Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanoparticle Mediated Gene Therapy: A Trailblazer Armament to Fight CNS Disorders

Author(s): Annu, Saleha Rehman, Bushra Nabi, Ali Sartaj, Shadab Md, PK Sahoo, Sanjula Baboota and Javed Ali*

Volume 30, Issue 3, 2023

Published on: 14 March, 2022

Page: [304 - 315] Pages: 12

DOI: 10.2174/0929867329666220105122318

Price: $65

Open Access Journals Promotions 2
Abstract

Central nervous system (CNS) disorders account for boundless socioeconomic burdens with devastating effects among the population, especially the elderly. The major symptoms of these disorders are neurodegeneration, neuroinflammation, and cognitive dysfunction caused by inherited genetic mutations or by genetic and epigenetic changes due to injury, environmental factors, and disease-related events. Currently available clinical treatments for CNS diseases, i.e., Alzheimer’s disease, Parkinson’s disease, stroke, and brain tumor, have significant side effects and are largely unable to halt the clinical progression. So gene therapy displays a new paradigm in the treatment of these disorders with some modalities, varying from the suppression of endogenous genes to the expression of exogenous genes. Both viral and non-viral vectors are commonly used for gene therapy. Viral vectors are quite effective but associated with severe side effects, like immunogenicity and carcinogenicity, and poor target cell specificity. Thus, non-viral vectors, mainly nanotherapeutics like nanoparticles (NPs), turn out to be a realistic approach in gene therapy, achieving higher efficacy. NPs demonstrate a new avenue in pharmacotherapy for the delivery of drugs or genes to their selective cells or tissue, thus providing concentrated and constant drug delivery to targeted tissues, minimizing systemic toxicity and side effects. The current review will emphasize the role of NPs in mediating gene therapy for CNS disorders treatment. Moreover, the challenges and perspectives of NPs in gene therapy will be summarized.

Keywords: Gene therapy, nanoparticles, Parkinson’s disease, Alzheimer’s disease, stroke, brain tumors.

[1]
Ingusci, S.; Verlengia, G.; Soukupova, M.; Zucchini, S.; Simonato, M. Gene therapy tools for brain diseases. Front. Pharmacol., 2019, 10(724), 724.
[http://dx.doi.org/10.3389/fphar.2019.00724] [PMID: 31312139]
[2]
Choong, C-J.; Baba, K.; Mochizuki, H. Gene therapy for neurological disorders. Exp. Opin. Biol. Therap., 2016, 16(2), 143-159.
[3]
Kang, Y.J.; Cutler, E.G.; Cho, H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg., 2018, 5(1), 35.
[http://dx.doi.org/10.1186/s40580-018-0168-8] [PMID: 30499047]
[4]
Pena, S.A.; Iyengar, R.; Esraghi, R.S.; Bencie, N. Gene therapy for neurological disorders: Challenges and recent advancements. J. Drug Targt., 2020, 28(2), 111-128.
[5]
Matar, R.; Soleimani, M.; Merheb, M. Human gene therapy- the future of health care. Hmadan Med. J., 2015, 8, 101-110.
[http://dx.doi.org/10.7707/hmj.304]
[6]
Soleimani, M.; Al Zaabi, A.M.; Merheb, M.; Matar, R. Nanoparticles in gene therapy. Int. J. Integr. Biol., 2016, 17(1), 1-16.
[7]
P’erez-Martınez, F.C.; Carrion, B.; Cena, V. The use of nanoparticles for gene therapy in the nervous system. J. Alzh. Dis., 2012, 31(4), 697-710.
[8]
Jayant, R.D.; Sosa, D.; Kaushik, A.; Atluri, V.; Vashist, A. Current status of non-viral gene therapy for CNS disorders. Exp. Opin. Drug Del., 2016, 13(10), 1433-1445.
[9]
Huang, R.; Ke, W.; Han, L.; Liu, Y.; Shao, K.; Jiang, C.; Pei, Y. Lactoferrin-modified nanoparticles could mediate efficient gene delivery to the brain in vivo. Brain Res. Bull., 2010, 81(6), 600-604.
[http://dx.doi.org/10.1016/j.brainresbull.2009.12.008] [PMID: 20026388]
[10]
Lin, G.; Li, L.; Panwar, N.; Wang, J.; Tjin, S.C.; Wang, X.; Yong, K. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord. Chem. Rev., 2018, 374, 133-152.
[http://dx.doi.org/10.1016/j.ccr.2018.07.001]
[11]
Wang, D.; Gao, G. State-of-the-art human gene therapy: Part I. Gene delivery technologies. Discov. Med., 2014, 18(97), 67-77.
[PMID: 25091489]
[12]
Naldini, L. Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet., 2011, 12(5), 301-315.
[http://dx.doi.org/10.1038/nrg2985] [PMID: 21445084]
[13]
Zhong, Y.; Meng, F.; Deng, C.; Zhong, Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014, 15(6), 1955-1969.
[14]
Annu, S.R.; Rehman, S.; Md, S.; Baboota, S.; Ali, J. Analyzing Nanotherapeutics-based approach for the management of psychotic disorders. J. Pharm. Sci., 2019, 108(12), 3757-3768.
[http://dx.doi.org/10.1016/j.xphs.2019.08.027] [PMID: 31499066]
[15]
Rehman, S.; Nabi, B.; Pottoo, F.H.; Baboota, S.; Ali, J. Nanoparticle based gene therapy approach: A pioneering rebellion in the management of psychiatric disorders. Curr. Gene Ther., 2020, 20(3), 164-173.
[http://dx.doi.org/10.2174/1566523220666200607185903] [PMID: 32515310]
[16]
Faraji, A.H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem., 2009, 17(8), 2950-2962.
[http://dx.doi.org/10.1016/j.bmc.2009.02.043] [PMID: 19299149]
[17]
Yang, H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm. Res., 2010, 27(9), 1759-1771.
[http://dx.doi.org/10.1007/s11095-010-0141-7] [PMID: 20593303]
[18]
Ke, W.; Shao, K.; Huang, R.; Han, L.; Liu, Y. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol modified polyamidoamine dendrimer. Biomaterials, 2009, 30(36), 6976-6985.
[19]
Montensinos, R.N. Liposomal drug delivery to the central nervous system. In: Book Chapter Liposomes, Liposomes Eds.; Catala, A., Ed.; Intech Open, 2017.
[20]
Newland, B.; Dowd, E.; Pandit, A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater. Sci., 2013, 1(6), 556-576.
[http://dx.doi.org/10.1039/c3bm60030k] [PMID: 32481832]
[21]
Annu, S.A. Nanocarriers for the delivery of combination drugs (Liposomal nanocarriers for delivery of combination drugs) In: Micro & Nano Technology Books; Baboota, S.; Ali, J., Eds.; 47-83.Elsevier, 2021; pp.
[22]
Mead, B.P.; Mastorakos, P.; Suk, J.S.; Klibanov, A.L.; Hanes, J.; Price, R.J. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J. Control. Release, 2016, 223, 109-117.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.034] [PMID: 26732553]
[23]
Mastorakos, P.; Song, E.; Zhang, C.; Berry, S.; Park, H.W.; Kim, Y.E.; Park, J.S.; Lee, S.; Suk, J.S.; Hanes, J. Biodegradable DNA Nanoparticles that provide widespread gene delivery in the brain. Small, 2016, 12(5), 678-685.
[http://dx.doi.org/10.1002/smll.201502554] [PMID: 26680637]
[24]
Li, R.; Li, Y.; Mu, M.; Yang, B.; Chen, X.; Lee, W.Y.W.; Ke, Y.; Yung, W.H.; Tang, B.Z.; Bian, L. Multifunctional nanoprobe for the delivery of therapeutic siRNA and real-time molecular imaging of Parkinson’s disease biomarkers. ACS Appl. Mater. Interfaces, 2021, 13(10), 11609-11620.
[http://dx.doi.org/10.1021/acsami.0c22112] [PMID: 33683858]
[25]
Niu, S.; Zhang, L-K.; Zhang, L.; Zhuang, S.; Zhan, X.; Chen, W.Y.; Du, S.; Yin, L.; You, R.; Li, C.H.; Guan, Y.Q. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics, 2017, 7(2), 344-356.
[http://dx.doi.org/10.7150/thno.16562] [PMID: 28042339]
[26]
Xue, Y.; Wang, N.; Zeng, Z.; Huang, J.; Xaing, Z.; Guan, Y-Q. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models. J. Mater. Sci. Technol., 2020, 43, 197-207.
[http://dx.doi.org/10.1016/j.jmst.2019.10.013]
[27]
Abid Sheikh, M.; Malik, Y.S.; Xing, Z.; Guo, Z. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson’s Disease (PD). Acta Biomater., 2016, 54, 58-68.
[PMID: 28025049]
[28]
Gan, L.; Li, Z.; Lv, Q.; Huang, W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm., 2019, 567, 118449.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118449] [PMID: 31226473]
[29]
Long, L.; Cai, X.; Guo, R.; Wang, P. Treatment of Parkinson’s disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles. Biochem. Biophys. Res. Commun., 2017, 482(1), 75-80.
[PMID: 27810365]
[30]
Liu, Y-Y.; Yang, X-Y.; Li, Z.; Liu, Z-L.; Cheng, D.; Wang, Y.; Wen, X.J.; Hu, J.Y.; Liu, J.; Wang, L.M.; Wang, H.J. Characterization of polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson’s disease. CNS Neurosci. Ther., 2014, 20(1), 76-85.
[http://dx.doi.org/10.1111/cns.12176] [PMID: 24279586]
[31]
Saraiva, C.; Ferreira, L.; Bernardino, L. Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson’s disease. Neurogenesis (Austin), 2016, 3(1), e1256855.
[http://dx.doi.org/10.1080/23262133.2016.1256855] [PMID: 28405588]
[32]
Aly, A.E.E.; Harmon, B.T.; Padegimas, L.; Sesenoglu-Laird, O. Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-Hydroxydopamine model of Parkinson’s disease. Mol. Neurobiol., 2018, 56(1), 688-701.
[PMID: 29779176]
[33]
Helmschrodt, C; Hobel, S; Schöniger, S; Bauer, A Polyethylenimine nanoparticle-mediated siRNA delivery to reduce a-Synuclein expression in a model of Parkinson’s disease. Mol. Therp. Nucleic Acid, 2017, 9, 57-68.
[http://dx.doi.org/10.1016/j.omtn.2017.08.013]
[34]
Chung, T-H.; Hsu, S.C.; Wu, S-H.; Hsiao, J-K.; Lin, C.P.; Yao, M.; Huang, D.M. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale, 2018, 10(6), 2998-3007.
[http://dx.doi.org/10.1039/C7NR06976F] [PMID: 29372743]
[35]
Stepanichev, M. Gene editing and Alzheimer’s disease: Is there light at the end of the tunnel? Front Genome Ed., 2020, 2, 4.
[36]
Lamyaa, M.K.; Nada, A.; Ibrahim, S.; Ayesha, F. Nanoparticle therapy is a promising approach in the management and prevention of many diseases: Does it help in curing Alzheimer disease. J. Nanotech., 2020, 2020, 8147080.
[37]
UC San Diego Health. First-in-human clinical trial to assess gene therapy for Alzheimer’s disease. Available from: ucsd.edu
[38]
Liu, Y.; An, S.; Li, J.; Kuang, Y.; He, X.; Guo, Y.; Ma, H.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials, 2016, 80, 33-45.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.060] [PMID: 26706474]
[39]
Lopez-Barbosa, N.; Garcia, J.G.; Cifuentes, J.; Castro, L.M.; Vargas, F.; Ostos, C.; Cardona-Gomez, G.P.; Hernandez, A.M.; Cruz, J.C. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer’s. Drug Deliv., 2020, 27(1), 864-875.
[http://dx.doi.org/10.1080/10717544.2020.1775724] [PMID: 32515999]
[40]
Dos Santos Rodrigues, B.; Kanekiyo, T.; Singh, J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm. Res., 2019, 36(11), 161.
[http://dx.doi.org/10.1007/s11095-019-2691-7] [PMID: 31529284]
[41]
Rassu, G; Soddu, E; Posadino, AM; Pintus, G Nose- to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Coll. Surf. B Biointerf., 2017, 152, 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031]
[42]
Wang, P.; Zheng, X.; Guo, Q.; Yang, P.; Pang, X.; Qian, K.; Lu, W.; Zhang, Q.; Jiang, X. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J. Control. Release, 2018, 279, 220-233.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.034] [PMID: 29679667]
[43]
Li, R.; Huang, Y.; Chen, L.; Zhou, H.; Zhang, M. Targeted delivery of Intranasally administered nanoparticles-mediated neuroprotective peptide NR2B9c to brain and neuron for treatment of ischemic stroke. Nanomedicine, 2019, 18, 380-390.
[44]
Ma, J.; Zhang, S.; Liu, J.; Liu, F.; Du, F.; Li, M.; Chen, A.T.; Bao, Y.; Suh, H.W.; Avery, J.; Deng, G.; Zhou, Y.; Wu, P.; Sheth, K.; Wang, H.; Zhou, J. Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small, 2019, 15(35), e1902011.
[http://dx.doi.org/10.1002/smll.201902011] [PMID: 31290245]
[45]
Oh, J.; Lee, J.; Piao, C.; Jeong, J.H.; Lee, M. A self-assembled DNA-nanoparticle with a targeting peptide for hypoxia-inducible gene therapy of ischemic stroke. Biomater. Sci., 2019, 7(5), 2174-2190.
[http://dx.doi.org/10.1039/C8BM01621F] [PMID: 30900719]
[46]
Kuang, Y.; An, S.; Guo, Y.; Huang, S.; Shao, K.; Liu, Y.; Li, J.; Ma, H.; Jiang, C. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int. J. Pharm., 2013, 454(1), 11-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.019] [PMID: 23867728]
[47]
Fan, C-H.; Cheng, Y-H.; Ting, C-Y.; Ho, Y.J.; Hsu, P.H.; Liu, H.L.; Yeh, C.K. Ultrasound/magnetic targeting with SPIO-DOX-Microbubble complex for image-guided drug delivery in brain tumors. Theranostics, 2016, 6(10), 1542-1556.
[http://dx.doi.org/10.7150/thno.15297] [PMID: 27446489]
[48]
Yang, Q.; Zhou, Y.; Chen, J.; Huang, N.; Wang, Z.; Cheng, Y. gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int. J. Nanomedicine, 2021, 16, 185-199.
[http://dx.doi.org/10.2147/IJN.S286221] [PMID: 33447034]
[49]
Li, J.; Gu, B.; Meng, Q.; Yan, Z.; Gao, H.; Chen, X.; Yang, X.; Lu, W. The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology, 2011, 22(43), 435101.
[http://dx.doi.org/10.1088/0957-4484/22/43/435101] [PMID: 21955528]
[50]
Mangraviti, A.; Tzeng, S.Y.; Kozielski, K.L.; Wang, Y.; Jin, Y.; Gullotti, D.; Pedone, M.; Buaron, N.; Liu, A.; Wilson, D.R.; Hansen, S.K.; Rodriguez, F.J.; Gao, G.D.; DiMeco, F.; Brem, H.; Olivi, A.; Tyler, B.; Green, J.J. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano, 2015, 9(2), 1236-1249.
[http://dx.doi.org/10.1021/nn504905q] [PMID: 25643235]
[51]
Wang, K.; Kievit, F.M.; Jeon, M.; Silber, J.R.; Ellenbogen, R.G.; Zhang, M. Nanoparticle-mediated target delivery of TRAIL as gene therapy for glioblastoma. Adv. Healthc. Mater., 2015, 4(17), 2719-2726.
[http://dx.doi.org/10.1002/adhm.201500563] [PMID: 26498165]
[52]
Chen, W.; Hu, Y.; Ju, D. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm. Sin. B, 2020, 10(8), 1347-1359.
[http://dx.doi.org/10.1016/j.apsb.2020.01.015] [PMID: 32963936]
[53]
Barnabas, W. Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods, 2019, 311, 133-146.
[http://dx.doi.org/10.1016/j.jneumeth.2018.10.015] [PMID: 30336221]
[54]
Dos Santos Rodrigues, B.; Lakkadwala, S.; Kanekiyo, T.; Singh, J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int. J. Nanomedicine, 2019, 14, 6497-6517.
[http://dx.doi.org/10.2147/IJN.S215941] [PMID: 31616141]
[55]
Pardo, J.; Morel, G.R.; Astiz, M.; Schwerdt, J.I.; León, M.L.; Rodríguez, S.S.; Hereñú, C.B.; Goya, R.G. Gene therapy and cell reprogramming for the aging brain: Achievements and promise. Curr. Gene Ther., 2014, 14(1), 24-34.
[http://dx.doi.org/10.2174/1566523214666140120121733] [PMID: 24450294]
[56]
Sternson, S.M.; Roth, B.L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci., 2014, 37, 387-407.
[http://dx.doi.org/10.1146/annurev-neuro-071013-014048] [PMID: 25002280]
[57]
Langiu, M.; Dadparvar, M.; Kreuter, J.; Ruonala, M.O. Human serum albumin-based nanoparticle-mediated in vitro gene delivery. PLoS One, 2014, 9(9), e107603.
[http://dx.doi.org/10.1371/journal.pone.0107603] [PMID: 25229502]
[58]
Erel-Akbaba, G.; Carvalho, L.A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P.J.; Chiocca, E.A.; Weissleder, R.; Kantarci, A.G.; Tannous, B.A. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano, 2019, 13(4), 4028-4040.
[http://dx.doi.org/10.1021/acsnano.8b08177] [PMID: 30916923]
[59]
Mastorakos, P.; Zhang, C.; Berry, S.; Oh, Y.; Lee, S.; Eberhart, C.G.; Woodworth, G.F.; Suk, J.S.; Hanes, J. Highly PEGylated DNA nanoparticles provide uniform and widespread gene transfer in the brain. Adv. Healthc. Mater., 2015, 4(7), 1023-1033.
[http://dx.doi.org/10.1002/adhm.201400800] [PMID: 25761435]
[60]
Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; Kissel, J.T.; Nagendran, S.; L’Italien, J.; Sproule, D.M.; Wells, C.; Cardenas, J.A.; Heitzer, M.D.; Kaspar, A.; Corcoran, S.; Braun, L.; Likhite, S.; Miranda, C.; Meyer, K.; Foust, K.D.; Burghes, A.H.M.; Kaspar, B.K. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med., 2017, 377(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[61]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[62]
Pardridge, W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci., 2020, 11, 373.
[http://dx.doi.org/10.3389/fnagi.2019.00373] [PMID: 31998120]
[63]
Liang, X.; Liu, L.; Wei, Y-Q.; Gao, G.; Wei, X. Toxicity and efficacy of nanoparticle-mediated gene therapy in clinical study. Hum. Gene Ther., 2018, 29(11), 1227-1234.
[64]
Patil, S.; Gao, Y-G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W.J.; Jiang, S.F.; Qadir, A.; Qian, A.R. The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 2019, 20(21), 5491-5498.
[http://dx.doi.org/10.3390/ijms20215491] [PMID: 31690044]
[65]
Verma, P.; Srivastava, A.; Srikanth, C.V.; Bajaj, A. Nanoparticle-mediated gene therapeutic strategies for mitigating the inflammatory bowel disease. Biomater. Sci., 2021, 9, 1481-1502.
[66]
Vago, R.; Collico, V.; Zuppone, S.; Prosperi, D.; Colombo, M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol. Res., 2016, 111, 619-641.
[http://dx.doi.org/10.1016/j.phrs.2016.07.007] [PMID: 27436147]
[67]
Wang, Y.; Huang, L. Composite nanoparticles for gene delivery. Adv. Genet., 2014, 88, 111-137.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00005-5] [PMID: 25409605]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy