.; Malolanarasimhan, K.; Bandodkar, B.; Jones, T.A. Structural and biochem-ical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. J. Biol. Chem., 2013, 288(25), 18260-18270.
[http://dx.doi.org/10.1074/jbc.M113.476473] [PMID: 23661699]
[41]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhi-bition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11354-11359.
[http://dx.doi.org/10.1073/pnas.1205735109] [PMID: 22733761]
[42]
Wehenkel, A.; Fernandez, P.; Bellinzoni, M.; Catherinot, V.; Barilone, N.; Labesse, G.; Jackson, M.; Alzari, P.M. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett., 2006, 580(13), 3018-3022.
[http://dx.doi.org/10.1016/j.febslet.2006.04.046] [PMID: 16674948]
[43]
Luckner, S.R.; Machutta, C.A.; Tonge, P.J.; Kisker, C. Crystal structures of Mycobacterium tuberculosis KasA show mode of action within cell wall biosynthesis and its inhibition by thiolactomycin. Structure, 2009, 17(7), 1004-1013.
[http://dx.doi.org/10.1016/j.str.2009.04.012] [PMID: 19604480]
[44]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[45]
National committee for clinical laboratory standards: Antimycobacterial susceptibility testing for M. tuberculosis. Proposed standards M24-T,. 1995.
[46]
Sriram, D.; Yogeeswari, P.; Dinakaran, M.; Thirumurugan, R. Antimycobacterial activity of novel 1-(5-cyclobutyl-1,3-oxazol-2-yl)-3-(sub)phenyl/pyridylthiourea compounds endowed with high activity toward multidrug-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2007, 59(6), 1194-1196.
[http://dx.doi.org/10.1093/jac/dkm085] [PMID: 17449482]
[47]
Hawkey, P.M.; Lewis, D.A. Medical bacteriology: A practical approach, 1st ed; Oxford University Press, 1990, pp. 181-194.
[48]
Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. (Tokyo), 1988, 36(6), 2090-2097.
[http://dx.doi.org/10.1248/cpb.36.2090] [PMID: 3240445]
[49]
Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[50]
Alegaon, S.G.; Alagawadi, K.R.; Sonkusare, P.V.; Chaudhary, S.M.; Dadwe, D.H.; Shah, A.S. Novel imidazo[2,1-b][1,3,4]thiadiazole car-rying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1917-1921.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.052] [PMID: 22325950]
[51]
Parepally, J.M.R.; Mandula, H.; Smith, Q.R. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indometh-acin. Pharm. Res., 2006, 23(5), 873-881.
[http://dx.doi.org/10.1007/s11095-006-9905-5] [PMID: 16715377]
[52]
Prisic, S.; Husson, R.N. Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol. Spectr., 2014, 2(5), 681-708.
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0006-2013] [PMID: 25429354]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy