Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Metainflammation in COVID-19

Author(s): Mojtaba Bakhtiari and Kamyar Asadipooya*

Volume 22, Issue 12, 2022

Published on: 26 April, 2022

Page: [1154 - 1166] Pages: 13

DOI: 10.2174/1871530322666220104103325

Price: $65

Open Access Journals Promotions 2
Abstract

A new coronavirus pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been on the rise. This virus is fatal for broad groups of populations, including elderly, men, and patients with comorbidities among which obesity is a possible risk factor. The pathophysiologic connections between obesity/metainflammation and COVID-19 may be directly related to increasing soluble ACE2 (angiotensin-converting enzyme 2) levels which potentiate the viral entrance into the host cells, or indirectly related to dysregulation of immune system, microvascular injury and hypercoagulability. The SARS-CoV-2 S-glycoprotein interacts mainly with ACE2 or possibly DPP4 receptors to enter into the host cells. The host proteases, especially TMPRSS2 (transmembrane protease serine 2), support the fusion process and virus entry. While membranous ACE2 is considered a port of entry to the cell for SARSCoV- 2, it seems that soluble ACE2 retains its virus binding capability and enhances its entry into the cells. Interestingly, ACE2 on cell membrane may have protective roles by diminishing cytokine storm-related injuries to the organs. Applying medications that can reduce soluble ACE2 levels, antagonizing TMPRSS2 or blocking DPP4 can improve the outcomes of COVID-19. Metformin and statins through immunomodulatory activities, Orlistat by reducing viral replication, and thiazolidinediones by upregulating ACE2 expression have potential beneficial effects against COVID-19. However, the combination of dipeptidyl peptidase-4 (DPP4) inhibitors and spironolactone/ eplerenone seems to be more effective by reducing soluble ACE2 level, antagonizing TMPRSS2, maintaining ACE2 on cell membrane and reducing risk of viral entry into the cells.

Keywords: Metainflammation, obesity, COVID-19, ACE2, spironolactone, DPP4 inhibitor.

Graphical Abstract
[1]
Cowan, S.F.; Leeming, E.R.; Sinclair, A.; Dordevic, A.L.; Truby, H.; Gibson, S.J. Effect of whole foods and dietary patterns on markers of subclinical inflammation in weight-stable overweight and obese adults: a systematic review. Nutr. Rev., 2020, 78(1), 19-38.
[http://dx.doi.org/10.1093/nutrit/nuz030] [PMID: 31429908]
[2]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[3]
Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; Ou, C.Q.; Li, L.; Chen, P.Y.; Sang, L.; Wang, W.; Li, J.F.; Li, C.C.; Ou, L.M.; Cheng, B.; Xiong, S.; Ni, Z.Y.; Xiang, J.; Hu, Y.; Liu, L.; Shan, H.; Lei, C.L.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Cheng, L.L.; Ye, F.; Li, S.Y.; Zheng, J.P.; Zhang, N.F.; Zhong, N.S.; He, J.X. China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J., 2020, 55(5), 55.
[http://dx.doi.org/10.1183/13993003.00547-2020] [PMID: 32217650]
[4]
Ioannou, G.N.; Locke, E.; Green, P.; Berry, K.; O’Hare, A.M.; Shah, J.A.; Crothers, K.; Eastment, M.C.; Dominitz, J.A.; Fan, V.S. Risk factors for hospitalization, mechanical ventilation, or death among 10131 US veterans with SARS-CoV-2 infection. JAMA Netw. Open, 2020, 3(9), e2022310.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.22310] [PMID: 32965502]
[5]
Zhang, S.Y.; Lian, J.S.; Hu, J.H.; Zhang, X.L.; Lu, Y.F.; Cai, H.; Gu, J.Q.; Ye, C.Y.; Jin, C.L.; Yu, G.D.; Jia, H.Y.; Zhang, Y.M.; Sheng, J.F.; Li, L.J.; Yang, Y.D. Clinical characteristics of different subtypes and risk factors for the severity of illness in patients with COVID-19 in Zhejiang, China. Infect. Dis. Poverty, 2020, 9(1), 85.
[http://dx.doi.org/10.1186/s40249-020-00710-6] [PMID: 32641121]
[6]
Bansal, R.; Gubbi, S.; Muniyappa, R. Metabolic syndrome and COVID-19: endocrine-immune-vascular interactions shapes clinical course. Endocrinology, 2020, 161(10), 161.
[http://dx.doi.org/10.1210/endocr/bqaa112] [PMID: 32603424]
[7]
Kruglikov, I.L.; Shah, M.; Scherer, P.E. Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions. eLife, 2020, 9, 9.
[http://dx.doi.org/10.7554/eLife.61330] [PMID: 32930095]
[8]
Ghoneim, S; Butt, MU; Hamid, O; Shah, A; Asaad, I The incidence of COVID-19 in patients with metabolic syndrome and non-alcoholic steatohepatitis: A population-based study. Metabolism Open, 2020, 8, 100057.
[9]
Bramante, C.; Tignanelli, C.J.; Dutta, N.; Jones, E.; Tamariz, L.; Clark, J.M.; Usher, M.; Metlon-Meaux, G.; Ikramuddin, S. Non-alcoholic fatty liver disease (NAFLD) and risk of hospitalization for COVID-19. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.09.01.20185850]
[10]
Chandarana, H.; Dane, B.; Mikheev, A.; Taffel, M.T.; Feng, Y.; Rusinek, H. Visceral adipose tissue in patients with COVID-19: risk stratification for severity. Abdom. Radiol. (N.Y.), 2020, 46(2), 1-8.
[PMID: 32748252]
[11]
Battisti, S.; Pedone, C.; Napoli, N.; Russo, E.; Agnoletti, V.; Nigra, S.G.; Dengo, C.; Mughetti, M.; Conte, C.; Pozzilli, P.; Giampalma, E.; Strollo, R. Computed tomography highlights increased visceral adiposity associated with critical illness in COVID-19. Diabetes Care, 2020, 43(10), e129-e130.
[http://dx.doi.org/10.2337/dc20-1333] [PMID: 32753457]
[12]
Petersen, A.; Bressem, K.; Albrecht, J.; Thieß, H.M.; Vahldiek, J.; Hamm, B.; Makowski, M.R.; Niehues, A.; Niehues, S.M.; Adams, L.C. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism, 2020, 110, 154317.
[http://dx.doi.org/10.1016/j.metabol.2020.154317] [PMID: 32673651]
[13]
Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev., 2020, 21(11), e13128.
[http://dx.doi.org/10.1111/obr.13128] [PMID: 32845580]
[14]
Huang, Y.; Lu, Y.; Huang, Y.M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.L. Obesity in patients with COVID-19: a systematic review and meta-analysis. Metabolism, 2020, 113, 154378.
[http://dx.doi.org/10.1016/j.metabol.2020.154378] [PMID: 33002478]
[15]
Yang, J; Zheng, Y; Gou, X; Pu, K; Chen, Z; Guo, Q; Ji, R; Wang, H; Wang, Y; Zhou, Y Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis., 2020, 94, 91-95.
[16]
Zuccon, W.; Comassi, P.; Adriani, L.; Bergamaschini, G.; Bertin, E.; Borromeo, R.; Corti, S.; De Petri, F.; Dolci, F.; Galmozzi, A.; Gigliotti, A.; Gualdoni, L.; Guerra, C.; Khosthiova, A.; Leati, G.; Lupi, G.; Moscato, P.; Perotti, V.; Piantelli, M.; Ruini, A.; Sportelli, S.; Susca, M.; Troiano, C.; Benelli, G.; Buscarini, E.; Canetta, C.; Merli, G.; Scartabellati, A.; Melilli, B.S.C.G.; Sfogliarini, R.; Pellegatta, G.; Viganò, G. Intensive care for seriously ill patients affected by novel coronavirus SARS-CoV-2: Experience of the Crema Hospital, Italy. Am. J. Emerg. Med., 2021, 45, 156-161.
[http://dx.doi.org/10.1016/j.ajem.2020.08.005] [PMID: 33046317]
[17]
Ramzy, M.; Montrief, T.; Gottlieb, M.; Brady, W.J.; Singh, M.; Long, B. COVID-19 cardiac arrest management: A review for emergency clinicians. Am. J. Emerg. Med., 2020, 38(12), 2693-2702.
[http://dx.doi.org/10.1016/j.ajem.2020.08.011] [PMID: 33041141]
[18]
Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[19]
Tiwari, A.; Berekashvili, K.; Vulkanov, V.; Agarwal, S.; Khaneja, A.; Turkel-Parella, D.; Liff, J.; Farkas, J.; Nandakumar, T.; Zhou, T.; Frontera, J.; Kahn, D.E.; Kim, S.; Humbert, K.A.; Sanger, M.D.; Yaghi, S.; Lord, A.; Arcot, K.; Dmytriw, A.A. Etiologic subtypes of ischemic stroke in SARS-COV-2 patients in a cohort of New York city hospitals. Front. Neurol., 2020, 11, 1004.
[http://dx.doi.org/10.3389/fneur.2020.01004] [PMID: 33041972]
[20]
De Santis Santiago, R.; Teggia Droghi, M.; Fumagalli, J.; Marrazzo, F.; Florio, G.; Grassi, L.G.; Gomes, S.; Morais, C.C.A.; Ramos, O.P.S.; Bottiroli, M.; Pinciroli, R.; Imber, D.A.; Bagchi, A.; Shelton, K.; Sonny, A.; Bittner, E.A.; Amato, M.B.P.; Kacmarek, R.M.; Berra, L. Lung rescue team investigators. High pleural pressure prevents alveolar overdistension and hemodynamic collapse in ards with class III obesity. Am. J. Respir. Crit. Care Med., 2020, 203(5), 575-584.
[http://dx.doi.org/10.1164/rccm.201909-1687OC] [PMID: 32876469]
[21]
Guisado-Vasco, P.; Cano-Megías, M.; Rodríguez-López, M.; de-Luna-Boquera, I.M.; Carnevali-Ruiz, D. Immunosuppressants against COVID-19 working team. COVID-19 and metabolic syndrome: nf-κb activation. crossroads. Trends Endocrinol. Metab., 2020, 31(11), 802-803.
[http://dx.doi.org/10.1016/j.tem.2020.08.004] [PMID: 32972818]
[22]
Frasca, D.; Blomberg, B.B. Obesity accelerates age defects in mouse and human B cells. Front. Immunol., 2020, 11, 2060.
[http://dx.doi.org/10.3389/fimmu.2020.02060] [PMID: 32983154]
[23]
Green, W.D.; Beck, M.A. Obesity altered T cell metabolism and the response to infection. Curr. Opin. Immunol., 2017, 46, 1-7.
[http://dx.doi.org/10.1016/j.coi.2017.03.008] [PMID: 28359913]
[24]
Wendel Garcia, P.D.; Fumeaux, T.; Guerci, P.; Heuberger, D.M.; Montomoli, J.; Roche-Campo, F.; Schuepbach, R.A.; Hilty, M.P. RISC-19-ICU investigators. prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international risc-19-icu prospective observational cohort. EClinicalMedicine, 2020, 25, 100449.
[http://dx.doi.org/10.1016/j.eclinm.2020.100449] [PMID: 32838231]
[25]
Wang, S.; Liu, X.; Chen, Q.; Liu, C.; Huang, C.; Fang, X. The role of increased body mass index in outcomes of sepsis: a systematic review and meta-analysis. BMC Anesthesiol., 2017, 17(1), 118.
[http://dx.doi.org/10.1186/s12871-017-0405-4] [PMID: 28859605]
[26]
Jagan, N.; Morrow, L.E.; Walters, R.W.; Plambeck, R.W.; Wallen, T.J.; Patel, T.M.; Malesker, M.A. Sepsis and the obesity paradox: size matters in more than one way. Crit. Care Med., 2020, 48(9), e776-e782.
[http://dx.doi.org/10.1097/CCM.0000000000004459] [PMID: 32590388]
[27]
Pepper, D.J.; Sun, J.; Welsh, J.; Cui, X.; Suffredini, A.F.; Eichacker, P.Q. Increased body mass index and adjusted mortality in ICU patients with sepsis or septic shock: a systematic review and meta-analysis. Crit. Care, 2016, 20(1), 181.
[http://dx.doi.org/10.1186/s13054-016-1360-z] [PMID: 27306751]
[28]
Asghar, M.; Hussain, N.; Shoaib, H.; Kim, M.; Lynch, T.J. Hematological characteristics of patients in coronavirus 19 infection: a systematic review and meta-analysis. J. Community Hosp. Intern. Med. Perspect., 2020, 10(6), 508-513.
[http://dx.doi.org/10.1080/20009666.2020.1808360] [PMID: 33194119]
[29]
Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat. Rev. Endocrinol., 2021, 7, 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[30]
Shi, Q.; Hu, Y.; Peng, B.; Tang, X.J.; Wang, W.; Su, K.; Luo, C.; Wu, B.; Zhang, F.; Zhang, Y.; Anderson, B.; Zhong, X.N.; Qiu, J.F.; Yang, C.Y.; Huang, A.L. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat. Med., 2021, 27, 86-93.
[PMID: 33257893]
[31]
Kawasuji, H.; Takegoshi, Y.; Kaneda, M.; Ueno, A.; Miyajima, Y.; Kawago, K.; Fukui, Y.; Yoshida, Y.; Kimura, M.; Yamada, H.; Sakamaki, I.; Tani, H.; Morinaga, Y.; Yamamoto, Y. Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients. PLoS One, 2020, 15(12), e0243597.
[http://dx.doi.org/10.1371/journal.pone.0243597] [PMID: 33296437]
[32]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181, 281-292.
[http://dx.doi.org/10.1016/j.cell.2020.11.032]
[33]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[34]
Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res., 2015, 202, 120-134.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[35]
Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol., 2020, 16(7), e9610.
[http://dx.doi.org/10.15252/msb.20209610] [PMID: 32715618]
[36]
Cantuti-Castelvetri, L; Ojha, R; Pedro, LD; Djannatian, M; Franz, J; Kuivanen, S; van der Meer, F; Kallio, K; Kaya, T; Anastasina, M; Smura, T; Levanov, L; Szirovicza, L; Tobi, A; Kallio-Kokko, H; Österlund, P; Joensuu, M; Meunier, FA; Butcher, SJ; Winkler, MS; Mollenhauer, B; Helenius, A; Gokce, O; Teesalu, T; Hepojoki, J; Vapalahti, O; Stadelmann, C.; Balistreri, G.; Simons, M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, 370, 856-860.
[37]
Vankadari, N.; Wilce, J.A. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect., 2020, 9(1), 601-604.
[http://dx.doi.org/10.1080/22221751.2020.1739565] [PMID: 32178593]
[38]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[39]
Mahmudpour, M.; Roozbeh, J.; Keshavarz, M.; Farrokhi, S.; Nabipour, I. COVID-19 cytokine storm: The anger of inflammation. Cytokine, 2020, 133, 155151.
[http://dx.doi.org/10.1016/j.cyto.2020.155151] [PMID: 32544563]
[40]
Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med., 2020, 76, 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037] [PMID: 32336612]
[41]
Zhou, Y.; Ren, Q.; Chen, G.; Jin, Q.; Cui, Q.; Luo, H.; Zheng, K.; Qin, Y.; Li, X. Chronic kidney diseases and acute kidney injury in patients With COVID-19: evidence from a meta-analysis. Front. Med. (Lausanne), 2020, 7, 588301.
[http://dx.doi.org/10.3389/fmed.2020.588301] [PMID: 33224965]
[42]
Narula, S.; Yusuf, S.; Chong, M.; Ramasundarahettige, C.; Rangarajan, S.; Bangdiwala, S.I.; van Eikels, M.; Leineweber, K.; Wu, A.; Pigeyre, M.; Paré, G. Plasma ACE2 and risk of death or cardiometabolic diseases: a case-cohort analysis. Lancet, 2020, 396(10256), 968-976.
[http://dx.doi.org/10.1016/S0140-6736(20)31964-4] [PMID: 33010842]
[43]
Kornilov, S.A.; Lucas, I.; Jade, K.; Dai, C.L.; Lovejoy, J.C.; Magis, A.T. Plasma levels of soluble ACE2 are associated with sex, metabolic syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Crit. Care, 2020, 24(1), 452.
[http://dx.doi.org/10.1186/s13054-020-03141-9] [PMID: 32698840]
[44]
Úri, K.; Fagyas, M.; Mányiné Siket, I.; Kertész, A.; Csanádi, Z.; Sándorfi, G.; Clemens, M.; Fedor, R.; Papp, Z.; Édes, I.; Tóth, A.; Lizanecz, E. New perspectives in the renin-angiotensin-aldosterone system (RAAS) IV: circulating ACE2 as a biomarker of systolic dysfunction in human hypertension and heart failure. PLoS One, 2014, 9(4), e87845.
[http://dx.doi.org/10.1371/journal.pone.0087845] [PMID: 24691269]
[45]
Shi, C.; Lu, K.; Xia, H.; Zhang, P.; Zhang, B. Alteration and association between serum ACE2/angiotensin(1-7)/Mas axis and oxidative stress in chronic kidney disease: A pilot study. Medicine (Baltimore), 2020, 99(31), e21492.
[http://dx.doi.org/10.1097/MD.0000000000021492] [PMID: 32756181]
[46]
Wallentin, L.; Lindbäck, J.; Eriksson, N.; Hijazi, Z.; Eikelboom, J.W.; Ezekowitz, M.D.; Granger, C.B.; Lopes, R.D.; Yusuf, S.; Oldgren, J.; Siegbahn, A. Angiotensin-converting enzyme 2 (ACE2) levels in relation to risk factors for COVID-19 in two large cohorts of patients with atrial fibrillation. Eur. Heart J., 2020, 41(41), 4037-4046.
[http://dx.doi.org/10.1093/eurheartj/ehaa697] [PMID: 32984892]
[47]
Zoufaly, A.; Poglitsch, M.; Aberle, J.H.; Hoepler, W.; Seitz, T.; Traugott, M.; Grieb, A.; Pawelka, E.; Laferl, H.; Wenisch, C.; Neuhold, S.; Haider, D.; Stiasny, K.; Bergthaler, A.; Puchhammer-Stoeckl, E.; Mirazimi, A.; Montserrat, N.; Zhang, H.; Slutsky, A.S.; Penninger, J.M. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir. Med., 2020, 8(11), 1154-1158.
[http://dx.doi.org/10.1016/S2213-2600(20)30418-5] [PMID: 33131609]
[48]
Haga, S.; Nagata, N.; Okamura, T.; Yamamoto, N.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res., 2010, 85(3), 551-555.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.001] [PMID: 19995578]
[49]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[50]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[51]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[52]
Li, L.; Liu, X.; Zhou, Y.; Wang, J. On resistance to virus entry into host cells. Biophys. J., 2012, 102(9), 2230-2233.
[http://dx.doi.org/10.1016/j.bpj.2012.03.066] [PMID: 22824288]
[53]
Pinheiro, T.A.; Barcala-Jorge, A.S.; Andrade, J.M.O.; Pinheiro, T.A.; Ferreira, E.C.N.; Crespo, T.S.; Batista-Jorge, G.C.; Vieira, C.A.; Lelis, D.F.; Paraíso, A.F.; Pinheiro, U.B.; Bertagnolli, M.; Albuquerque, C.J.B.; Guimarães, A.L.S.; de Paula, A.M.B.; Caldeira, A.P.; Santos, S.H.S. Obesity and malnutrition similarly alter the renin-angiotensin system and inflammation in mice and human adipose. J. Nutr. Biochem., 2017, 48, 74-82.
[http://dx.doi.org/10.1016/j.jnutbio.2017.06.008] [PMID: 28779634]
[54]
Rao, S.; Lau, A.; So, H.C. Exploring diseases/traits and blood proteins causally related to expression of ace2, the putative receptor of SARS-CoV-2: a mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care, 2020, 43(7), 1416-1426.
[http://dx.doi.org/10.2337/dc20-0643] [PMID: 32430459]
[55]
Radzikowska, U.; Ding, M.; Tan, G.; Zhakparov, D.; Peng, Y.; Wawrzyniak, P.; Wang, M.; Li, S.; Morita, H.; Altunbulakli, C.; Reiger, M.; Neumann, A.U.; Lunjani, N.; Traidl-Hoffmann, C.; Nadeau, K.C.; O’Mahony, L.; Akdis, C.; Sokolowska, M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy, 2020, 75(11), 2829-2845.
[http://dx.doi.org/10.1111/all.14429] [PMID: 32496587]
[56]
Al Heialy, S.; Hachim, M.Y.; Senok, A.; Gaudet, M.; Abou Tayoun, A.; Hamoudi, R.; Alsheikh-Ali, A.; Hamid, Q. Regulation of angiotensin- converting enzyme 2 in obesity: implications for COVID-19. Front. Physiol., 2020, 11, 555039.
[http://dx.doi.org/10.3389/fphys.2020.555039] [PMID: 33071815]
[57]
Zhang, W.; Xu, Y.Z.; Liu, B.; Wu, R.; Yang, Y.Y.; Xiao, X.Q.; Zhang, X. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJ, 2014, 2014, 603409.
[http://dx.doi.org/10.1155/2014/603409] [PMID: 24558317]
[58]
Zhang, W.; Li, C.; Liu, B.; Wu, R.; Zou, N.; Xu, Y.Z.; Yang, Y.Y.; Zhang, F.; Zhou, H.M.; Wan, K.Q.; Xiao, X.Q.; Zhang, X. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis. Ann. Hepatol., 2013, 12(6), 892-900.
[http://dx.doi.org/10.1016/S1665-2681(19)31294-3] [PMID: 24114819]
[59]
Gupte, M.; Boustany-Kari, C.M.; Bharadwaj, K.; Police, S.; Thatcher, S.; Gong, M.C.; English, V.L.; Cassis, L.A. ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(3), R781-R788.
[http://dx.doi.org/10.1152/ajpregu.00183.2008] [PMID: 18650320]
[60]
Sarver, D.C.; Wong, G.W. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: Implications for COVID-19. Biochem. Biophys. Res. Commun., 2021, 538, 92-96.
[PMID: 33168188]
[61]
Kruglikov, I.L.; Scherer, P.E. the role of adipocytes and adipocyte-like cells in the severity of COVID-19 infections. Obesity (Silver Spring), 2020, 28(7), 1187-1190.
[http://dx.doi.org/10.1002/oby.22856] [PMID: 32339391]
[62]
Li, R.; Uttarwar, L.; Gao, B.; Charbonneau, M.; Shi, Y.; Chan, J.S.; Dubois, C.M.; Krepinsky, J.C. High glucose up-regulates ADAM17 through HIF-1α in mesangial cells. J. Biol. Chem., 2015, 290(35), 21603-21614.
[http://dx.doi.org/10.1074/jbc.M115.651604] [PMID: 26175156]
[63]
Chodavarapu, H.; Grobe, N.; Somineni, H.K.; Salem, E.S.; Madhu, M.; Elased, K.M. Rosiglitazone treatment of type 2 diabetic db/db mice attenuates urinary albumin and angiotensin converting enzyme 2 excretion. PloS One, 2013, 8(4), e62833.
[http://dx.doi.org/10.1371/journal.pone.0062833] [PMID: 23646149]
[64]
Salem, E.S.; Grobe, N.; Elased, K.M. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(6), F629-F639.
[http://dx.doi.org/10.1152/ajprenal.00516.2013] [PMID: 24452639]
[65]
Haga, S.; Yamamoto, N.; Nakai-Murakami, C.; Osawa, Y.; Tokunaga, K.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc. Natl. Acad. Sci. USA, 2008, 105(22), 7809-7814.
[http://dx.doi.org/10.1073/pnas.0711241105] [PMID: 18490652]
[66]
Sharifi, N.; Ryan, C.J. Androgen hazards with COVID-19. Endocr. Relat. Cancer, 2020, 27(6), E1-E3.
[http://dx.doi.org/10.1530/ERC-20-0133] [PMID: 32302975]
[67]
Qiao, Y.; Wang, X.M.; Mannan, R.; Pitchiaya, S.; Zhang, Y.; Wotring, J.W.; Xiao, L.; Robinson, D.R.; Wu, Y.M.; Tien, J.C.; Cao, X.; Simko, S.A.; Apel, I.J.; Bawa, P.; Kregel, S.; Narayanan, S.P.; Raskind, G.; Ellison, S.J.; Parolia, A.; Zelenka-Wang, S.; McMurry, L.; Su, F.; Wang, R.; Cheng, Y.; Delekta, A.D.; Mei, Z.; Pretto, C.D.; Wang, S.; Mehra, R.; Sexton, J.Z.; Chinnaiyan, A.M. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. Proc. Nat. Acad. Sci. USA., 2020, 118, e2021450118.
[68]
Khan, N. Possible protective role of 17β-estradiol against COVID-19. J. Allergy Infect. Diseases, 2020, 1, 38-48.
[69]
Channappanavar, R; Fett, C; Mack, M; Ten Eyck, PP; Meyerholz, DK; Perlman, S Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol., (Baltimore), 2017, 198, 4046-4053.
[http://dx.doi.org/10.4049/jimmunol.1601896]
[70]
Weston, S.; Coleman, C.M.; Haupt, R.; Logue, J.; Matthews, K.; Li, Y.; Reyes, H.M.; Weiss, S.R.; Frieman, M.B. Broad anti-coronavirus activity of food and drug Administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J. Virol., 2020, 94(21), 94.
[http://dx.doi.org/10.1128/JVI.01218-20] [PMID: 32817221]
[71]
Smetana, K., Jr; Rosel, D.; BrÁbek, J. Raloxifene and bazedoxifene could be promising candidates for preventing the COVID-19 related cytokine storm, Ards and mortality. In Vivo, 2020, 34(5), 3027-3028.
[http://dx.doi.org/10.21873/invivo.12135] [PMID: 32871847]
[72]
Derby, C.A.; Zilber, S.; Brambilla, D.; Morales, K.H.; McKinlay, J.B. Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts male ageing study. Clin. Endocrinol. (Oxf.), 2006, 65(1), 125-131.
[http://dx.doi.org/10.1111/j.1365-2265.2006.02560.x] [PMID: 16817831]
[73]
Nokoff, N.; Thurston, J.; Hilkin, A.; Pyle, L.; Zeitler, P.S.; Nadeau, K.J.; Santoro, N.; Kelsey, M.M. Sex differences in effects of obesity on reproductive hormones and glucose metabolism in early puberty. J. Clin. Endocrinol. Metab., 2019, 104(10), 4390-4397.
[http://dx.doi.org/10.1210/jc.2018-02747] [PMID: 30985874]
[74]
Janssen, I.; Powell, L.H.; Kazlauskaite, R.; Dugan, S.A. Testosterone and visceral fat in midlife women: the Study of Women’s Health Across the Nation (SWAN) fat patterning study. Obesity (Silver Spring), 2010, 18(3), 604-610.
[http://dx.doi.org/10.1038/oby.2009.251] [PMID: 19696765]
[75]
Mair, K.M.; Gaw, R.; MacLean, M.R. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm. Circ., 2020, 10(3), 2045894020952019.
[http://dx.doi.org/10.1177/2045894020952023] [PMID: 32999709]
[76]
Smith, C.J.; Perfetti, T.A.; Hayes, A.W.; Berry, S.C. Obesity as a source of endogenous compounds associated with chronic disease: a review. Toxicol. Sci., 2020, 175, 149-155.
[http://dx.doi.org/10.1093/toxsci/kfaa042]
[77]
Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol., 2016, 185(1), 1-21.
[http://dx.doi.org/10.1111/cei.12781] [PMID: 26919392]
[78]
Trzaskalski, N.A.; Fadzeyeva, E.; Mulvihill, E.E. Dipeptidyl peptidase-4 at the interface between inflammation and metabolism. Clin. Med. Insights Endocrinol. Diabetes, 2020, 13, 1179551420912972.
[http://dx.doi.org/10.1177/1179551420912972] [PMID: 32231442]
[79]
Schlicht, K.; Rohmann, N.; Geisler, C.; Hollstein, T.; Knappe, C.; Hartmann, K.; Schwarz, J.; Tran, F.; Schunk, D.; Junker, R.; Bahmer, T.; Rosenstiel, P.; Schulte, D.; Türk, K.; Franke, A.; Schreiber, S.; Laudes, M. Circulating levels of soluble dipeptidylpeptidase-4 are reduced in human subjects hospitalized for severe COVID-19 infections. Int. J. Obes., 2005, 2020, 1-4.
[80]
Kridin, K.; Amber, K.; Khamaisi, M.; Comaneshter, D.; Batat, E.; Cohen, A.D. Is there an association between dipeptidyl peptidase-4 inhibitors and autoimmune disease? A population-based study. Immunol. Res., 2018, 66(3), 425-430.
[http://dx.doi.org/10.1007/s12026-018-9005-8] [PMID: 29855994]
[81]
Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; Galliani, S.; Dodesini, A.R.; Lepore, G.; Geni, F.; Fiorina, R.M.; Catena, E.; Corsico, A.; Colombo, R.; Mirani, M.; De Riva, C.; Oleandri, S.E.; Abdi, R.; Bonventre, J.V.; Rusconi, S.; Folli, F.; Di Sabatino, A.; Zuccotti, G.; Galli, M.; Fiorina, P. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: A multicenter, case-control, retrospective, observational study. Diabetes Care, 2020, 43(12), 2999-3006.
[http://dx.doi.org/10.2337/dc20-1521] [PMID: 32994187]
[82]
Montastruc, F.; Romano, C.; Montastruc, J.L.; Silva, S.; Seguin, T.; Minville, V.; Georges, B.; Riu-Poulenc, B.; Fourcade, O. Pharmacological characteristics of patients infected with SARS-CoV-2 admitted to Intensive Care Unit in South of France. Therapie, 2020, 75(4), 381-384.
[http://dx.doi.org/10.1016/j.therap.2020.05.005] [PMID: 32425250]
[83]
Janeway, C.A., Jr; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol., 2002, 20, 197-216.
[http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359] [PMID: 11861602]
[84]
Lee, S.; Channappanavar, R.; Kanneganti, T.D. Coronaviruses: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol., 2020, 41(12), 1083-1099.
[http://dx.doi.org/10.1016/j.it.2020.10.005] [PMID: 33153908]
[85]
Channappanavar, R.; Fehr, A.R.; Zheng, J.; Wohlford-Lenane, C.; Abrahante, J.E.; Mack, M.; Sompallae, R.; McCray, P.B., Jr; Meyerholz, D.K.; Perlman, S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest., 2019, 129(9), 3625-3639.
[http://dx.doi.org/10.1172/JCI126363] [PMID: 31355779]
[86]
Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ., 2020, 27(5), 1451-1454.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[87]
Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol., 2018, 18(2), 134-147.
[http://dx.doi.org/10.1038/nri.2017.105] [PMID: 28990587]
[88]
Friedrich, M.S.; Studt, J.D.; Braun, J.; Spahn, D.R.; Kaserer, A. Coronavirus-induced coagulopathy during the course of disease. PLoS One, 2020, 15(12), e0243409.
[http://dx.doi.org/10.1371/journal.pone.0243409] [PMID: 33332362]
[89]
Corrêa, T.D.; Cordioli, R.L.; Campos Guerra, J.C.; Caldin da Silva, B.; Dos Reis Rodrigues, R.; de Souza, G.M.; Midega, T.D.; Campos, N.S.; Carneiro, B.V.; Campos, F.N.D.; Guimarães, H.P.; de Matos, G.F.J.; de Aranda, V.F.; Rolim Ferraz, L.J. Coagulation profile of COVID-19 patients admitted to the ICU: An exploratory study. PLoS One, 2020, 15(12), e0243604.
[http://dx.doi.org/10.1371/journal.pone.0243604] [PMID: 33320874]
[90]
Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr., 2016, 7(1), 66-75.
[http://dx.doi.org/10.3945/an.115.010207] [PMID: 26773015]
[91]
Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol., 2011, 11(2), 85-97.
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[92]
Fabbrini, E; Cella, M; McCartney, SA; Fuchs, A; Abumrad, NA; Pietka, TA; Chen, Z; Finck, BN; Han, DH; Magkos, F; Conte, C; Bradley, D; Fraterrigo, G; Eagon, JC; Patterson, BW; Colonna, M; Klein, S Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology, 2013, 145, 366-374.
[93]
Kuwabara, W.M.T.; Yokota, C.N.F.; Curi, R.; Alba-Loureiro, T.C. Obesity and Type 2 Diabetes mellitus induce lipopolysaccharide tolerance in rat neutrophils. Sci. Rep., 2018, 8(1), 17534.
[http://dx.doi.org/10.1038/s41598-018-35809-2] [PMID: 30510205]
[94]
Asadipooya, K.; Lankarani, K.B.; Raj, R.; Kalantarhormozi, M. RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int. J. Endocrinol., 2019, 2019, 2151302.
[http://dx.doi.org/10.1155/2019/2151302] [PMID: 31641351]
[95]
Donath, M.Y.; Dalmas, É.; Sauter, N.S.; Böni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab., 2013, 17(6), 860-872.
[http://dx.doi.org/10.1016/j.cmet.2013.05.001] [PMID: 23747245]
[96]
Codo, A.C.; Davanzo, G.G.; Monteiro, L.B.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; Jimenez Restrepo, J.L.; Vendramini, P.H.; Reis-de-Oliveira, G.; Bispo Dos Santos, K.; Toledo-Teixeira, D.A.; Parise, P.L.; Martini, M.C.; Marques, R.E.; Carmo, H.R.; Borin, A.; Coimbra, L.D.; Boldrini, V.O.; Brunetti, N.S.; Vieira, A.S.; Mansour, E.; Ulaf, R.G.; Bernardes, A.F.; Nunes, T.A.; Ribeiro, L.C.; Palma, A.C.; Agrela, M.V.; Moretti, M.L.; Sposito, A.C.; Pereira, F.B.; Velloso, L.A.; Vinolo, M.A.R.; Damasio, A.; Proença-Módena, J.L.; Carvalho, R.F.; Mori, M.A.; Martins-de-Souza, D.; Nakaya, H.I.; Farias, A.S.; Moraes-Vieira, P.M. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab., 2020, 32(3), 437-446.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.07.007] [PMID: 32697943]
[97]
Ji, D.; Zhang, M.; Qin, E.; Zhang, L.; Xu, J.; Wang, Y.; Cheng, G.; Wang, F.; Lau, G. Letter to the editor: obesity, diabetes, non-alcoholic fatty liver disease and metabolic dysfunction associated fatty liver disease are proinflammatory hypercoagulable states associated with severe disease and thrombosis in COVID-19. Metabolism, 2020, 115, 154437.
[98]
Fernandez, C.; Rysä, J.; Almgren, P.; Nilsson, J.; Engström, G.; Orho-Melander, M.; Ruskoaho, H.; Melander, O. Plasma levels of the pro-protein convertase furin and incidence of diabetes and mortality. J. Intern. Med., 2018, 284(4), 377-387.
[http://dx.doi.org/10.1111/joim.12783] [PMID: 29888466]
[99]
Bornstein, S.R.; Rubino, F.; Khunti, K.; Mingrone, G.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; Amiel, S.; Holt, R.I.; Skyler, J.S.; DeVries, J.H.; Renard, E.; Eckel, R.H.; Zimmet, P.; Alberti, K.G.; Vidal, J.; Geloneze, B.; Chan, J.C.; Ji, L.; Ludwig, B. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol., 2020, 8(6), 546-550.
[http://dx.doi.org/10.1016/S2213-8587(20)30152-2] [PMID: 32334646]
[100]
Sardu, C.; D’Onofrio, N.; Balestrieri, M.L.; Barbieri, M.; Rizzo, M.R.; Messina, V.; Maggi, P.; Coppola, N.; Paolisso, G.; Marfella, R. Out-comes in patients with hyperglycemia affected by COVID-19: Can we do more on glycemic control? Diabetes Care, 2020, 43(7), 1408-1415.
[http://dx.doi.org/10.2337/dc20-0723] [PMID: 32430456]
[101]
Kruse, J.M.; Magomedov, A.; Kurreck, A.; Münch, F.H.; Koerner, R.; Kamhieh-Milz, J.; Kahl, A.; Gotthardt, I.; Piper, S.K.; Eckardt, K.U.; Dörner, T.; Zickler, D. Thromboembolic complications in critically ill COVID-19 patients are associated with impaired fibrinolysis. Crit. Care, 2020, 24(1), 676.
[http://dx.doi.org/10.1186/s13054-020-03401-8] [PMID: 33287877]
[102]
Gupta, S.; Hayek, S.S.; Wang, W.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; Reiser, J.; Bansal, A.; Srivastava, A.; Zhou, Y.; Sutherland, A.; Green, A.; Shehata, A.M.; Goyal, N.; Vijayan, A.; Velez, J.C.Q.; Shaefi, S.; Parikh, C.R.; Arunthamakun, J.; Athavale, A.M.; Friedman, A.N.; Short, S.A.P.; Kibbelaar, Z.A.; Abu Omar, S.; Admon, A.J.; Donnelly, J.P.; Gershengorn, H.B.; Hernán, M.A.; Semler, M.W.; Leaf, D.E. STOP-COVID investigators. factors associated with death in critically Ill Patients with coronavirus disease 2019 in the US. JAMA Intern. Med., 2020, 180(11), 1436-1447.
[http://dx.doi.org/10.1001/jamainternmed.2020.3596] [PMID: 32667668]
[103]
Nadim, M.K.; Forni, L.G.; Mehta, R.L.; Connor, M.J., Jr; Liu, K.D.; Ostermann, M.; Rimmelé, T.; Zarbock, A.; Bell, S.; Bihorac, A.; Cantaluppi, V.; Hoste, E.; Husain-Syed, F.; Germain, M.J.; Goldstein, S.L.; Gupta, S.; Joannidis, M.; Kashani, K.; Koyner, J.L.; Legrand, M.; Lumlertgul, N.; Mohan, S.; Pannu, N.; Peng, Z.; Perez-Fernandez, X.L.; Pickkers, P.; Prowle, J.; Reis, T.; Srisawat, N.; Tolwani, A.; Vijayan, A.; Villa, G.; Yang, L.; Ronco, C.; Kellum, J.A. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) workgroup. Nat. Rev. Nephrol., 2020, 16(12), 747-764.
[http://dx.doi.org/10.1038/s41581-020-00356-5] [PMID: 33060844]
[104]
Batabyal, R.; Freishtat, N.; Hill, E.; Rehman, M.; Freishtat, R.; Koutroulis, I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int. J. Obes., 2021, 45(6), 1163-1169.
[http://dx.doi.org/10.1038/s41366-021-00804-7] [PMID: 33727631]
[105]
Walsh, E.E.; Frenck, R.W., Jr; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; Swanson, K.A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P.Y.; Türeci, Ö.; Tompkins, K.R.; Lyke, K.E.; Raabe, V.; Dormitzer, P.R.; Jansen, K.U.; Şahin, U.; Gruber, W.C. Safety and immunogenicity of two rna-based COVID-19 vaccine candidates. N. Engl. J. Med., 2020, 383(25), 2439-2450.
[http://dx.doi.org/10.1056/NEJMoa2027906] [PMID: 33053279]
[106]
Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; McDermott, A.B.; Flach, B.; Lin, B.C.; Doria-Rose, N.A.; O’Dell, S.; Schmidt, S.D.; Corbett, K.S.; Swanson, P.A., II; Padilla, M.; Neuzil, K.M.; Bennett, H.; Leav, B.; Makowski, M.; Albert, J.; Cross, K.; Edara, V.V.; Floyd, K.; Suthar, M.S.; Martinez, D.R.; Baric, R.; Buchanan, W.; Luke, C.J.; Phadke, V.K.; Rostad, C.A.; Ledgerwood, J.E.; Graham, B.S.; Beigel, J.H. mRNA-1273 Study Group. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med., 2020, 383(25), 2427-2438.
[http://dx.doi.org/10.1056/NEJMoa2028436] [PMID: 32991794]
[107]
Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; Su, K.; Zhang, F.; Gong, J.; Wu, B.; Liu, X.M.; Li, J.J.; Qiu, J.F.; Chen, J.; Huang, A.L. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med., 2020, 26(8), 1200-1204.
[http://dx.doi.org/10.1038/s41591-020-0965-6] [PMID: 32555424]
[108]
Sarkar, C.; Mondal, M.; Torequl Islam, M.; Martorell, M.; Docea, A.O.; Maroyi, A.; Sharifi-Rad, J.; Calina, D. potential therapeutic options for COVID-19: current status, challenges, and future perspectives. Front. Pharmacol., 2020, 11, 572870.
[http://dx.doi.org/10.3389/fphar.2020.572870] [PMID: 33041814]
[109]
Bhandari, R.; Khanna, G.; Kuhad, A. Pharmacological insight into potential therapeutic agents for the deadly COVID-19 pandemic. Eur. J. Pharmacol., 2021, 890, 173643.
[http://dx.doi.org/10.1016/j.ejphar.2020.173643] [PMID: 33065092]
[110]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[111]
Cavalli, G.; De Luca, G.; Campochiaro, C.; Della-Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; Tomelleri, A.; Farina, N.; Ruggeri, A.; Rovere-Querini, P.; Di Lucca, G.; Martinenghi, S.; Scotti, R.; Tresoldi, M.; Ciceri, F.; Landoni, G.; Zangrillo, A.; Scarpellini, P.; Dagna, L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol., 2020, 2(6), e325-e331.
[http://dx.doi.org/10.1016/S2665-9913(20)30127-2] [PMID: 32501454]
[112]
Barkas, F.; Ntekouan, S.F.; Kosmidou, M.; Liberopoulos, E.; Liontos, A.; Milionis, H. Anakinra in hospitalized non-intubated patients with coronavirus disease 2019: a systematic review and meta-analysis. Rheumatology, 2021, 60(12), 5527-5537.
[113]
Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; Benbenishty, J.S.; Berry, L.R.; Broman, N.; Cavalcanti, A.B.; Colman, R.; De Buyser, S.L.; Derde, L.P.G.; Domingo, P.; Omar, S.F.; Fernandez-Cruz, A.; Feuth, T.; Garcia, F.; Garcia-Vicuna, R.; Gonzalez-Alvaro, I.; Gordon, A.C.; Haynes, R.; Hermine, O.; Horby, P.W.; Horick, N.K.; Kumar, K.; Lambrecht, B.N.; Landray, M.J.; Leal, L.; Lederer, D.J.; Lorenzi, E.; Mariette, X.; Merchante, N.; Misnan, N.A.; Mohan, S.V.; Nivens, M.C.; Oksi, J.; Perez-Molina, J.A.; Pizov, R.; Porcher, R.; Postma, S.; Rajasuriar, R.; Ramanan, A.V.; Ravaud, P.; Reid, P.D.; Rutgers, A.; Sancho-Lopez, A.; Seto, T.B.; Sivapalasingam, S.; Soin, A.S.; Staplin, N.; Stone, J.H.; Strohbehn, G.W.; Sunden-Cullberg, J.; Torre-Cisneros, J.; Tsai, L.W.; van Hoogstraten, H.; van Meerten, T.; Veiga, V.C.; Westerweel, P.E.; Murthy, S.; Diaz, J.V.; Marshall, J.C.; Sterne, J.A.C. WHO rapid evidence appraisal for COVID-19 therapies (REACT) working group. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: A meta-analysis. JAMA, 2021, 326(6), 499-518.
[http://dx.doi.org/10.1001/jama.2021.11330] [PMID: 34228774]
[114]
Ko, H.K.; Yu, W.K.; Pan, S.W.; Chen, W.C.; Yang, K.Y.; Lin, Y.T.; Wang, F.D.; Yang, M.H.; Chen, Y. M Consensus statement and recommendations on the treatment of COVID-19: 2021 update. J. Chinese, Med. Assoc., 2022, 85(1), 5-17.
[115]
Coronavirus, F. Update: FDA authorizes monoclonal antibodies for treatment of COVID-19. 2021.
[116]
Ledford, H. The race to make COVID antibody therapies cheaper and more potent. Nature, 2020, 587(7832), 18.
[http://dx.doi.org/10.1038/d41586-020-02965-3] [PMID: 33097846]
[117]
Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Mxinwa, V.; Mokgalaboni, K.; Ziqubu, K.; Cirilli, I.; Marcheggiani, F.; Louw, J.; Tiano, L. Adipokines as a therapeutic target by metformin to improve metabolic function: A systematic review of randomized controlled trials. Pharmacol. Res., 2021, 163, 105219.
[http://dx.doi.org/10.1016/j.phrs.2020.105219] [PMID: 33017649]
[118]
Chen, X.; Guo, H.; Qiu, L.; Zhang, C.; Deng, Q.; Leng, Q. Immunomodulatory and antiviral activity of metformin and its potential implications in treating Coronavirus disease 2019 and lung injury. Front. Immunol., 2020, 11, 2056.
[http://dx.doi.org/10.3389/fimmu.2020.02056] [PMID: 32973814]
[119]
Hariyanto, T.I.; Kurniawan, A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes. Med., 2020, 19, 100290.
[http://dx.doi.org/10.1016/j.obmed.2020.100290] [PMID: 32844132]
[120]
Luo, P.; Qiu, L.; Liu, Y.; Liu, X.L.; Zheng, J.L.; Xue, H.Y.; Liu, W.H.; Liu, D.; Li, J. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am. J. Trop. Med. Hyg., 2020, 103(1), 69-72.
[http://dx.doi.org/10.4269/ajtmh.20-0375] [PMID: 32446312]
[121]
Bramante, C.; Ingraham, N.; Murray, T.; Marmor, S.; Hoversten, S.; Gronski, J.; McNeil, C.; Feng, R.; Guzman, G.; Abdelwahab, N.; King, S.; Meehan, T.; Benson, B.; Pendleton, K.; Vojta, D.; Tignanelli, C.J. Observational study of metformin and risk of mortality in patients hospitalized with COVID-19. MedRxiv, 2020.
[122]
Pérez-Belmonte, L.M.; Torres-Peña, J.D.; López-Carmona, M.D.; Ayala-Gutiérrez, M.M.; Fuentes-Jiménez, F.; Huerta, L.J.; Muñoz, J.A.; Rubio-Rivas, M.; Madrazo, M.; Garcia, M.G.; Montes, B.V.; Sola, J.F.; Ena, J.; Ferrer, R.G.; Pérez, C.M.; Ripper, C.J.; Lecumberri, J.J.N.; Acedo, I.E.A.; Canteli, S.P.; Cosío, S.F.; Martínez, F.A.; Rodríguez, B.C.; Pérez-Martínez, P.; Ramos-Rincón, J.M.; Gómez-Huelgas, R. SEMI-COVID-19 network. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort study. BMC Med., 2020, 18(1), 359.
[http://dx.doi.org/10.1186/s12916-020-01832-2] [PMID: 33190637]
[123]
Cariou, B.; Hadjadj, S.; Wargny, M.; Pichelin, M.; Al-Salameh, A.; Allix, I.; Amadou, C.; Arnault, G.; Baudoux, F.; Bauduceau, B.; Borot, S.; Bourgeon-Ghittori, M.; Bourron, O.; Boutoille, D.; Cazenave-Roblot, F.; Chaumeil, C.; Cosson, E.; Coudol, S.; Darmon, P.; Disse, E.; Ducet-Boiffard, A.; Gaborit, B.; Joubert, M.; Kerlan, V.; Laviolle, B.; Marchand, L.; Meyer, L.; Potier, L.; Prevost, G.; Riveline, J.P.; Robert, R.; Saulnier, P.J.; Sultan, A.; Thébaut, J.F.; Thivolet, C.; Tramunt, B.; Vatier, C.; Roussel, R.; Gautier, J.F.; Gourdy, P. CORONADO investigators. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia, 2020, 63(8), 1500-1515.
[http://dx.doi.org/10.1007/s00125-020-05180-x] [PMID: 32472191]
[124]
Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; Zheng, L.; Huang, K. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care, 2020, 43(7), 1399-1407.
[http://dx.doi.org/10.2337/dc20-0660] [PMID: 32409498]
[125]
Orioli, L.; Hermans, M.P.; Thissen, J.P.; Maiter, D.; Vandeleene, B.; Yombi, J.C. COVID-19 in diabetic patients: Related risks and specifics of management. Ann. Endocrinol. (Paris), 2020, 81(2-3), 101-109.
[http://dx.doi.org/10.1016/j.ando.2020.05.001] [PMID: 32413342]
[126]
Ali, A.; Bain, S.; Hicks, D.; Newland Jones, P.; Patel, D.C.; Evans, M.; Fernando, K.; James, J.; Milne, N.; Viljoen, A.; Wilding, J. SGLT2 inhibitors: Cardiovascular benefits beyond HbA1c-translating evidence into practice. Diabetes Ther., 2019, 10(5), 1595-1622.
[http://dx.doi.org/10.1007/s13300-019-0657-8] [PMID: 31290126]
[127]
Williams, D.M.; Nawaz, A.; Evans, M. Renal outcomes in type 2 diabetes: A review of cardiovascular and renal outcome trials. Diabetes Ther., 2020, 11(2), 369-386.
[http://dx.doi.org/10.1007/s13300-019-00747-3] [PMID: 31863343]
[128]
Brown, E.; Wilding, J.P.H.; Barber, T.M.; Alam, U.; Cuthbertson, D.J. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obes. Rev., 2019, 20(6), 816-828.
[http://dx.doi.org/10.1111/obr.12841] [PMID: 30972878]
[129]
Cure, E.; Cumhur Cure, M. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab. Syndr., 2020, 14(4), 405-406.
[http://dx.doi.org/10.1016/j.dsx.2020.04.024] [PMID: 32335366]
[130]
Armeni, E.; Aziz, U.; Qamar, S.; Nasir, S.; Nethaji, C.; Negus, R.; Murch, N.; Beynon, H.C.; Bouloux, P.; Rosenthal, M.; Khan, S.; Yousseif, A.; Menon, R.; Karra, E. Protracted ketonaemia in hyperglycaemic emergencies in COVID-19: a retrospective case series. Lancet Diabetes Endocrinol., 2020, 8(8), 660-663.
[http://dx.doi.org/10.1016/S2213-8587(20)30221-7] [PMID: 32621809]
[131]
Chamorro-Pareja, N.; Parthasarathy, S.; Annam, J.; Hoffman, J.; Coyle, C.; Kishore, P. Letter to the editor: Unexpected high mortality in COVID-19 and diabetic ketoacidosis. Metabolism, 2020, 110, 154301.
[132]
Batista, D.V.; Vieira, C.A.F.A.; Costa, T.A.; Lima, E.G. COVID-19-associated euglycemic diabetic ketoacidosis in a patient with type 2 diabetes on SGLT2 inhibitor: a case report. Diabetol. Int., 2020, 12(3), 1-4.
[http://dx.doi.org/10.1007/s13340-020-00473-3] [PMID: 33133998]
[133]
Williams, D.M.; Nawaz, A.; Evans, M. Drug therapy in obesity: A review of current and emerging treatments. Diabetes Ther., 2020, 11(6), 1199-1216.
[http://dx.doi.org/10.1007/s13300-020-00816-y] [PMID: 32297119]
[134]
Hitakarun, A.; Khongwichit, S.; Wikan, N.; Roytrakul, S.; Yoksan, S.; Rajakam, S.; Davidson, A.D.; Smith, D.R. Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Sci. Rep., 2020, 10(1), 1499.
[http://dx.doi.org/10.1038/s41598-020-58468-8] [PMID: 32001767]
[135]
Ammer, E.; Nietzsche, S.; Rien, C.; Kühnl, A.; Mader, T.; Heller, R.; Sauerbrei, A.; Henke, A. The anti-obesity drug orlistat reveals anti-viral activity. Med. Microbiol. Immunol. (Berl.), 2015, 204(6), 635-645.
[http://dx.doi.org/10.1007/s00430-015-0391-4] [PMID: 25680890]
[136]
Silvas, J.A.; Jureka, A.S.; Nicolini, A.M.; Chvatal, S.A.; Basler, C.F. Inhibitors ofVPS34 and lipid metabolism suppress SARS-CoV2 replication. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.07.18.210211]
[137]
Thangavel, N.; Al Bratty, M.; Akhtar Javed, S.; Ahsan, W.; Alhazmi, H.A. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: strategy for design of novel antidiabetic drugs. Int. J. Med. Chem., 2017, 2017, 1069718.
[http://dx.doi.org/10.1155/2017/1069718] [PMID: 28656106]
[138]
He, L.; Liu, X.; Wang, L.; Yang, Z. Thiazolidinediones for nonalcoholic steatohepatitis: A meta-analysis of randomized clinical trials. Medicine (Baltimore), 2016, 95(42), e4947.
[http://dx.doi.org/10.1097/MD.0000000000004947] [PMID: 27759627]
[139]
Jagat, J, M.; Kalyan, K, G.; Subir, R. Use of pioglitazone in people with type 2 diabetes mellitus with coronavirus disease 2019 (COVID-19): Boon or bane? Diabetes Metab. Syndr., 2020, 14(5), 829-831.
[http://dx.doi.org/10.1016/j.dsx.2020.06.015] [PMID: 32540737]
[140]
Holst, J.J.; Rosenkilde, M.M. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J. Clin. Endocrinol. Metab., 2020, 105(8), e2710-e2716.
[http://dx.doi.org/10.1210/clinem/dgaa327] [PMID: 32459834]
[141]
Viby, N.E.; Isidor, M.S.; Buggeskov, K.B.; Poulsen, S.S.; Hansen, J.B.; Kissow, H. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology, 2013, 154(12), 4503-4511.
[http://dx.doi.org/10.1210/en.2013-1666] [PMID: 24092637]
[142]
Zhou, W.; Shao, W.; Zhang, Y.; Liu, D.; Liu, M.; Jin, T. Glucagon-like peptide-1 receptor mediates the beneficial effect of liraglutide in an acute lung injury mouse model involving the thioredoxin-interacting protein. Am. J. Physiol. Endocrinol. Metab., 2020, 319(3), E568-E578.
[http://dx.doi.org/10.1152/ajpendo.00292.2020] [PMID: 32723174]
[143]
Akhtar, S.; Benter, I.F.; Danjuma, M.I.; Doi, S.A.R.; Hasan, S.S.; Habib, A.M. Pharmacotherapy in COVID-19 patients: a review of ACE2-raising drugs and their clinical safety. J. Drug Target., 2020, 28(7-8), 683-699.
[http://dx.doi.org/10.1080/1061186X.2020.1797754] [PMID: 32700580]
[144]
Dambha-Miller, H.; Albasri, A.; Hodgson, S.; Wilcox, C.R.; Khan, S.; Islam, N.; Little, P.; Griffin, S.J. Currently prescribed drugs in the UK that could upregulate or downregulate ACE2 in COVID-19 disease: a systematic review. BMJ Open, 2020, 10(9), e040644.
[http://dx.doi.org/10.1136/bmjopen-2020-040644] [PMID: 32928868]
[145]
Zhang, L.H.; Pang, X.F.; Bai, F.; Wang, N.P.; Shah, A.I.; McKallip, R.J.; Li, X.W.; Wang, X.; Zhao, Z.Q. Preservation of glucagon-like peptide-1 level attenuates angiotensin II-induced tissue fibrosis by altering AT1/AT 2 receptor expression and angiotensin-converting enzyme 2 activity in rat heart. Cardiovasc. Drugs Ther., 2015, 29(3), 243-255.
[http://dx.doi.org/10.1007/s10557-015-6592-7] [PMID: 25994830]
[146]
Romaní-Pérez, M.; Outeiriño-Iglesias, V.; Moya, C.M.; Santisteban, P.; González-Matías, L.C.; Vigo, E.; Mallo, F. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SPB in the lungs of type 1 diabetes rats. Endocrinology, 2015, 156(10), 3559-3569.
[http://dx.doi.org/10.1210/en.2014-1685] [PMID: 26196539]
[147]
Fandiño, J.; Vaz, A.A.; Toba, L.; Romaní-Pérez, M.; González-Matías, L.; Mallo, F.; Diz-Chaves, Y. Liraglutide enhances the activity of the ace-2/ang(1-7)/mas receptor pathway in lungs of male pups from food-restricted mothers and prevents the reduction of SP-A. Int. J. Endocrinol., 2018, 2018, 6920620.
[http://dx.doi.org/10.1155/2018/6920620] [PMID: 30627159]
[148]
Jin, T.; Liu, M. Letter to the editor: Comment on GLP-1-based drugs and COVID-19 treatment. Acta pharmaceutica Sinica B, 2020, 10, 1249-1250.
[149]
Monda, V.M.; Porcellati, F.; Strollo, F.; Gentile, S. ACE2 and SARS-CoV-2 infection: Might GLP-1 receptor agonists play a role? Diabetes Ther., 2020, 11(9), 1909-1914.
[http://dx.doi.org/10.1007/s13300-020-00898-8] [PMID: 32749644]
[150]
Richard, K.R.; Shelburne, J.S.; Kirk, J.K. Tolerability of dipeptidyl peptidase-4 inhibitors: a review. Clin. Ther., 2011, 33(11), 1609-1629.
[http://dx.doi.org/10.1016/j.clinthera.2011.09.028] [PMID: 22071236]
[151]
Tran, L.; Zielinski, A.; Roach, A.H.; Jende, J.A.; Householder, A.M.; Cole, E.E.; Atway, S.A.; Amornyard, M.; Accursi, M.L.; Shieh, S.W.; Thompson, E.E. Pharmacologic treatment of type 2 diabetes: oral medications. Ann. Pharmacother., 2015, 49(5), 540-556.
[http://dx.doi.org/10.1177/1060028014558289] [PMID: 25667196]
[152]
Loike, J.D.; Shabtai, D.Y.; Neuhut, R.; Malitzky, S.; Lu, E.; Husemann, J.; Goldberg, I.J.; Silverstein, S.C. Statin inhibition of Fc receptor-mediated phagocytosis by macrophages is modulated by cell activation and cholesterol. Arterioscler. Thromb. Vasc. Biol., 2004, 24(11), 2051-2056.
[http://dx.doi.org/10.1161/01.ATV.0000143858.15909.29] [PMID: 15345508]
[153]
Mohammadzadeh, N.; Montecucco, F.; Carbone, F.; Xu, S.; Al-Rasadi, K.; Sahebkar, A. Statins: Epidrugs with effects on endothelial health? Eur. J. Clin. Invest., 2020, 50(12), e13388.
[http://dx.doi.org/10.1111/eci.13388] [PMID: 32854143]
[154]
Stamerra, C.A.; Di Giosia, P.; Ferri, C.; Giorgini, P.; Reiner, Z.; Johnston, T.P.; Sahebkar, A. Statin therapy and sex hormones. Eur. J. Pharmacol., 2021, 890, 173745.
[http://dx.doi.org/10.1016/j.ejphar.2020.173745] [PMID: 33227286]
[155]
Tikoo, K.; Patel, G.; Kumar, S.; Karpe, P.A.; Sanghavi, M.; Malek, V.; Srinivasan, K. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochem. Pharmacol., 2015, 93(3), 343-351.
[http://dx.doi.org/10.1016/j.bcp.2014.11.013] [PMID: 25482567]
[156]
Shin, Y.H.; Min, J.J.; Lee, J.H.; Kim, E.H.; Kim, G.E.; Kim, M.H.; Lee, J.J.; Ahn, H.J. The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts. Heart Vessels, 2017, 32(5), 618-627.
[http://dx.doi.org/10.1007/s00380-016-0936-5] [PMID: 28013371]
[157]
Urbach, D.; Awiszus, F.; Leiß, S.; Venton, T.; Specht, A.V.; Apfelbacher, C. Typical COVID-19 symptoms are inversely associated with statin medication: cross-sectional digital study in lower saxony, Germany results of the first German symptom surveillance study for COVID-19. JMIR Public Health Surveill., 2020, 6(4), e22521.
[http://dx.doi.org/10.2196/22521]
[158]
Saeed, O.; Castagna, F.; Agalliu, I.; Xue, X.; Patel, S.R.; Rochlani, Y.; Kataria, R.; Vukelic, S.; Sims, D.B.; Alvarez, C.; Rivas-Lasarte, M.; Garcia, M.J.; Jorde, U.P. Statin use and in-hospital mortality in diabetics with COVID-19. J. Am. Heart Assoc., 2020, 9(24), e018475.
[PMID: 33092446]
[159]
Cariou, B.; Goronflot, T.; Rimbert, A.; Boullu, S.; Le May, C.; Moulin, P.; Pichelin, M.; Potier, L.; Smati, S.; Sultan, A.; Tramunt, B.; Wargny, M.; Gourdy, P.; Hadjadj, S. Routine use of statins and increased mortality related to COVID-19 in inpatients with type 2 diabetes: Results from the CORONADO study. Diabetes Metab., 2020, 47(2), 101-202.
[PMID: 33091555]
[160]
Butt, J.H.; Gerds, T.A.; Schou, M.; Kragholm, K.; Phelps, M.; Havers-Borgersen, E.; Yafasova, A.; Gislason, G.H.; Torp-Pedersen, C.; Køber, L.; Fosbøl, E.L. Association between statin use and outcomes in patients with coronavirus disease 2019 (COVID-19): a nationwide cohort study. BMJ Open, 2020, 10(12), e044421.
[http://dx.doi.org/10.1136/bmjopen-2020-044421] [PMID: 33277291]
[161]
Ghati, N.; Roy, A.; Bhatnagar, S.; Bhati, S.; Bhushan, S.; Mahendran, M.; Thakur, A.; Tiwari, P.; Dwivedi, T.; Mani, K.; Gupta, R.; Mohan, A.; Garg, R.; Saxena, A.; Guleria, R.; Deepti, S. Atorvastatin and aspirin as adjuvant therapy in patients with SARS-CoV-2 infection: A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21(1), 902.
[http://dx.doi.org/10.1186/s13063-020-04840-y] [PMID: 33126910]
[162]
Taira, M.; Toba, H.; Murakami, M.; Iga, I.; Serizawa, R.; Murata, S.; Kobara, M.; Nakata, T. Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats. Eur. J. Pharmacol., 2008, 589(1-3), 264-271.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.019] [PMID: 18582458]
[163]
DeLano, FA; Schmid-Schönbein, GW Enhancement of glucocorticoid and mineralocorticoid receptor density in the microcirculation of the spontaneously hypertensive rat. Microcirculation, 2004, 11, 69-78.
[164]
Krug, AW; Allenhöfer, L; Monticone, R; Spinetti, G; Gekle, M; Wang, M; Lakatta, EG Elevated mineralocorticoid receptor activity in aged rat vascular smooth muscle cells promotes a proinflammatory phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and epidermal growth factor receptor-dependent pathways. Hypertension, 2010, 55, 1476-1483.
[165]
Seferovic, P.M.; Pelliccia, F.; Zivkovic, I.; Ristic, A.; Lalic, N.; Seferovic, J.; Simeunovic, D.; Milinkovic, I.; Rosano, G. Mineralocorticoid receptor antagonists, a class beyond spironolactone-Focus on the special pharmacologic properties of eplerenone. Int. J. Cardiol., 2015, 200, 3-7.
[http://dx.doi.org/10.1016/j.ijcard.2015.02.096] [PMID: 26404746]
[166]
Barrera-Chimal, J.; Girerd, S.; Jaisser, F. Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney Int., 2019, 96(2), 302-319.
[http://dx.doi.org/10.1016/j.kint.2019.02.030] [PMID: 31133455]
[167]
Satoh, M.; Ishikawa, Y.; Minami, Y.; Akatsu, T.; Nakamura, M. Eplerenone inhibits tumour necrosis factor alpha shedding process by tumour necrosis factor alpha converting enzyme in monocytes from patients with congestive heart failure. Heart, 2006, 92(7), 979-980.
[http://dx.doi.org/10.1136/hrt.2005.071829] [PMID: 16775109]
[168]
Dong, D.; Fan, T.T.; Ji, Y.S.; Yu, J.Y.; Wu, S.; Zhang, L. Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes. Int. Urol. Nephrol., 2019, 51(4), 755-764.
[http://dx.doi.org/10.1007/s11255-019-02074-9] [PMID: 30734886]
[169]
Keidar, S.; Gamliel-Lazarovich, A.; Kaplan, M.; Pavlotzky, E.; Hamoud, S.; Hayek, T.; Karry, R.; Abassi, Z. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ. Res., 2005, 97(9), 946-953.
[http://dx.doi.org/10.1161/01.RES.0000187500.24964.7A] [PMID: 16179584]
[170]
Fukuda, S.; Horimai, C.; Harada, K.; Wakamatsu, T.; Fukasawa, H.; Muto, S.; Itai, A.; Hayashi, M. Aldosterone-induced kidney injury is mediated by NFκB activation. Clin. Exp. Nephrol., 2011, 15(1), 41-49.
[http://dx.doi.org/10.1007/s10157-010-0373-1] [PMID: 21072674]
[171]
Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; Lee, C.; Montie, J.E.; Shah, R.B.; Pienta, K.J.; Rubin, M.A.; Chinnaiyan, A.M. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005, 310(5748), 644-648.
[http://dx.doi.org/10.1126/science.1117679] [PMID: 16254181]
[172]
Dai, C.; Heemers, H.; Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med., 2017, 7(9), 7.
[http://dx.doi.org/10.1101/cshperspect.a030452] [PMID: 28389515]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy