Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Effects of Melatonin and Doxorubicin on Primary Tumor And Metastasis in Breast Cancer Model

Author(s): Gamze Tanriover*, Sayra Dilmac, Gunes Aytac, Ammad Ahmad Farooqi and Muzaffer Sindel

Volume 22, Issue 10, 2022

Published on: 12 January, 2022

Page: [1970 - 1983] Pages: 14

DOI: 10.2174/1871520621666211213094258

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Melatonin exerts oncostatic effects on breast cancer via immunomodulation and antioxidation. Doxorubicin is an effective chemotherapeutic agent, but parallel studies also provide ample evidence of an off-target effect of Doxorubicin in breast cancer patients.

Objective: Combinatorial use of doxorubicin and melatonin has not been comprehensively analyzed in breast cancer models. We hypothesized that the anti-oxidative, anti-proliferative and anti-inflammatory effects of melatonin could ameliorate the off-target effects of doxorubicin in breast cancer patients and enhance the anti-tumoral effects of doxorubicin. The goal of the study is to test this hypothesis in cancer cell lines and xenografted mice.

Methods: The effects of Melatonin and doxorubicin on the cell viability were evaluated in 4T1-Brain Metastatic Tumor (4TBM). Furthermore, the effects of melatonin and doxorubicin on the primary tumors and systemic metastasis were evaluated in the xenografted mice. Lung and liver tissues were removed and metastasis analyses were performed. The levels of p65, phospho-STAT3, CD11b+, GR1+, Ki67, and cleaved caspase-3 proteins were determined with immunohistochemistry and western blot analysis. We examined the effects of melatonin and Melatonin+Doxorubicin combination therapy on 4TBM cells.

Results: Our results showed that doxorubicin inhibited the proliferation of metastatic breast cancer cells while melatonin did not affect cells. Tumor growth and metastasis were markedly suppressed in melatonin alone and in combination with doxorubicin. The expression of CD11b+ and GR1+ proteins, which are indicators of myeloid-derived suppressor cells (MDSCs), were noted to be reduced in both primary tumor and metastatic tissues in melatonin and doxorubicin groups.

Conclusion: The combination of melatonin with doxorubicin reduced primary tumor growth and distant metastasis. Based on these results, melatonin is a promising candidate for combinatory use with conventional chemotherapeutics for breast cancer treatment.

Keywords: Breast cancer, melatonin, doxorubicin, metastasis, MDSC, angiogenesis.

Graphical Abstract
[1]
Howlader, N.; Noone, A.; Krapcho, M. SEER Cancer Statistics Review, 2019.Available from: . seer.cancer.gov/csr/1975_2016/
[2]
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers, 2019, 5(1), 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[3]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl.), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[4]
Block, K.I. Weil, A Life over cancer: The block center program for integrative cancer treatment; Bantam Dell, 2009.
[5]
Blask, D.E.; Sauer, L.A.; Dauchy, R.T. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr. Top. Med. Chem., 2002, 2(2), 113-132.
[http://dx.doi.org/10.2174/1568026023394407] [PMID: 11899096]
[6]
Bondy, S.C.; Campbell, A. Mechanisms underlying tumor suppressive properties of melatonin. Int. J. Mol. Sci., 2018, 19(8),E2205.
[http://dx.doi.org/10.3390/ijms19082205] [PMID: 30060531]
[7]
Borin, T.F.; Arbab, A.S.; Gelaleti, G.B.; Ferreira, L.C.; Moschetta, M.G.; Jardim-Perassi, B.V.; Iskander, A.S.; Varma, N.R.; Shankar, A.; Coimbra, V.B.; Fabri, V.A.; de Oliveira, J.G.; Zuccari, D.A. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res., 2016, 60(1), 3-15.
[http://dx.doi.org/10.1111/jpi.12270] [PMID: 26292662]
[8]
Codenotti, S.; Battistelli, M.; Burattini, S.; Salucci, S.; Falcieri, E.; Rezzani, R.; Faggi, F.; Colombi, M.; Monti, E.; Fanzani, A. Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncol. Rep., 2015, 34(1), 279-287.
[http://dx.doi.org/10.3892/or.2015.3987] [PMID: 25998836]
[9]
Hill, S.M.; Belancio, V.P.; Dauchy, R.T.; Xiang, S.; Brimer, S.; Mao, L.; Hauch, A.; Lundberg, P.W.; Summers, W.; Yuan, L.; Frasch, T.; Blask, D.E. Melatonin: An inhibitor of breast cancer. Endocr. Relat. Cancer, 2015, 22(3), R183-R204.
[http://dx.doi.org/10.1530/ERC-15-0030] [PMID: 25876649]
[10]
Mao, L.; Summers, W.; Xiang, S.; Yuan, L.; Dauchy, RT.; Reynolds, A.; Wren-Dail, M.A.; Pointer, D.; Frasch, TA.; Blask, D.E.; Hill, S.M. Melatonin represses metastasis in Her2-postive human breast cancer cells by suppressing RSK2 expression. Mol. Cancer Res., 2016, 14(11), 1159-1169.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0158]
[11]
Fang, Z.; Jung, K.H.; Yan, H.H.; Kim, S.J.; Rumman, M.; Park, J.H.; Han, B.; Lee, J.E.; Kang, Y.W.; Lim, J.H.; Hong, S.S. Melatonin synergizes with sorafenib to suppress pancreatic cancer via melatonin receptor and PDGFR-β/STAT3 pathway. Cell. Physiol. Biochem., 2018, 47(5), 1751-1768.
[http://dx.doi.org/10.1159/000491058] [PMID: 29953970]
[12]
Lissoni, P.; Barni, S.; Meregalli, S.; Fossati, V.; Cazzaniga, M.; Esposti, D.; Tancini, G. Modulation of cancer endocrine therapy by melatonin: A phase II study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone. Br. J. Cancer, 1995, 71(4), 854-856.
[http://dx.doi.org/10.1038/bjc.1995.164] [PMID: 7710954]
[13]
Messina, G.; Lissoni, P.; Marchiori, P.; Bartolacelli, E.; Brivio, F.; Magotti, L. Enhancement of the efficacy of cancer chemotherapy by the pineal hormone melatonin and its relation with the psychospiritual status of cancer patients. J. Res. Med. Sci., 2010, 15(4), 225-228.
[PMID: 21526086]
[14]
Jardim-Perassi, B.V.; Arbab, A.S.; Ferreira, L.C.; Borin, T.F.; Varma, N.R.; Iskander, A.S.; Shankar, A.; Ali, M.M.; de Campos Zuccari, D.A. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One, 2014, 9(1),e85311.
[http://dx.doi.org/10.1371/journal.pone.0085311] [PMID: 24416386]
[15]
Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int. J. Mol. Sci., 2017, 18(4),E843.
[http://dx.doi.org/10.3390/ijms18040843] [PMID: 28420185]
[16]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[17]
Govender, J.; Loos, B.; Marais, E.; Engelbrecht, A.M. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: A review of the protective role of melatonin. J. Pineal Res., 2014, 57(4), 367-380.
[http://dx.doi.org/10.1111/jpi.12176]
[18]
Fic, M.; Podhorska-Okolow, M.; Dziegiel, P.; Gebarowska, E.; Wysocka, T.; Drag-Zalesinska, M. Effect of melatonin on cytotoxicity of doxorubicin toward selected cell lines (human keratinocytes, lung cancer cell line A-549, laryngeal cancer cell line Hep-2). In Vivo, 2007, 21(3), 513-518.
[PMID: 17591362]
[19]
Xiang, S.; Dauchy, R.T.; Hauch, A.; Mao, L.; Yuan, L.; Wren, M.A. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J. Pineal Res., 2015, 59(1), 60-69.
[20]
Balli, E.; Mete, U.O.; Tuli, A.; Tap, O.; Kaya, M. Effect of melatonin on the cardiotoxicity of doxorubicin. Histol. Histopathol., 2004, 19(4), 1101-1108.
[http://dx.doi.org/10.14670/HH-19.1101] [PMID: 15375752]
[21]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[22]
Almand, B.; Resser, J.R.; Lindman, B.; Nadaf, S.; Clark, J.I.; Kwon, E.D.; Carbone, D.P.; Gabrilovich, D.I. Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res., 2000, 6(5), 1755-1766.
[PMID: 10815894]
[23]
Tanriover, G.; Aytac, G. Mutualistic effects of the myeloid-derived suppressor cells and cancer stem cells in the tumor microenvironment. Crit. Rev. Oncog., 2019, 24(1), 61-67.
[http://dx.doi.org/10.1615/CritRevOncog.2018029436] [PMID: 31679221]
[24]
Park, S.I.; Lee, C.; Sadler, W.D.; Koh, A.J.; Jones, J.; Seo, J.W. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res., 2013, 73(22), 6574-6583.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4692] [PMID: 24072746]
[25]
Yan, H.H.; Pickup, M.; Pang, Y.; Gorska, A.E.; Li, Z.; Chytil, A.; Geng, Y.; Gray, J.W.; Moses, H.L.; Yang, L. Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res., 2010, 70(15), 6139-6149.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0706] [PMID: 20631080]
[26]
Sainz, R.M.; Mayo, J.C.; Rodriguez, C.; Tan, D.X.; Lopez-Burillo, S.; Reiter, R.J. Melatonin and cell death: Differential actions on apoptosis in normal and cancer cells. Cell. Mol. Life Sci., 2003, 60(7), 1407-1426.
[http://dx.doi.org/10.1007/s00018-003-2319-1] [PMID: 12943228]
[27]
Anisimov, V.N.; Egormin, P.A.; Piskunova, T.S.; Popovich, I.G.; Tyndyk, M.L.; Yurova, M.N.; Zabezhinski, M.A.; Anikin, I.V.; Karkach, A.S.; Romanyukha, A.A. Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle, 2010, 9(1), 188-197.
[http://dx.doi.org/10.4161/cc.9.1.10407] [PMID: 20016287]
[28]
Baghban Rahimi, S.; Mohebbi, A.; Vakilzadeh, G.; Biglari, P.; Razeghi Jahromi, S.; Mohebi, S.R.; Shirian, S.; Gorji, A.; Ghaemi, A. Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells. Arch. Virol., 2018, 163(3), 587-597.
[http://dx.doi.org/10.1007/s00705-017-3647-z] [PMID: 29149434]
[29]
Sánchez, A.; Calpena, A.C.; Clares, B. Evaluating the oxidative stress in inflammation: Role of melatonin. Int. J. Mol. Sci., 2015, 16(8), 16981-17004.
[http://dx.doi.org/10.3390/ijms160816981] [PMID: 26225957]
[30]
León, J.; Casado, J.; Jiménez Ruiz, S.M.; Zurita, M.S.; González-Puga, C.; Rejón, J.D.; Gila, A.; Muñoz de Rueda, P.; Pavón, E.J.; Reiter, R.J.; Ruiz-Extremera, A.; Salmerón, J. Melatonin reduces endothelin-1 expression and secretion in colon cancer cells through the inactivation of FoxO-1 and NF-κβ. J. Pineal Res., 2014, 56(4), 415-426.
[http://dx.doi.org/10.1111/jpi.12131] [PMID: 24628039]
[31]
Dai, M.; Cui, P.; Yu, M.; Han, J.; Li, H.; Xiu, R. Melatonin modulates the expression of VEGF and HIF-1 alpha induced by CoCl2 in cultured cancer cells. J. Pineal Res., 2008, 44(2), 121-126.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00498.x] [PMID: 18289162]
[32]
Garcia-Mauriño, S.; Gonzalez-Haba, M.G.; Calvo, J.R.; Rafii-El-Idrissi, M.; Sanchez-Margalet, V.; Goberna, R.; Guerrero, J.M. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: A possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J. Immunol., 1997, 159(2), 574-581.
[PMID: 9218571]
[33]
Haddadi, G.H.; Fardid, R. Oral administration of melatonin modulates the expression of tumor necrosis factor-α (TNF-α) gene in irradiated rat cervical spinal cord. Rep. Pract. Oncol. Radiother., 2015, 20(2), 123-127.
[http://dx.doi.org/10.1016/j.rpor.2014.11.003] [PMID: 25859403]
[34]
González, A.; Alonso-González, C.; González-González, A.; Menéndez-Menéndez, J.; Cos, S.; Martínez-Campa, C. Melatonin as an adjuvant to antiangiogenic cancer treatments. Cancers (Basel), 2021, 13(13), 3263.
[http://dx.doi.org/10.3390/cancers13133263] [PMID: 34209857]
[35]
Yang, A.; Peng, F.; Zhu, L.; Li, X.; Ou, S.; Huang, Z.; Wu, S.; Peng, C.; Liu, P.; Kong, Y. Melatonin inhibits triple-negative breast cancer progression through the Lnc049808-FUNDC1 pathway. Cell Death Dis., 2021, 12(8), 712.
[http://dx.doi.org/10.1038/s41419-021-04006-x] [PMID: 34272359]
[36]
Jarnicki, A.; Putoczki, T.; Ernst, M. Stat3: Linking inflammation to epithelial cancer - more than a “gut” feeling? Cell Div., 2010, 5, 14.
[http://dx.doi.org/10.1186/1747-1028-5-14] [PMID: 20478049]
[37]
Huang, Q.; Li, F.; Liu, X.; Li, W.; Shi, W.; Liu, F.F.; O’Sullivan, B.; He, Z.; Peng, Y.; Tan, A.C.; Zhou, L.; Shen, J.; Han, G.; Wang, X.J.; Thorburn, J.; Thorburn, A.; Jimeno, A.; Raben, D.; Bedford, J.S.; Li, C.Y. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med., 2011, 17(7), 860-866.
[http://dx.doi.org/10.1038/nm.2385] [PMID: 21725296]
[38]
Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol., 1984, 133(4), 1710-1715.
[PMID: 6206131]
[39]
Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell. Physiol., 2000, 182(3), 311-322.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200003)182:3<311:AID-JCP1>3.0.CO;2-9] [PMID: 10653597]
[40]
Karadas, A.K.; Dilmac, S.; Aytac, G.; Tanriover, G. Melatonin decreases metastasis, primary tumor growth and angiogenesis in a mice model of breast cancer. Hum. Exp. Toxicol., 2021, 40(9), 1545-1557.
[http://dx.doi.org/10.1177/09603271211002883] [PMID: 33754875]
[41]
Kale, Ş.; Korcum, A.F.; Dündar, E.; Erin, N. HSP90 inhibitor PU-H71 increases radiosensitivity of breast cancer cells metastasized to visceral organs and alters the levels of inflammatory mediators. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(2), 253-262.
[http://dx.doi.org/10.1007/s00210-019-01725-z] [PMID: 31522240]
[42]
Nizam, E.; Erin, N. Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; Effects independent of Substance P. Biomed. Pharmacother., 2018, 108, 263-270.
[http://dx.doi.org/10.1016/j.biopha.2018.09.013] [PMID: 30223097]
[43]
Aslakson, C.J.; Miller, F.R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res., 1992, 52(6), 1399-1405.
[PMID: 1540948]
[44]
Erin, N.; Korcum, A.F.; Tanrıöver, G.; Kale, Ş.; Demir, N.; Köksoy, S. Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain Behav. Immun., 2015, 48, 174-185.
[http://dx.doi.org/10.1016/j.bbi.2015.02.024] [PMID: 25736062]
[45]
Erin, N.; Wang, N.; Xin, P.; Bui, V.; Weisz, J.; Barkan, G.A.; Zhao, W.; Shearer, D.; Clawson, G.A. Altered gene expression in breast cancer liver metastases. Int. J. Cancer, 2009, 124(7), 1503-1516.
[http://dx.doi.org/10.1002/ijc.24131] [PMID: 19117052]
[46]
Erin, N.; Kale, S.; Tanrıöver, G.; Köksoy, S.; Duymuş, O.; Korcum, A.F. Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res. Treat., 2013, 139(3), 677-689.
[http://dx.doi.org/10.1007/s10549-013-2584-0] [PMID: 23760857]
[47]
Venegas, C.; García, J.A.; Escames, G.; Ortiz, F.; López, A.; Doerrier, C.; García-Corzo, L.; López, L.C.; Reiter, R.J.; Acuña-Castroviejo, D. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J. Pineal Res., 2012, 52(2), 217-227.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00931.x] [PMID: 21884551]
[48]
Tanriover, G.; Eyinc, M.B.; Aliyev, E.; Dilmac, S.; Erin, N. Presence of S100A8/Gr1-Positive myeloid-derived suppressor cells in primary tumors and visceral organs invaded by breast carcinoma cells. Clin. Breast Cancer, 2018, 18(5), e1067-e1076.
[http://dx.doi.org/10.1016/j.clbc.2018.03.013] [PMID: 29804651]
[49]
Erin, N.; Podnos, A.; Tanriover, G.; Duymuş, Ö.; Cote, E.; Khatri, I.; Gorczynski, R.M. Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene, 2015, 34(29), 3860-3870.
[http://dx.doi.org/10.1038/onc.2014.317] [PMID: 25263452]
[50]
Hill, S.M.; Blask, D.E.; Xiang, S.; Yuan, L.; Mao, L.; Dauchy, R.T.; Dauchy, E.M.; Frasch, T.; Duplesis, T. Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J. Mammary Gland Biol. Neoplasia, 2011, 16(3), 235-245.
[http://dx.doi.org/10.1007/s10911-011-9222-4] [PMID: 21773809]
[51]
Bejarano, I.; Redondo, P.C.; Espino, J.; Rosado, J.A.; Paredes, S.D.; Barriga, C.; Reiter, R.J.; Pariente, J.A.; Rodríguez, A.B. Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J. Pineal Res., 2009, 46(4), 392-400.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00675.x] [PMID: 19552762]
[52]
Sánchez-Hidalgo, M.; Lee, M.; de la Lastra, C.A.; Guerrero, J.M.; Packham, G. Melatonin inhibits cell proliferation and induces caspase activation and apoptosis in human malignant lymphoid cell lines. J. Pineal Res., 2012, 53(4), 366-373.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01006.x] [PMID: 22582944]
[53]
Alvarez-García, V.; González, A.; Alonso-González, C.; Martínez-Campa, C.; Cos, S. Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. J. Pineal Res., 2013, 54(4), 373-380.
[http://dx.doi.org/10.1111/jpi.12007] [PMID: 23013414]
[54]
Mediavilla, M.D.; Sanchez-Barcelo, E.J.; Tan, D.X.; Manchester, L.; Reiter, R.J. Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem., 2010, 17(36), 4462-4481.
[http://dx.doi.org/10.2174/092986710794183015] [PMID: 21062257]
[55]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[56]
Drews-Elger, K.; Iorns, E.; Dias, A.; Miller, P.; Ward, T.M.; Dean, S.; Clarke, J.; Campion-Flora, A.; Rodrigues, D.N.; Reis-Filho, J.S.; Rae, J.M.; Thomas, D.; Berry, D.; El-Ashry, D.; Lippman, M.E. Infiltrating S100A8+ myeloid cells promote metastatic spread of human breast cancer and predict poor clinical outcome. Breast Cancer Res. Treat., 2014, 148(1), 41-59.
[http://dx.doi.org/10.1007/s10549-014-3122-4] [PMID: 25270120]
[57]
Mauti, L.A.; Le Bitoux, M.A.; Baumer, K.; Stehle, J.C.; Golshayan, D.; Provero, P.; Stamenkovic, I. Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J. Clin. Invest., 2011, 121(7), 2794-2807.
[http://dx.doi.org/10.1172/JCI41936] [PMID: 21646719]
[58]
Song, J.; Lee, J.; Kim, J.; Jo, S.; Kim, Y.J.; Baek, J.E.; Kwon, E.S.; Lee, K.P.; Yang, S.; Kwon, K.S.; Kim, D.U.; Kang, T.H.; Park, Y.Y.; Chang, S.; Cho, H.J.; Kim, S.C.; Koh, S.S.; Kim, S. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget, 2016, 7(32), 51840-51853.
[http://dx.doi.org/10.18632/oncotarget.10123] [PMID: 27322081]
[59]
Solito, S.; Pinton, L.; Mandruzzato, S. In Brief: Myeloid-derived suppressor cells in cancer. J. Pathol., 2017, 242(1), 7-9.
[http://dx.doi.org/10.1002/path.4876] [PMID: 28097660]
[60]
Colombo, J.; Jardim-Perassi, B.V.; Ferreira, J.P.S.; Braga, C.Z.; Sonehara, N.M.; Júnior, R.P.; Moschetta, M.G.; Girol, A.P.; Zuccari, D.A.P.C. Melatonin differentially modulates NF-кB expression in breast and liver cancer cells. Anticancer. Agents Med. Chem., 2018, 18(12), 1688-1694.
[http://dx.doi.org/10.2174/1871520618666180131112304] [PMID: 29384062]
[61]
Qin, W.; Lu, W.; Li, H.; Yuan, X.; Li, B.; Zhang, Q.; Xiu, R. Melatonin inhibits IL1β-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-κB activation. J. Endocrinol., 2012, 214(2), 145-153.
[http://dx.doi.org/10.1530/JOE-12-0147] [PMID: 22619232]
[62]
Li, W.; Fan, M.; Chen, Y.; Zhao, Q.; Song, C.; Yan, Y.; Jin, Y.; Huang, Z.; Lin, C.; Wu, J. Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-Kappa B: A novel therapeutic implication for gastric cancer. Cell. Physiol. Biochem., 2015, 37(6), 2323-2338.
[http://dx.doi.org/10.1159/000438587] [PMID: 26645893]
[63]
Wang, X.; Wang, B.; Xie, J.; Hou, D.; Zhang, H.; Huang, H. Melatonin inhibits epithelial to mesenchymal transition in gastric cancer cells via attenuation of IL 1β/NF κB/MMP2/MMP9 signaling. Int. J. Mol. Med., 2018, 42(4), 2221-2228.
[http://dx.doi.org/10.3892/ijmm.2018.3788] [PMID: 30066836]
[64]
Wang, X.; Wang, B.; Zhan, W.; Kang, L.; Zhang, S.; Chen, C.; Hou, D.; You, R.; Huang, H. Melatonin inhibits lung metastasis of gastric cancer in vivo. Biomed. Pharmacother., 2019, 117,109018.
[http://dx.doi.org/10.1016/j.biopha.2019.109018] [PMID: 31176166]
[65]
Lee, H.; Herrmann, A.; Deng, J.H.; Kujawski, M.; Niu, G.; Li, Z.; Forman, S.; Jove, R.; Pardoll, D.M.; Yu, H. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell, 2009, 15(4), 283-293.
[http://dx.doi.org/10.1016/j.ccr.2009.02.015] [PMID: 19345327]
[66]
Hawthorne, V.S.; Huang, W.C.; Neal, C.L.; Tseng, L.M.; Hung, M.C.; Yu, D. ErbB2-mediated Src and signal transducer and activator of transcription 3 activation leads to transcriptional up-regulation of p21Cip1 and chemoresistance in breast cancer cells. Mol. Cancer Res., 2009, 7(4), 592-600.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0316] [PMID: 19372587]
[67]
Suh, Y.A.; Jo, S.Y.; Lee, H.Y.; Lee, C. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int. J. Oncol., 2015, 46(3), 1405-1411.
[http://dx.doi.org/10.3892/ijo.2014.2808] [PMID: 25544427]
[68]
Xiang, S.; Dauchy, R.T.; Hoffman, A.E.; Pointer, D.; Frasch, T.; Blask, D.E.; Hill, S.M. Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3-driven paclitaxel resistance in breast cancer. J. Pineal Res., 2019, 67(2),e12586.
[http://dx.doi.org/10.1111/jpi.12586] [PMID: 31077613]
[69]
Sukhorukov, G.B.; Donath, E.; Lichtenfeld, H.; Knippel, E.; Knippel, M.; Budde, A. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloid Surface A., 1998, 137(1-3), 253-266.
[http://dx.doi.org/10.1016/S0927-7757(98)00213-1]
[70]
Kudryavtseva, V.; Boi, S.; Read, J.; Guillemet, R.; Zhang, J.; Udalov, A.; Shesterikov, E.; Tverdokhlebov, S.; Pastorino, L.; Gould, D.J.; Sukhorukov, G.B. Biodegradable defined shaped printed polymer microcapsules for drug delivery. ACS Appl. Mater. Interfaces, 2021, 13(2), 2371-2381..
[http://dx.doi.org/10.1021/acsami.0c21607] [PMID: 33404209]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy