Review Article

硒化氨基脲金属配合物作为潜在的金属基药物

卷 30, 期 5, 2023

发表于: 26 January, 2022

页: [558 - 572] 页: 15

弟呕挨: 10.2174/0929867329666211222115035

价格: $65

Open Access Journals Promotions 2
摘要

顺铂抗癌活性的发现标志着现代无机药物化学的出现。这一研究领域涉及无机化合物在疾病治疗或诊断中的应用。特别是生物活性配体的金属配位在药物设计中得到了认可。过渡金属离子与有机药物之间的相互作用可以通过提高稳定性和/或生物利用度或通过双重或多重作用机制实现金属-药物协同作用来增强其诊断和治疗潜力。硫代氨基脲中硒的等位取代导致了硒代氨基脲的生成。这类化合物表现出许多生物活性,如抗肿瘤、抗菌、抗病毒等,在大多数情况下,与硫类似物相比,它们更明显。另一方面,虽然过渡金属络合作用对硫代氨基脲类化合物生物活性的影响已被广泛研究,但相应金属-硒代氨基脲类化合物的药理活性研究较少。在这项工作中,对硒化氨基脲金属配合物作为潜在的金属基药物的最相关的结果进行了综述。

关键词: 硒化脲,金属基药物,抗肿瘤,抗菌,抗寄生虫,金属配合物

[1]
Papp, L.V.; Holmgren, A.; Khanna, K.K. Selenium and selenoproteins in health and disease. Antioxid. Redox Signal., 2010, 12(7), 793-795.
[http://dx.doi.org/10.1089/ars.2009.2973] [PMID: 19905883]
[2]
Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life, 2016, 68(2), 97-105.
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[3]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[4]
Rocha, J.B.; Piccoli, B.C.; Oliveira, C.S. Biological and chemical interest in selenium: A brief historical account. ARKIVOC, 2016, 2017, 457-491.
[http://dx.doi.org/10.24820/ark.5550190.p009.784]
[5]
Böck, A.; Forchhammer, K.; Heider, J.; Leinfelder, W.; Sawers, G.; Veprek, B.; Zinoni, F. Selenocysteine: The 21st amino acid. Mol. Microbiol., 1991, 5(3), 515-520.
[http://dx.doi.org/10.1111/j.1365-2958.1991.tb00722.x] [PMID: 1828528]
[6]
Romero, H.; Zhang, Y.; Gladyshev, V.N.; Salinas, G. Evolution of selenium utilization traits. Genome Biol., 2005, 6(8), R66.
[http://dx.doi.org/10.1186/gb-2005-6-8-r66] [PMID: 16086848]
[7]
Jones, J.B.; Stadtman, T.C. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. J. Biol. Chem., 1981, 256(2), 656-663.
[http://dx.doi.org/10.1016/S0021-9258(19)70024-6] [PMID: 7451465]
[8]
Khangulov, S.V.; Gladyshev, V.N.; Dismukes, G.C.; Stadtman, T.C. Selenium-containing formate dehydrogenase H from Escherichia coli: A molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Biochemistry, 1998, 37(10), 3518-3528.
[http://dx.doi.org/10.1021/bi972177k] [PMID: 9521673]
[9]
Yamazaki, S. A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue. J. Biol. Chem., 1982, 257(14), 7926-7929.
[http://dx.doi.org/10.1016/S0021-9258(18)34271-6] [PMID: 6211447]
[10]
Garcin, E.; Vernede, X.; Hatchikian, E.C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J.C. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure, 1999, 7(5), 557-566.
[http://dx.doi.org/10.1016/S0969-2126(99)80072-0] [PMID: 10378275]
[11]
Lee, B.C.; Lobanov, A.V.; Marino, S.M.; Kaya, A.; Seravalli, J.; Hatfield, D.L.; Gladyshev, V.N.A. A 4-selenocysteine, 2-selenocysteine insertion sequence (SECIS) element methionine sulfoxide reductase from Metridium senile reveals a non-catalytic function of selenocysteines. J. Biol. Chem., 2011, 286(21), 18747-18755.
[http://dx.doi.org/10.1074/jbc.M111.229807] [PMID: 21393246]
[12]
Yamashita, Y.; Yamashita, M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem., 2010, 285(24), 18134-18138.
[http://dx.doi.org/10.1074/jbc.C110.106377] [PMID: 20388714]
[13]
Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev., 2013, 42(23), 8870-8894.
[http://dx.doi.org/10.1039/c3cs60272a] [PMID: 24030774]
[14]
Lacourciere, G.M. Biosynthesis of selenophosphate. Biofactors, 1999, 10(2-3), 237-244.
[http://dx.doi.org/10.1002/biof.5520100222] [PMID: 10609888]
[15]
Ehrenreich, A.; Forchhammer, K.; Tormay, P.; Veprek, B.; Böck, A. Selenoprotein synthesis in E. coli. Purification and characterisation of the enzyme catalysing selenium activation. Eur. J. Biochem., 1992, 206(3), 767-773.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16983.x] [PMID: 1606960]
[16]
Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Malevu, T.D.; Sochor, J.; Baron, M.; Melcova, M.; Zidkova, J.; Kizek, R. A summary of new findings on the biological effects of selenium in selected animal species-A critical review. Int. J. Mol. Sci., 2017, 18(10), 2209.
[http://dx.doi.org/10.3390/ijms18102209] [PMID: 29065468]
[17]
Ruberte, A.C.; Sanmartin, C.; Aydillo, C.; Sharma, A.K.; Plano, D. Development and therapeutic potential of selenazo compounds. J. Med. Chem., 2020, 63(4), 1473-1489.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01152] [PMID: 31638805]
[18]
Filipović, N.R.; Bjelogrlić, S.K.; Pelliccia, S.; Jovanović, V.B.; Kojić, M.; Senćanski, M.; La Regina, G.; Silvestri, R.; Muller, C.D.; Todorović, T.R. Selenotriapine – An isostere of the most studied thiosemicarbazone with pronounced pro-apoptotic activity, low toxicity and ability to challenge phenotype reprogramming of 3-d mammary adenocarcinoma tumors. Arab. J. Chem., 2020, 13, 1466-1489.
[http://dx.doi.org/10.1016/j.arabjc.2017.11.017]
[19]
Calcatierra, V.; López, Ó.; Fernández-Bolaños, J.G.; Plata, G.B.; Padrón, J.M. Phenolic thio- and selenosemicarbazones as multi-target drugs. Eur. J. Med. Chem., 2015, 94, 63-72.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.037] [PMID: 25752525]
[20]
Turk, S.R.; Shipman, C., Jr; Drach, J.C. Structure-activity relationships among alpha-(N)-heterocyclic acyl thiosemicarbazones and related compounds as inhibitors of herpes simplex virus type 1-specified ribonucleoside diphosphate reductase. J. Gen. Virol., 1986, 67(Pt 8), 1625-1632.
[http://dx.doi.org/10.1099/0022-1317-67-8-1625] [PMID: 3016157]
[21]
Klayman, D.L.; Scovill, J.P.; Bartosevich, J.F.; Bruce, J. 2-Acetylpyridine thiosemicarbazones. 5. 1-[1-(2-Pyridyl)ethyl]-3-thiosemicarbazides as potential antimalarial agents. J. Med. Chem., 1983, 26(1), 35-39.
[http://dx.doi.org/10.1021/jm00355a008] [PMID: 6338234]
[22]
Pizzo, C.; Faral-Tello, P.; Salinas, G.; Fló, M.; Robello, C.; Wipf, P.; Graciela Mahler, S. Selenosemicarbazones as potent cruzipain inhibitors and their antiparasitic properties against trypanosoma cruzi. MedChemComm, 2012, 3, 362.
[http://dx.doi.org/10.1039/c2md00283c]
[23]
Pizzo, C.; Faral-Tello, P.; Yaluff, G.; Serna, E.; Torres, S.; Vera, N.; Saiz, C.; Robello, C.; Mahler, G. New approach towards the synthesis of selenosemicarbazones, useful compounds for Chagas’ disease. Eur. J. Med. Chem., 2016, 109, 107-113.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.040] [PMID: 26774036]
[24]
Al-Eisawi, Z.; Stefani, C.; Jansson, P.J.; Arvind, A.; Sharpe, P.C.; Basha, M.T.; Iskander, G.M.; Kumar, N.; Kovacevic, Z.; Lane, D.J.R.; Sahni, S.; Bernhardt, P.V.; Richardson, D.R.; Kalinowski, D.S. Novel mechanism of cytotoxicity for the selective selenosemicarbazone, 2-acetylpyridine 4,4-dimethyl-3-selenosemicarbazone (Ap44mse): Lysosomal membrane permeabilization. J. Med. Chem., 2016, 59(1), 294-312.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01399] [PMID: 26645570]
[25]
Kowol, C.R.; Eichinger, R.; Jakupec, M.A.; Galanski, M.; Arion, V.B.; Keppler, B.K. Effect of metal ion complexation and chalcogen donor identity on the antiproliferative activity of 2-acetylpyridine N,N-dimethyl(chalcogen)semicarbazones. J. Inorg. Biochem., 2007, 101(11-12), 1946-1957.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.07.026] [PMID: 17825917]
[26]
Huls, R.; Renson, M. La sélénosemicarbazide et ses dérivés II. Préparation de sélénosemicarbazones et phényl-4 sélénosemicarbazones. Bull. Soc. Chim. Belg., 2010, 65, 684-695.
[http://dx.doi.org/10.1002/bscb.19560650707]
[27]
Pavon, J.M.C.; Pino, F. Comparative study of analytical properties and applications of picolinaldehyde thiosemicarbazone and selenosemicarbazone. Talanta, 1972, 19(12), 1659-1663.
[http://dx.doi.org/10.1016/0039-9140(72)80242-X] [PMID: 18961229]
[28]
Chen, Z.; Li, D.; Xu, N.; Fang, J.; Yu, Y.; Hou, W.; Ruan, H.; Zhu, P.; Ma, R.; Lu, S.; Cao, D.; Wu, R.; Ni, M.; Zhang, W.; Su, W.; Ruan, B.H. Novel 1,3,4-selenadiazole-containing kidney-type glutaminase inhibitors showed improved cellular uptake and antitumor activity. J. Med. Chem., 2019, 62(2), 589-603.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01198] [PMID: 30543285]
[29]
Koketsu, M.; Yamamura, Y.; Ishihara, H. Synthesis of selenosemicarbazides and 1,2,4-triazoles. Heterocycles, 2006, 68, 1191.
[http://dx.doi.org/10.3987/COM-06-10725]
[30]
Bippus, P.; Molter, A.; Müller, D.; Mohr, F. Cyclohexanone selenosemicarbazone: A convenient starting material for the preparation of functionalised selenosemicarbazones and their pt and pd complexes. J. Organomet. Chem., 2010, 695, 1657-1662.
[http://dx.doi.org/10.1016/j.jorganchem.2010.03.029]
[31]
Tomar, N.; Hashmi, M.A.; Hashmi, A.A. Multifunctional nanomedicine. In: Advances in Metallodrugs; Islam, Shahid-ul-Hashmi; Hashmi, A.A.; Khan, S.A., Eds.; Wiley, 2020; pp. 363-401.
[http://dx.doi.org/10.1002/9781119640868.ch12]
[32]
Yousuf, I.; Bashir, M.; Arjmand, F.; Tabassum, S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord. Chem. Rev., 2021, 445, 214104.
[http://dx.doi.org/10.1016/j.ccr.2021.214104]
[33]
Barry, N.P.E.; Sadler, P.J. 100 years of metal coordination chemistry: From alfred werner to anticancer metallodrugs. Pure Appl. Chem., 2014, 86, 1897-1910.
[http://dx.doi.org/10.1515/pac-2014-0504]
[34]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[35]
Sodhi, R.K. Metal complexes in medicine: An overview and update from drug design perspective. Cancer Ther. Oncol. Int. J., 2019, 14.
[http://dx.doi.org/10.19080/CTOIJ.2019.14.555883]
[36]
Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem, 2020, 6(1), 41-60.
[http://dx.doi.org/10.1016/j.chempr.2019.10.013] [PMID: 32864503]
[37]
Prajapati, N.P.; Patel, H.D. Novel thiosemicarbazone derivatives and their metal complexes: Recent development. Synth. Commun., 2019, 1-38.
[http://dx.doi.org/10.1080/00397911.2019.1649432]
[38]
Bonaccorso, C.; Marzo, T.; La Mendola, D. Biological applications of thiocarbohydrazones and their metal complexes: A perspective review. Pharmaceuticals (Basel), 2019, 13(1), 4.
[http://dx.doi.org/10.3390/ph13010004] [PMID: 31881715]
[39]
Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals-an overview. Coord. Chem. Rev., 2009, 253, 977-1055.
[http://dx.doi.org/10.1016/j.ccr.2008.07.004]
[40]
Pal, I.; Basuli, F.; Bhattacharya, S. Thiosemicarbazone complexes of the platinum metals. A story of variable coordination modes. J. Chem. Sci., 2002, 114, 255-268.
[http://dx.doi.org/10.1007/BF02703818]
[41]
Molter, A.; Bill, E.; Mohr, F. Synthesis, structures and reactivity of two oxidovanadium(IV) and dioxidovanadium(V) selenosemicarbazonato complexes. Inorg. Chem. Commun., 2012, 17, 124-127.
[http://dx.doi.org/10.1016/j.inoche.2011.12.031]
[42]
Molter, A.; Mohr, F. Synthesis, structures and reactivity of some mono- and dinuclear palladium(ii) and platinum(ii) complexes containing 2-pyridyl functionalised selenosemicarbazones. Polyhedron, 2016, 120, 118-123.
[http://dx.doi.org/10.1016/j.poly.2016.07.016]
[43]
Molter, A.; Mohr, F. Indium(III), antimony(III) and bismuth(III) dihalide complexes with tridentate, anionic thio- and selenosemicarbazonato ligands. Dalton Trans., 2011, 40(14), 3754-3758.
[http://dx.doi.org/10.1039/c0dt01693d] [PMID: 21380464]
[44]
Todorović, T.R.; Bacchi, A.; Juranić, N.O.; Sladić, D.M.; Pelizzi, G.; Božić, T.T.; Filipović, N.R.; Anđelković, K.K. Synthesis and characterization of novel Cd(II), Zn(II) and Ni(II) Complexes with 2-quinolinecarboxaldehyde selenosemicarbazone. Crystal structure of Bis(2-quinolinecarboxaldehyde selenosemicarbazonato)nickel(II). Polyhedron, 2007, 26, 3428-3436.
[http://dx.doi.org/10.1016/j.poly.2007.03.023]
[45]
Dekanski, D.; Todorovic, T.; Mitic, D.; Filipovic, N.; Polovic, N.; Andjelkovic, K. High antioxidative potential and low toxic effects of selenosemicarbazone metal complexes. J. Serb. Chem. Soc., 2013, 78, 1503-1512.
[http://dx.doi.org/10.2298/JSC130315035D]
[46]
Todorović, T.R.; Vukašinović, J.; Portalone, G.; Suleiman, S.; Gligorijević, N.; Bjelogrlić, S.; Jovanović, K.; Radulović, S.; Anđelković, K.; Cassar, A.; Filipović, N.R.; Schembri-Wismayer, P. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. MedChemComm, 2016, 8(1), 103-111.
[http://dx.doi.org/10.1039/C6MD00501B] [PMID: 30108695]
[47]
Bjelogrlić, S.; Todorović, T.; Bacchi, A.; Zec, M.; Sladić, D.; Srdić-Rajić, T.; Radanović, D.; Radulović, S.; Pelizzi, G.; Andelković, K. Synthesis, structure and characterization of novel Cd(II) and Zn(II) complexes with the condensation product of 2-formylpyridine and selenosemicarbazide Antiproliferative activity of the synthesized complexes and related selenosemicarbazone complexes. J. Inorg. Biochem., 2010, 104(6), 673-682.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.02.009] [PMID: 20356629]
[48]
Filipović, N.; Polović, N.; Rašković, B.; Misirlić-Denčić, S.; Dulović, M.; Savić, M.; Nikšić, M.; Mitić, D.; Anđelković, K.; Todorović, T. Biological activity of two isomeric n-heteroaromatic selenosemicarbazones and their metal complexes. Monatshefte für chem. - chem. mon., 2014, 145, 1089-1099.
[http://dx.doi.org/10.1007/s00706-014-1197-6]
[49]
Filipović, N.R.; Bjelogrlić, S.; Marinković, A.; Verbić, T.Ž.; Cvijetić, I.N.; Senćanski, M.; Rodić, M.; Vujčić, M.; Sladić, D.; Striković, Z.; Todorović, T.R.; Muller, C.D. Zn(II) complex with 2-quinolinecarboxaldehyde selenosemicarbazone: synthesis, structure, interaction studies with dna/hsa, molecular docking and caspase-8 and -9 independent apoptose induction. RSC Advances, 2015, 5, 95191-95211.
[http://dx.doi.org/10.1039/C5RA19849F]
[50]
Filipović, N.R.; Bjelogrlić, S.; Portalone, G.; Pelliccia, S.; Silvestri, R.; Klisurić, O.; Senćanski, M.; Stanković, D.; Todorović, T.R.; Muller, C.D. Pro-apoptotic and pro-differentiation induction by 8-quinolinecarboxaldehyde selenosemicarbazone and its Co(III) complex in human cancer cell lines. MedChemComm, 2016, 7, 1604-1616.
[http://dx.doi.org/10.1039/C6MD00199H]
[51]
Gligorijević, N.; Todorović, T.; Radulović, S.; Sladić, D.; Filipović, N.; Gođevac, D.; Jeremić, D.; Andelković, K. Synthesis and characterization of new Pt(II) and Pd(II) complexes with 2-quinolinecarboxaldehyde selenosemicarbazone: cytotoxic activity evaluation of Cd(II), Zn(II), Ni(II), Pt(II) and Pd(II) complexes with heteroaromatic selenosemicarbazones. Eur. J. Med. Chem., 2009, 44(4), 1623-1629.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.033] [PMID: 18789831]
[52]
Molter, A.; Kaluđerović, G.N.; Kommera, H.; Paschke, R.; Langer, T.; Pöttgen, R.; Mohr, F. Synthesis, structures, 119sn mössbauer spectroscopic studies and biological activity of some tin(iv) complexes containing pyridyl functionalised selenosemicarbazonato ligands. J. Organomet. Chem., 2012, 701, 80-86.
[http://dx.doi.org/10.1016/j.jorganchem.2011.12.027]
[53]
Enyedy, É.A.; May, N.V.; Pape, V.F.S.; Heffeter, P.; Szakács, G.; Keppler, B.K.; Kowol, C.R. Complex formation and cytotoxicity of Triapine derivatives: A comparative solution study on the effect of the chalcogen atom and NH-methylation. Dalton Trans., 2020, 49(46), 16887-16902.
[http://dx.doi.org/10.1039/D0DT03465G] [PMID: 33185224]
[54]
Zec, M.; Srdic-Rajic, T.; Krivokuca, A.; Jankovic, R.; Todorovic, T.; Andelkovic, K.; Radulovic, S. Novel selenosemicarbazone metal complexes exert anti-tumor effect via alternative, caspase-independent necroptotic cell death. Med. Chem., 2014, 10(8), 759-771.
[http://dx.doi.org/10.2174/1573406410666140327122009] [PMID: 24678785]
[55]
Al-Harbi, S.A.; Al-Saidi, H.M.; Debbabi, K.F.; Allehyani, E.S.; Alqorashi, A.A.; Emara, A.A.A. Design and anti-tumor evaluation of new platinum(ii) and copper(ii) complexes of nitrogen compounds containing selenium moieties. J. Saudi Chem. Soc., 2020, 24, 982-995.
[http://dx.doi.org/10.1016/j.jscs.2020.10.006]
[56]
Srdić-Rajić, T.; Zec, M.; Todorović, T.; Anđelković, K.; Radulović, S. Non-substituted N-heteroaromatic selenosemicarbazone metal complexes induce apoptosis in cancer cells via activation of mitochondrial pathway. Eur. J. Med. Chem., 2011, 46(9), 3734-3747.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.039] [PMID: 21641698]
[57]
Zec, M.; Srdic-Rajic, T.; Konic-Ristic, A.; Todorovic, T.; Andjelkovic, K.; Filipovic-Ljeskovic, I.; Radulovic, S. Anti-metastatic and anti-angiogenic properties of potential new anti-cancer drugs based on metal complexes of selenosemicarbazones. Anticancer. Agents Med. Chem., 2012, 12(9), 1071-1080.
[http://dx.doi.org/10.2174/187152012803529682] [PMID: 22583413]
[58]
Perez-Rebolledo, A.; Ayala, J.D.; de Lima, G.M.; Marchini, N.; Bombieri, G.; Zani, C.L.; Souza-Fagundes, E.M.; Beraldo, H. Structural studies and cytotoxic activity of N(4)-phenyl-2-benzoylpyridine thiosemicarbazone Sn(IV) complexes. Eur. J. Med. Chem., 2005, 40(5), 467-472.
[http://dx.doi.org/10.1016/j.ejmech.2005.01.006] [PMID: 15893020]
[59]
Castle, T.C.; Maurer, R.I.; Sowrey, F.E.; Went, M.J.; Reynolds, C.A.; McInnes, E.J.L.; Blower, P.J. Hypoxia-targeting copper bis(selenosemicarbazone) complexes: Comparison with their sulfur analogues. J. Am. Chem. Soc., 2003, 125(33), 10040-10049.
[http://dx.doi.org/10.1021/ja035737d] [PMID: 12914467]
[60]
Todorović, T.R.; Bacchi, A.; Sladić, D.M.; Todorović, N.M.; Božić, T.T.; Radanović, D.D.; Filipović, N.R.; Pelizzi, G.; Anđelković, K.K. Synthesis, characterization and biological activity evaluation of Pt(II), Pd(II), Co(III) and Ni(II) complexes with n-heteroaromatic selenosemicarbazones. Inorg. Chim. Acta, 2009, 362, 3813-3820.
[http://dx.doi.org/10.1016/j.ica.2009.04.047]
[61]
Revenko, M.D.; Prisacari, V.I.; Dizdari, A.V.; Stratulat, E.F.; Corja, I.D.; Proca, L.M. Synthesis, antibacterial, and antifungal activities of 8-quinolinealdehyde chalcogensemicarbazones and their copper(II) complexes. Pharm. Chem. J., 2011, 45, 351-354.
[http://dx.doi.org/10.1007/s11094-011-0631-x]
[62]
Mawat, T.H.; Al-Jeboori, M.J. Synthesis, characterisation, thermal properties and biological activity of coordination compounds of novel selenosemicarbazone ligands. J. Mol. Struct., 2020, 1208, 127876.
[http://dx.doi.org/10.1016/j.molstruc.2020.127876]
[63]
Molter, A.; Rust, J.; Lehmann, C.W.; Deepa, G.; Chiba, P.; Mohr, F. Synthesis, structures and anti-malaria activity of some gold(I) phosphine complexes containing seleno- and thiosemicarbazonato ligands. Dalton Trans., 2011, 40(38), 9810-9820.
[http://dx.doi.org/10.1039/c1dt10885a] [PMID: 21879088]
[64]
McQuade, P.; Martin, K.E.; Castle, T.C.; Went, M.J.; Blower, P.J.; Welch, M.J.; Lewis, J.S. Investigation into 64Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents. Nucl. Med. Biol., 2005, 32(2), 147-156.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.10.004] [PMID: 15721760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy