Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking of the Terpenes in Gorgonian Corals to COX-2 and iNOS Enzymes as Anti-Inflammatory

Author(s): Faruk Jayanto Kelutur, Nyi Mekar Saptarini*, Resmi Mustarichie and Dikdik Kurnia

Volume 19, Issue 8, 2022

Published on: 01 February, 2022

Page: [706 - 721] Pages: 16

DOI: 10.2174/1570180819666211227162950

Price: $65

Abstract

Background: Because the inflammatory pathway is triggered by the enzymes cyclooxygenase- 2 (COX-2) and inducible nitric oxide synthase (iNOS), inhibitors, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are needed, although these have side effects. Therefore, the discovery and development of natural medicine as a lead compound are needed. The gorgonian corals have been reported to contain cyclic diterpenes with anti-inflammatory activities. The specific anti-inflammatory inhibitor potential has not been reported regarding these secondary metabolites, whether in COX-2 or iNOS. Thus, the in silico method is the right alternative.

Objective: This study aimed to determine the potency of fifteen terpenes of the various gorgonian corals to COX-2 and iNOS enzymes as an anti-inflammatory.

Methods: Molecular docking was performed using ChemDraw Ultra 12.0, Chem3D Pro 12.0, Biovia Discovery Studio 2016 Client®, Autodock Tools 4.2, prediction pharmacokinetics (Pre-ADMET), and oral administration (Lipinski rule of five).

Results: Potential terpenes based on ΔG (kcal/mol) and Ki (nM) to COX-2 were gyrosanol B (-10,32; 27,15), gyrosanol A (-10,20; 33,57), echinolabdane A (-9,81; 64,76). Only nine terpenes were specific to COX-2 active sites, while for iNOS were palmonine F (-7.76; 2070), briarenol C (-7.55; 2910), and all test compounds binding to the iNOS active sites. Pre-ADMET prediction obtained that HIA was very excellent (70–100%), Caco-2 had moderate permeability (4-70 nm sec-1), and PPB had strong binding (> 90%). Eight terpenes qualified for the Lipinski rule of five.

Conclusion: iNOS was a specific target for terpenes based on the free energy of binding (ΔG).

Keywords: Gorgonians, cyclic diterpenes, anti-inflammatory, in silico, pharmacokinetics, physicochemistry.

Graphical Abstract
[1]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[2]
Pierce, A.; Pittet, J-F. Inflammatory response to trauma: implications for coagulation and resuscitation. Curr. Opin. Anaesthesiol., 2014, 27(2), 246-252.
[http://dx.doi.org/10.1097/ACO.0000000000000047] [PMID: 24419158]
[3]
Lordan, R.; Tsoupras, A.; Zabetakis, I. Inflammation. In: The impact of nutrition and statins on cardiovascular diseases, 1st eds; Elsevier: Amsterdam, 2019; pp. 23-51.
[http://dx.doi.org/10.1016/B978-0-12-813792-5.00002-1]
[4]
Ansar, W.; Ghosh, S. Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. Biology of C Reactive Protein in Health and Disease; Springer Nature, 2016, pp. 67-107.
[5]
Joshi, T.; Sharma, P.; Joshi, T.; Chandra, S. In silico screening of anti-inflammatory compounds from Lichen by targeting cyclooxygenase-2. J. Biomol. Struct. Dyn., 2020, 38(12), 3544-3562.
[http://dx.doi.org/10.1080/07391102.2019.1664328] [PMID: 31524074]
[6]
Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol., 2012, 2(98), 98.
[http://dx.doi.org/10.3389/fimmu.2011.00098] [PMID: 22566887]
[7]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Mil-ler, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[8]
Galkina, E.; Ley, K. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol., 2009, 27(1), 165-197.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132620] [PMID: 19302038]
[9]
Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res., 2018, 6(1), 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9] [PMID: 29736302]
[10]
Murdoch, J.R.; Lloyd, C.M. Chronic inflammation and asthma. Mutat. Res., 2010, 690(1-2), 24-39.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.005] [PMID: 19769993]
[11]
Sorriento, D.; Iaccarino, G. Inflammation and cardiovascular diseases: The most recent findings. Int. J. Mol. Sci., 2019, 20(16), 3879.
[http://dx.doi.org/10.3390/ijms20163879] [PMID: 31395800]
[12]
González, Y.; Torres-Mendoza, D.; Jones, G.E.; Fernandez, P.L. Marine diterpenoids as potential anti-inflammatory agents. Mediat. Inflammation, 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/263543]
[13]
Kulkarni, O.P.; Lichtnekert, J.; Anders, H-J.; Mulay, S.R. The immune system in tissue environments regaining homeostasis after injury: Is “inflammation” always inflammation? Mediators Inflamm., 2016, 2016, 2856213.
[http://dx.doi.org/10.1155/2016/2856213] [PMID: 27597803]
[14]
Moro-García, M.A.; Mayo, J.C.; Sainz, R.M.; Alonso-Arias, R. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front. Immunol., 2018, 9(339), 339.
[http://dx.doi.org/10.3389/fimmu.2018.00339] [PMID: 29545794]
[15]
Gandhi, J.; Khera, L.; Gaur, N.; Paul, C.; Kaul, R. Role of a modulator of inflammation cyclooxygenase-2 in ɤ-herpes virus-mediated tu-morigenesis. Front. Microbiol., 2017, 8(538), 538.
[http://dx.doi.org/10.3389/fmicb.2017.00538] [PMID: 28400769]
[16]
Grimm, E.A.; Sikora, A.G.; Ekmekcioglu, S. Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin. Cancer Res., 2013, 19(20), 5557-5563.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1554] [PMID: 23868870]
[17]
Ornelas, A.; Zacharias-Millward, N.; Menter, D.G.; Davis, J.S.; Lichtenberger, L.; Hawke, D.; Hawk, E.; Vilar, E.; Bhattacharya, P.; Mill-ward, S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev., 2017, 36(2), 289-303.
[http://dx.doi.org/10.1007/s10555-017-9675-z] [PMID: 28762014]
[18]
Na’imah, J. In silico study of COX-2 on indomethacin and diclofenac as nonsteroidal anti-inflammatory drugs (NSAIDs). Farmasains J. Farm. Dan. Ilmu. Kesehat., 2019, 4(1), 31.
[http://dx.doi.org/10.22219/farmasains.v4i7.7767]
[19]
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J., 2012, 33(7), 829-837, 837a-837d.
[http://dx.doi.org/10.1093/eurheartj/ehr304]
[20]
Garcin, E.D.; Arvai, A.S.; Rosenfeld, R.J.; Kroeger, M.D.; Crane, B.R.; Andersson, G.; Andrews, G.; Hamley, P.J.; Mallinder, P.R.; Nicholls, D.J.; St-Gallay, S.A.; Tinker, A.C.; Gensmantel, N.P.; Mete, A.; Cheshire, D.R.; Connolly, S.; Stuehr, D.J.; Aberg, A.; Wallace, A.V.; Tainer, J.A.; Getzoff, E.D. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat. Chem. Biol., 2008, 4(11), 700-707.
[http://dx.doi.org/10.1038/nchembio.115] [PMID: 18849972]
[21]
Xue, Q.; Yan, Y.; Zhang, R.; Xiong, H. Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci., 2018, 19(12), 3805.
[http://dx.doi.org/10.3390/ijms19123805] [PMID: 30501075]
[22]
Musfiroh, I.; Nursamsiar, N.; Muhtadi, A.; Tjahjono, D.H. In silico study of Asiatic acid interaction with inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Int. J. Pharm. Pharm. Sci., 2013, 2(1), 204-207.
[23]
Mukherjee, P.; Cinelli, M.A.; Kang, S.; Silverman, R.B. Development of nitric oxide synthase inhibitors for neurodegeneration and neuro-pathic pain. Chem. Soc. Rev., 2014, 43(19), 6814-6838.
[http://dx.doi.org/10.1039/C3CS60467E] [PMID: 24549364]
[24]
Singgih, M.F. Huldani; Achmad, H.; Sukmana, B.I.; Carmelita, A.B.; Putra, A.P.; Ramadhany, S.; Putri, A.P. A review of nonsteroidal anti-inflammatory drugs (NSAIDs) medications in dentistry: Uses and side effects. Syst. Rev. Pharm., 2020, 11(5), 293-298.
[http://dx.doi.org/10.31838/srp.2020.5.43]
[25]
Hajhashemi, V.; Sajjadi, S.E.; Heshmati, M. Anti-inflammatory and analgesic properties of Heracleum persicum essential oil and hydroal-coholic extract in animal models. J. Ethnopharmacol., 2009, 124(3), 475-480.
[http://dx.doi.org/10.1016/j.jep.2009.05.012] [PMID: 19467316]
[26]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[27]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[28]
McFadden, C.S.; France, S.C.; Sánchez, J.A.; Alderslade, P. A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol. Phylogenet. Evol., 2006, 41(3), 513-527.
[http://dx.doi.org/10.1016/j.ympev.2006.06.010] [PMID: 16876445]
[29]
Matulja, D.; Kolympadi Markovic, M. Ambrožić; G.; Laclef, S.; Pavelić; S.K.; Marković; D. Secondary metabolites from gorgonian corals of the genus Eunicella: Structural characterizations, biological activities, and synthetic approaches. Molecules, 2019, 25(1), 129.
[http://dx.doi.org/10.3390/molecules25010129] [PMID: 31905691]
[30]
Changyun, W.; Haiyan, L.; Changlun, S.; Yanan, W.; Liang, L.; Huashi, G. Chemical defensive substances of soft corals and gorgonians. Acta Ecol. Sin., 2008, 28(5), 2320-2328.
[http://dx.doi.org/10.1016/S1872-2032(08)60048-7]
[31]
Pénez, N.; Culioli, G.; Pérez, T.; Briand, J.F.; Thomas, O.P.; Blache, Y. Antifouling properties of simple indole and purine alkaloids from the Mediterranean gorgonian Paramuricea Clavata. J. Nat. Prod., 2011, 74(10), 2304-2308.
[http://dx.doi.org/10.1021/np200537v] [PMID: 21939218]
[32]
Cooper, E.L.; Hirabayashi, K.; Strychar, K.B.; Sammarco, P.W. Corals and their potential applications to integrative medicine. Evid. Based Complement. Alternat. Med., 2014, 2014, 184959.
[http://dx.doi.org/10.1155/2014/184959] [PMID: 24757491]
[33]
Deghrigue, M.; Lajili, S.; Turki, M.; Eltaief, N.; Bouraoui, A. Evaluation of anti-inflammatory, analgesic, and gastroprotective activities of Eunicella singularis fractions using in-vivo assays. J. Ann. Med. Ad. Biomed. Sci., 2015, 1(1), 23-28.
[34]
Su, T.; Kuo, T.; Yang, S.; Lee, G.; Lee, Y.; Wang, Y.; Chen, J.; Wen, Z.; Hwang, T.; Sung, P. 11,20-epoxybriaranes from the gorgonian coral Junceella fragilis (ellisellidae). Mar. Drugs, 2020, 24(13), 2487.
[http://dx.doi.org/10.3390/molecules24132487]
[35]
Chen, N.F.; Su, Y.D.; Hwang, T.L.; Liao, Z.J.; Tsui, K.H.; Wen, Z.H.; Wu, Y.C.; Sung, P.J.; Schmidt, T.J. Briarenols C-E, new polyoxygen-ated briaranes from the octocoral Briareum excavatum. Molecules, 2017, 22(3), 1-9.
[http://dx.doi.org/10.3390/molecules22030475] [PMID: 28304345]
[36]
Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: in silico methods for drug design and discovery. Front Chem., 2020, 8, 612.
[http://dx.doi.org/10.3389/fchem.2020.00612] [PMID: 32850641]
[37]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio 2016 Client®. 2016. Available from: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/ (accessed March 18, 2020).
[38]
The Scripps research institute: Autodock tools 4.2. Available from: http://autodock.scripps.edu/ (accessed March 18, 2020).
[39]
Pereira, C.; Mendes, A.N. Computational analysis of eugenol inhibitory activity in lipooxygenase and cyclooxygenase pathways. Sci. Rep., 2020, 10(16204), 1-14.
[http://dx.doi.org/10.1038/s41598-020-73203-z]
[40]
Chung, H.M.; Wang, W.H.; Hwang, T.L.; Chen, J.J.; Fang, L.S.; Wen, Z.H.; Wang, Y.B.; Wu, Y.C.; Sung, P.J. Rumphellols A and B, new caryophyllene sesquiterpenoids from a Formosan gorgonian coral, Rumphella antipathies. Int. J. Mol. Sci., 2014, 15(9), 15679-15688.
[http://dx.doi.org/10.3390/ijms150915679] [PMID: 25192289]
[41]
Cheng, W.; Ji, M.; Li, X.; Ren, J.; Yin, F.; van Ofwegen, L.; Yu, S.; Chen, X.; Lin, W. Fragilolides A-Q, norditerpenoid and briarane diterpenoids from the gorgonian coral Junceella fragilis. Tetrahedron, 2017, 73(17), 2518-2528.
[http://dx.doi.org/10.1016/j.tet.2017.03.037]
[42]
Bahl, A.; Jachak, S.M.; Palaniveloo, K.; Ramachandram, T.; Vairappan, C.S.; Chopra, H.K. 2-Acetoxyverecynarmin C, a new briarane COX inhibitory diterpenoid from Pennatula aculeata. Nat. Prod. Commun., 2014, 9(8), 1139-1141.
[http://dx.doi.org/10.1177/1934578X1400900820] [PMID: 25233592]
[43]
Lin, Y.Y.; Lin, S.C.; Feng, C.W.; Chen, P.C.; Su, Y.D.; Li, C.M.; Yang, S.N.; Jean, Y.H.; Sung, P.J.; Duh, C.Y.; Wen, Z.H. Anti-inflammatory and analgesic effects of the marine- derived compound excavatolide B isolated from the culture type formosan gorgonian Briareum excavatum. Mar. Drugs, 2015, 13(5), 2559-2579.
[http://dx.doi.org/10.3390/md13052559] [PMID: 25923315]
[44]
Deghrigue, M.; Festa, C.; Ghribi, L.; D’Auria, M.V.; De Marino, S.; Ben Jannet, H.; Bouraoui, A. Anti-inflammatory and analgesic activi-ties with gastroprotective effect of semi-purified fractions and isolation of pure compounds from Mediterranean gorgonian Eunicella sin-gularis. Asian Pac. J. Trop. Med., 2015, 8(8), 606-611.
[http://dx.doi.org/10.1016/j.apjtm.2015.07.019] [PMID: 26321512]
[45]
Cheng, S.Y.; Chuang, C.T.; Wang, S.K.; Wen, Z.H.; Chiou, S.F.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Antiviral and anti-inflammatory diterpe-noids from the soft coral Sinularia gyrosa. J. Nat. Prod., 2010, 73(6), 1184-1187.
[http://dx.doi.org/10.1021/np100185a] [PMID: 20499851]
[46]
Chung, H-M.; Hong, P-H.; Su, J-H.; Hwang, T-L.; Lu, M-C.; Fang, L-S.; Wu, Y-C.; Li, J-J.; Chen, J-J.; Wang, W-H.; Sung, P-J. Bioactive compounds from a gorgonian coral Echinomuricea sp. (Plexauridae). Mar. Drugs, 2012, 10(5), 1169-1179.
[http://dx.doi.org/10.3390/md10051169] [PMID: 22822364]
[47]
González, Y.; Doens, D.; Santamaría, R.; Ramos, M.; Restrepo, C.M.; Barros de Arruda, L.; Lleonart, R.; Gutiérrez, M.; Fernández, P.L. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-α in macrophages. PLoS One, 2013, 8(12), e84107.
[http://dx.doi.org/10.1371/journal.pone.0084107] [PMID: 24358331]
[48]
Wibowo, S. Sri Widyarti; Sabarudin, A.; Soeatmadji, D.W.; Sumitro, S.B. The role of astaxanthin compared with metformin in preventing glycated human serum albumin from possible unfolding: a molecular dynamic study. Asian J. Pharm. Clin. Res., 2019, 12(9), 276-282.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34617]
[49]
Kumar, N.; Pruthi, V. Structural elucidation and molecular docking of ferulic acid from Parthenium hysterophorus possessing COX-2 inhibition activity. 3 Biotech, 2015, 5(4), 541-551.
[http://dx.doi.org/10.10007/s13205-014-0253-6]
[50]
Kolina, J.; Sumiwi, S.A.; Levita, J. Mode ikatan metabolit sekunder di tanaman akar kuning (Arcangelisia flava L.) dengan nitrat oksida sintase. Fitofarmaka J. Ilm. Farm., 2018, 8(1), 50-58.
[http://dx.doi.org/10.33751/jf.v8i1.1171]
[51]
Narayanaswamy, R.; Wai, L.K.; Esa, N.M. Molecular docking analysis of phytic acid and 4-hydroxy isoleucine as cyclooxygenase-2, microsomal prostaglandin E synthase-2, tyrosinase, human neutrophil elastase, matrix metalloproteinase-2 and -9, xanthine oxidase, squalene synthase, nitric oxide synthase. Pharmacogn. Mag., 2017, 13, 512-518.
[http://dx.doi.org/10.4103/pm.pm_195_16] [PMID: 29142407]
[52]
Kelutur, F.J.; Mustarichie, R. Molecular docking of the potential compounds from cocoa shells (Theobroma cacao L.) against androgen receptor as anti-alopecia. J. Glob. Pharma Technol., 2020, 12(9), 52-60.
[53]
Roy, D.; Kumar, V.; Acharya, K.K.; Thirumurugan, K. Probing the binding of Syzygium-derived α-glucosidase inhibitors with N- and C-terminal human maltase glucoamylase by docking and molecular dynamics simulation. Appl. Biochem. Biotechnol., 2014, 172(1), 102-114.
[http://dx.doi.org/10.1007/s12010-013-0497-3] [PMID: 24046257]
[54]
Grolmusz, V. Evaluating genetic algorithms in protein-ligand evaluating genetic algorithms in protein-ligand docking; Springer, 2008, pp. 404-413.
[55]
Pratama, M.R.F. Studi docking molecular senyawa turunan kuinolin terhadap reseptor estrogen-alpha. J. Surya Med., 2016, 2(1), 1-7.
[http://dx.doi.org/10.33084/jsm.v2i1.215]
[56]
Kim, R.; Skolnick, J. Assessment of programs for ligand binding affinity prediction. J. Comput. Chem., 2008, 29(8), 1316-1331.
[http://dx.doi.org/10.1002/jcc.20893] [PMID: 18172838]
[57]
Kelutur, F.J.; Mustarichie, R.; Umar, A.K. Virtual screening kandungan senyawa kipas laut (Gorgonia mariae) sebagai antiasma. J. Penelit. Kim., 2020, 16(2), 199-210.
[http://dx.doi.org/10.20961/alchemy.16.2.39965.199-210]
[58]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[59]
Drie, J.H. Pharmacophore-based virtual screening: A practical perspective. Virtual screening in drug discovery; Alvarez, J; Shoichet, B., Ed.; CRC Press: Florida, USA, 2005.
[http://dx.doi.org/10.1201/9781420028775.ch7]
[60]
Yanuar, A. Penambatan Molekular : Praktek dan Aplikasi Pada Virtual & Screening. Patent No. 081785, 2012.
[61]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[62]
Cuzzolin, A.; Sturlese, M.; Malvacio, I.; Ciancetta, A.; Moro, S. DockBench: An integrated informatic platform bridging the gap between the robust validation of docking protocols and virtual screening simulations. Molecules, 2015, 20(6), 9977-9993.
[http://dx.doi.org/10.3390/molecules20069977] [PMID: 26035098]
[63]
Muttaqin, F.Z.; Pratama, M.F.; Kurniawan, F. Molecular docking and molecular dynamic studies of stilbene derivative compounds as sirtuin-3 (SIRT3) histone deacetylase inhibitor on melanoma skin cancer and their toxicities. J. Pharmacopolium, 2019, 2(2), 112-121.
[http://dx.doi.org/10.36465/jop.v2i2.489]
[64]
Fuhrmann, J.; Rurainski, A.; Lenhof, H-P.; Neumann, D. A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J. Comput. Chem., 2010, 31(9), 1911-1918.
[http://dx.doi.org/10.1002/jcc.21478] [PMID: 20082382]
[65]
Puspaningtyas, A.R. Molecular docking using molegro virtual docker (MVD) on water extract of guava fruit (Psidium Gajava, Linn) and sweet orange (Citrus sinensis, peels) as inhibitor on enzyme tyrosinase as positive control of whitening agent. J. Kim. Terap. Indonesia., 2013, 15(1), 31-39.
[http://dx.doi.org/10.14203/jkti.v15i1.102]
[66]
Bissantz, C.; Folkers, G.; Rognan, D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem., 2000, 43(25), 4759-4767.
[http://dx.doi.org/10.1021/jm001044l] [PMID: 11123984]
[67]
Kontoyianni, M.; McClellan, L.M.; Sokol, G.S. Evaluation of docking performance: comparative data on docking algorithms. J. Med. Chem., 2004, 47(3), 558-565.
[http://dx.doi.org/10.1021/jm0302997] [PMID: 14736237]
[68]
Pratama, M.R.F. Molecular docking of anti-cancer agents : artemisinin and derivates as HER2 inhibitor. Proceedings of 1st Sari Mulia International Conference on Health and Science, December 2015,, 2015. Available from: https://ssrn.com/abstract=3007682
[69]
Kumar, N.; Gorai, B.; Gupta, S. Shiva; Goel, N. Extrapolation of hydroxytyrosol and its analogues as potential anti-inflammatory agents. J. Biomol. Struct. Dyn., 2021, 39(15), 5588-5599.
[http://dx.doi.org/10.1080/07391102.2020.1792990] [PMID: 32672527]
[70]
Adelina, R. Molecular docking studies of annomuricin E and muricapentocin on anti-proliferation activity. J. Ilmu Kefarmasian Indones., 2014, 12(1), 32-36.
[71]
Umamaheswari, M.; Madeswaran, A.; Asokkumar, K. Virtual screening analysis and in-vitro xanthine oxidase inhibitory activity of some commercially available flavonoids. Iran. J. Pharm. Res., 2013, 12(3), 317-323.
[PMID: 24250638]
[72]
Kartasasmita, R.E.; Herowati, R.; Harmastuti, N.; Gusdinar, T. Quercetin derivatives docking based on study of flavonoids interaction to cyclooxygenase-2. Indonesia. J. Chem., 2009, 9(2), 297-302.
[http://dx.doi.org/10.22146/ijc.21545]
[73]
Handajani, J.; Fatimah, S.; Asih, R.; Latif, A. Penurunan kadar IL-1β makrofag terpapar agregat bakteri actinomycetemcomitans setelah pemberian minyak atsiri temu putih. Maj. Kedokt. Gigi Indones., 2015, 1(2), 130-135.
[http://dx.doi.org/10.22146/majkedgiind.10158]
[74]
Duggan, K.C.; Walters, M.J.; Musee, J.; Harp, J.M.; Kiefer, J.R.; Oates, J.A.; Marnett, L.J. Molecular basis for cyclooxygenase inhibition by the nonsteroidal anti-molecular basis for cyclooxygenase inhibition. J. Biol. Chem., 2010, 285(45), 34950-34959.
[http://dx.doi.org/10.1074/jbc.M110.162982] [PMID: 20810665]
[75]
Yadav, T.C.; Kumar, N.; Raj, U.; Goel, N.; Vardawaj, P.K.; Prasad, R.; Pruthi, V. Exploration of interaction mechanism of tyrosol as a potent anti-inflammatory agent. J. Biomol. Struct. Dyn., 2020, 38(2), 382-397.
[http://dx.doi.org/10.1080/07391102.2019.1575283] [PMID: 30887884]
[76]
Kumar, N.; Goel, N.; Chand Yadav, T.; Pruthi, V. Quantum chemical, ADMET and molecular docking studies of ferulic acid amide deriva-tives with a novel anticancer drug target. Med. Chem. Res., 2017, 26(8), 1822-1834.
[http://dx.doi.org/10.1007/s00044-017-1893-y]
[77]
O’Hagan, S.; Kell, D.B. The apparent permeabilities of Caco-2 cells to marketed drugs: magnitude, and independence from both biophysi-cal properties and endogenite similarities. PeerJ, 2015, 3, e1405.
[http://dx.doi.org/10.7717/peerj.1405] [PMID: 26618081]
[78]
Megantara, S.; Levita, J.; Iwo, M.I.; Ibrahim, S. Absorption, distribution and toxicity prediction of andrographolide and its derivatives as anti-HIV drugs. Res. J. Chem. Environ., 2018, 22(1), 82-85.
[79]
Nursamsiar; Toding, A.T.; Awaluddin, A. Studi in silico senyawa turunan analog kalkon dan pirimidin sebagai anti-inflamasi: Prediksi absorpsi, distribusi, dan toksisitas. Pharmacy (Basel), 2016, 13(1), 92-100.
[http://dx.doi.org/10.30595/pji.v13i1.891]
[80]
Syahputra, G.; Ambarsari, L.; Sumaryada, T. Simulasi docking kurkumin enol, bis-demetoksi kurkumin dan analog sebagai inhibitor en-zim 12-lipoksigenase. J. Biofisika, 2014, 10(1), 55-67.
[81]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[82]
Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol., 2000, 9(3), 165-169.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x] [PMID: 10839713]
[83]
Kumar, N.; Gupta, S.; Chand Yadav, T.; Pruthi, V.; Kumar Varadwaj, P.; Goel, N. Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. J. Biomol. Struct. Dyn., 2019, 37(9), 2355-2369.
[http://dx.doi.org/10.1080/07391102.2018.1481457] [PMID: 30047324]
[84]
Rachmania, R.A. Supandi; Larasati, O.A. Analisis in silico senyawa diterpenoid lakton herbal Sambiloto (Andrographis paniculata. Nees) pada reseptor α-glukosidase sebagai anti-diabetes tipe II. Pharmacy (Basel), 2015, 12(2), 21-222.
[85]
Gao, Y.; Gesenberg, C.; Zheng, W. Oral formulations for pre-clinical studies. In.Developing Solid Oral Dosage Forms; Elsevier, 2017, pp. 455-495.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00017-0]
[86]
Sawale, R.T.; Kalyankar, T.M.; George, R.; Deosarkar, S.D. Molar refraction and polarizability of antiemetic drug 4-amino-5-monohydrate in (aqueous sodium or lithium chloride) solutions at 30oC. J. Appl. Pharm. Sci., 2016, 6(3), 120-124.
[http://dx.doi.org/10.7324/JAPS.2016.60321]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy