Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Trends in Tubulin-Binding Combretastatin A-4 Analogs for Anticancer Drug Development

Author(s): Suresh Paidakula, Srinivas Nerella, Shravankumar Kankala* and Ranjith Kumar Kankala*

Volume 29, Issue 21, 2022

Published on: 15 February, 2022

Page: [3748 - 3773] Pages: 26

DOI: 10.2174/0929867328666211202101641

Price: $65

Open Access Journals Promotions 2
Abstract

Although significant progress over several decades has been evidenced in cancer therapy, there remains a need for the development of novel and effective therapeutic strategies to treat several relapsed and intractable cancers. In this regard, tubulin protein has become one of the efficient and major targets for anticancer drug discovery. Considering the antimitotic ability, several tubulin inhibitors have been developed to act against various cancers. Among various tubulin inhibitors available, combretastatin-A4 (CA-4), a naturally occurring lead molecule, offers exceptional cytotoxicity (including the drugresistant cell lines) and antivascular effects. Although CA-4 offers exceptional therapeutic efficacy, several new advancements have been proposed, in terms of structural modification via A and B rings, as well as cis-olefinic bridging, which provide highly efficient analogs with improved tubulin-binding efficiency to meet the anticancer drug development requirements. This review systematically emphasizes the recent trends and latest developments in the anticancer drug design and discovery using CA-4 analogs as the tubulin inhibiting agents by highlighting their structure-activity relationships (SAR) and resultant pharmacological efficacies.

Keywords: Combretastatin A-4, anti-tubulin, antivascular, colchicine, antimitotic, structure-activity relationships (SAR).

[1]
Kankala, R.K.; Liu, C-G.; Chen, A-Z.; Wang, S-B.; Xu, P-Y.; Mende, L.K.; Liu, C-L.; Lee, C-H.; Hu, Y-F. Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors. ACS Biomater. Sci. Eng., 2017, 3(10), 2431-2442.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00569] [PMID: 33445301]
[2]
Thomas Boyle, F.F. Costello G. Cancer therapy: A move to the molecular level. Chem. Soc. Rev., 1998, 27, 251-261.
[http://dx.doi.org/10.1039/a827251z]
[3]
Gibbs, J.B. Mechanism-based target identification and drug discovery in cancer research. Science, 2000, 287(5460), 1969-1973.
[http://dx.doi.org/10.1126/science.287.5460.1969] [PMID: 10720316]
[4]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[5]
Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature, 2009, 458(7239), 719-724.
[http://dx.doi.org/10.1038/nature07943] [PMID: 19360079]
[6]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[7]
Penn, L.Z. Apoptosis modulators as cancer therapeutics. Curr. Opin. Investig. Drugs, 2001, 2(5), 684-692.
[PMID: 11569948]
[8]
Zhou, B.; Liu, Z-L. Bioantioxidants: From chemistry to biology. Pure Appl. Chem., 2005, 77, 1887-1903.
[http://dx.doi.org/10.1351/pac200577111887]
[9]
Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: A review. Biochim. Biophys. Acta, 2011, 1813, 238-259.
[10]
Andón, F.T.; Fadeel, B. Programmed cell death: Molecular mechanisms and implications for safety assessment of nanomaterials. Acc. Chem. Res., 2013, 46(3), 733-742.
[http://dx.doi.org/10.1021/ar300020b] [PMID: 22720979]
[11]
Bao, Y.; Yu, H.; Yang, L.; Chen, L. Combretastatin A4- combined photodynamic therapy for enhanced tumor therapeutic efficacy. Mater. Today Commun., 2021, 28, 102616.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102616]
[12]
Jadala, C.; Sathish, M.; Reddy, T.S.; Reddy, V.G.; Tokala, R.; Bhargava, S.K.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorg. Med. Chem., 2019, 27(15), 3285-3298.
[http://dx.doi.org/10.1016/j.bmc.2019.06.007] [PMID: 31227365]
[13]
Pellegrini, F.; Budman, D.R. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest., 2005, 23(3), 264-273.
[http://dx.doi.org/10.1081/CNV-200055970] [PMID: 15948296]
[14]
Correa, L.M.; Miller, M.G. Microtubule depolymerization in rat seminiferous epithelium is associated with diminished tyrosination of α-tubulin. Biol. Reprod., 2001, 64(6), 1644-1652.
[http://dx.doi.org/10.1095/biolreprod64.6.1644] [PMID: 11369590]
[15]
Müsch, A. Microtubule organization and function in epithelial cells. Traffic, 2004, 5(1), 1-9.
[http://dx.doi.org/10.1111/j.1600-0854.2003.00149.x] [PMID: 14675420]
[16]
Nogales, E.; Wolf, S.G.; Downing, K.H. Structure of the α β tubulin dimer by electron crystallography. Nature, 1998, 391(6663), 199-203.
[http://dx.doi.org/10.1038/34465] [PMID: 9428769]
[17]
Oakley, B.R. γ-tubulin: the microtubule organizer? Trends Cell Biol., 1992, 2(1), 1-5.
[http://dx.doi.org/10.1016/0962-8924(92)90125-7] [PMID: 14731630]
[18]
Jackson, J.R.; Patrick, D.R.; Dar, M.M.; Huang, P.S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer, 2007, 7(2), 107-117.
[http://dx.doi.org/10.1038/nrc2049] [PMID: 17251917]
[19]
Pettit, G.R.; Rhodes, M.R.; Herald, D.L.; Chaplin, D.J.; Stratford, M.R.; Hamel, E.; Pettit, R.K.; Chapuis, J.C.; Oliva, D. Antineoplastic agents 393. Synthesis of the trans-isomer of combretastatin A-4 prodrug. Anticancer Drug Des., 1998, 13(8), 981-993.
[PMID: 10335271]
[20]
Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D.H.; Bürgermeister, J.; Böhmer, F-D.; Fiebig, H-H.; Burger, A.M.; Baasner, S.; Beckers, T. Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J. Med. Chem., 2001, 44(26), 4535-4553.
[http://dx.doi.org/10.1021/jm010940+] [PMID: 11741473]
[21]
Smolarczyk, R.; Czapla, J.; Jarosz-Biej, M.; Czerwinski, K.; Cichoń, T. Vascular disrupting agents in cancer therapy. Eur. J. Pharmacol., 2021, 891, 173692.
[http://dx.doi.org/10.1016/j.ejphar.2020.173692] [PMID: 33130277]
[22]
Kode, J.; Kovvuri, J.; Nagaraju, B.; Jadhav, S.; Barkume, M.; Sen, S.; Kasinathan, N.K.; Chaudhari, P.; Mohanty, B.S.; Gour, J.; Sigalapalli, D.K.; Ganesh Kumar, C.; Pradhan, T.; Banerjee, M.; Kamal, A. Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 105, 104447.
[http://dx.doi.org/10.1016/j.bioorg.2020.104447] [PMID: 33207276]
[23]
Zhou, J.; Jin, J.; Zhang, Y.; Yin, Y.; Chen, X.; Xu, B. Synthesis and antiproliferative evaluation of novel benzoimidazole-contained oxazole-bridged analogs of combretastatin A-4. Eur. J. Med. Chem., 2013, 68, 222-232.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.006] [PMID: 23981529]
[24]
Hatanaka, T.; Fujita, K.; Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Akiyama, Y.; Tsuji, T. Novel B-ring modified combretastatin analogues: syntheses and antineoplastic activity. Bioorg. Med. Chem. Lett., 1998, 8(23), 3371-3374.
[http://dx.doi.org/10.1016/S0960-894X(98)00622-2] [PMID: 9873736]
[25]
Alloatti, D.; Giannini, G.; Cabri, W.; Lustrati, I.; Marzi, M.; Ciacci, A.; Gallo, G.; Tinti, M.O.; Marcellini, M.; Riccioni, T.; Guglielmi, M.B.; Carminati, P.; Pisano, C. Synthesis and biological activity of fluorinated combretastatin analogues. J. Med. Chem., 2008, 51(9), 2708-2721.
[http://dx.doi.org/10.1021/jm701362m] [PMID: 18396857]
[26]
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg. Med. Chem. Lett., 1998, 8(22), 3153-3158.
[http://dx.doi.org/10.1016/S0960-894X(98)00579-4] [PMID: 9873694]
[27]
Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka, T.; Morinaga, Y.; Nihei, Y.; Ohishi, K.; Suga, Y.; Akiyama, Y.; Tsuji, T. Novel combretastatin analogues effective against murine solid tumors: design and structure-activity relationships. J. Med. Chem., 1998, 41(16), 3022-3032.
[http://dx.doi.org/10.1021/jm980101w] [PMID: 9685242]
[28]
Theeramunkong, S.; Caldarelli, A.; Massarotti, A.; Aprile, S.; Caprioglio, D.; Zaninetti, R.; Teruggi, A.; Pirali, T.; Grosa, G.; Tron, G.C.; Genazzani, A.A. Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. J. Med. Chem., 2011, 54(14), 4977-4986.
[http://dx.doi.org/10.1021/jm200555r] [PMID: 21696175]
[29]
Madadi, N.R.; Penthala, N.R.; Howk, K.; Ketkar, A.; Eoff, R.L.; Borrelli, M.J.; Crooks, P.A. Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2,3-triazoles as cis-constrained analogues of combretastatin A-4. Eur. J. Med. Chem., 2015, 103, 123-132.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.041] [PMID: 26352674]
[30]
Patil, P.O.; Patil, A.G.; Rane, R.A.; Patil, P.C.; Deshmukh P.B.; Bari, S.B.; Patil, D.A.; Naphade ,S.S. Recent advancement in discovery and development of natural product combretastatin-inspired anticancer agents. Anti- Cancer Agents Med. Chem., 2015, 15, 955-969.
[31]
Banwell, M.G.; Hamel, E.; Hockless, D.C.R.; Verdier-Pinard, P.; Willis, A.C.; Wong, D.J. 4,5-Diaryl-1H-pyrrole-2-carboxylates as combretastatin A-4/lamellarin T hybrids: synthesis and evaluation as anti-mitotic and cytotoxic agents. Bioorg. Med. Chem., 2006, 14(13), 4627-4638.
[http://dx.doi.org/10.1016/j.bmc.2006.02.018] [PMID: 16510287]
[32]
Hamze, A.; Alami, M.; Provot, O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur. J. Med. Chem., 2020, 190, 112110.
[http://dx.doi.org/10.1016/j.ejmech.2020.112110] [PMID: 32061961]
[33]
Kamal, A.; Bajee, S.; Lakshma Nayak, V.; Venkata Subba Rao, A.; Nagaraju, B.; Ratna Reddy, C.; Jeevak Sopanrao, K.; Alarifi, A. Synthesis and biological evaluation of arylcinnamide linked combretastatin-A4 hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2957-2964.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.049] [PMID: 27161282]
[34]
Kamal, A.; Kumar, G.B.; Polepalli, S.; Shaik, A.B.; Reddy, V.S.; Reddy, M.K.; Reddy, ChR.; Mahesh, R.; Kapure, J.S.; Jain, N. Design and synthesis of aminostilbene-arylpropenones as tubulin polymerization inhibitors. ChemMedChem, 2014, 9(11), 2565-2579.
[http://dx.doi.org/10.1002/cmdc.201402256] [PMID: 25146959]
[35]
Kamal, A.; Mallareddy, A.; Janaki Ramaiah, M.; Pushpavalli, S.N.C.V.L.; Suresh, P.; Kishor, C.; Murty, J.N.S.R.C.; Rao, N.S.; Ghosh, S.; Addlagatta, A.; Pal-Bhadra, M. Synthesis and biological evaluation of combretastatin-amidobenzothiazole conjugates as potential anticancer agents. Eur. J. Med. Chem., 2012, 56, 166-178.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.021] [PMID: 22982122]
[36]
Bio, M.; Rajaputra, P.; Nkepang, G.; You, Y. Far-red light activatable, multifunctional prodrug for fluorescence optical imaging and combinational treatment. J. Med. Chem., 2014, 57(8), 3401-3409.
[http://dx.doi.org/10.1021/jm5000722] [PMID: 24694092]
[37]
Vilanova, C.; Torijano-Gutiérrez, S.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Alberto Marco, J. Design and synthesis of pironetin analogue/combretastatin A-4 hybrids containing a 1,2,3-triazole ring and evaluation of their cytotoxic activity. Eur. J. Med. Chem., 2014, 87, 125-130.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.053] [PMID: 25240870]
[38]
Torijano-Gutiérrez, S.; Díaz-Oltra, S.; Falomir, E.; Murga, J.; Carda, M.; Marco, J.A. Synthesis of combretastatin A-4 O-alkyl derivatives and evaluation of their cytotoxic, antiangiogenic and antitelomerase activity. Bioorg. Med. Chem., 2013, 21(23), 7267-7274.
[http://dx.doi.org/10.1016/j.bmc.2013.09.064] [PMID: 24145138]
[39]
Liu, Y-Q.; Li, X-J.; Zhao, C-Y.; Nan, X.; Tian, J.; Morris- Natschke, S.L.; Zhang, Z-J.; Yang, X-M.; Yang, L.; Li, L-H.; Zhou, X-W.; Lee, K-H. Synthesis and mechanistic studies of novel spin-labeled combretastatin derivatives as potential antineoplastic agents. Bioorg. Med. Chem., 2013, 21(5), 1248-1256.
[http://dx.doi.org/10.1016/j.bmc.2012.12.046] [PMID: 23369687]
[40]
Premalatha, S.; Ramachandran, D. Design and synthesis of 1,2,4-Thiadiazole linked combretastatin-A4 derivatives as promising anticancer agents. Chem. Data Collect., 2020, 28, 100481.
[http://dx.doi.org/10.1016/j.cdc.2020.100481]
[41]
Zhang, S.; Li, T.; Pang, W.; Wu, J.; Wu, F.; Liu, Y.; Wu, F. Synthesis, biological evaluation and molecular docking studies of Combretastatin A-4 phosphoramidates as novel anticancer prodrugs. Med. Chem. Res., 2020, 29, 2192-2202.
[http://dx.doi.org/10.1007/s00044-020-02632-2]
[42]
Huang, L.; Huang, J.; Nie, H.; Li, Y.; Song, L.; Wu, F. Design, synthesis and biological evaluation of combretastatin A-4 sulfamate derivatives as potential anti-cancer agents. RSC Medicinal Chemistry, 2021, 12(8), 1374-1380.
[http://dx.doi.org/10.1039/D0MD00372G] [PMID: 34458740]
[43]
Gagné-Boulet, M.; Fortin, S.; Lacroix, J.; Lefebvre, C-A.; Côté, M-F.; C-Gaudreault, R. Styryl-N-phenyl-N'-(2-chloroethyl)ureas and styrylphenylimidazolidin-2-ones as new potent microtubule-disrupting agents using combretastatin A-4 as model. Eur. J. Med. Chem., 2015, 100, 34-43.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.034] [PMID: 26069928]
[44]
Gerova, M.S.; Stateva, S.R.; Radonova, E.M.; Kalenderska, R.B.; Rusew, R.I.; Nikolova, R.P.; Chanev, C.D.; Shivachev, B.L.; Apostolova, M.D.; Petrov, O.I. Combretastatin A-4 analogues with benzoxazolone scaffold: Synthesis, structure and biological activity. Eur. J. Med. Chem., 2016, 120, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.012] [PMID: 27187864]
[45]
Nguyen, T.T.B.; Lomberget, T.; Tran, N.C.; Barret, R. Synthesis of (Z) isomers of benzoheterocyclic derivatives of combretastatin A-4: A comparative study of several methods. Tetrahedron, 2013, 69, 2336-2347.
[http://dx.doi.org/10.1016/j.tet.2013.01.005]
[46]
Parihar, S.; Kumar, A.; Chaturvedi, A.K.; Sachan, N.K.; Luqman, S.; Changkija, B.; Manohar, M.; Prakash, O.; Chanda, D.; Khan, F.; Chanotiya, C.S.; Shanker, K.; Dwivedi, A.; Konwar, R.; Negi, A.S. Synthesis of combretastatin A4 analogues on steroidal framework and their anti-breast cancer activity. J. Steroid Biochem. Mol. Biol., 2013, 137, 332-344.
[http://dx.doi.org/10.1016/j.jsbmb.2013.02.009] [PMID: 23459143]
[47]
Penthala, N.R.; Sonar, V.N.; Horn, J.; Leggas, M.; Yadlapalli, J.S.K.B.; Crooks, P.A. Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents. MedChemComm, 2013, 4(7), 1073-1078.
[http://dx.doi.org/10.1039/c3md00130j] [PMID: 23956835]
[48]
Nguyen, T.T.B.; Lomberget, T.; Tran, N.C.; Colomb, E.; Nachtergaele, L.; Thoret, S.; Dubois, J.; Guillaume, J.; Abdayem, R.; Haftek, M.; Barret, R. Synthesis and biological evaluation of novel heterocyclic derivatives of combretastatin A-4. Bioorg. Med. Chem. Lett., 2012, 22(23), 7227-7231.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.047] [PMID: 23063401]
[49]
Chaudhary, V.; Venghateri, J.B.; Dhaked, H.P.S.; Bhoyar, A.S.; Guchhait, S.K.; Panda, D. Novel Combretastatin-2-aminoimidazole analogues as potent tubulin assembly inhibitors: Exploration of unique pharmacophoric impact of bridging skeleton and aryl moiety. J. Med. Chem., 2016, 59(7), 3439-3451.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00101] [PMID: 26938120]
[50]
Zhou, P.; Liu, Y.; Zhou, L.; Zhu, K.; Feng, K.; Zhang, H.; Liang, Y.; Jiang, H.; Luo, C.; Liu, M.; Wang, Y. Potent antitumor activities and structure basis of the chiral β-Lactam bridged analogue of Combretastatin A-4 binding to tubulin. J. Med. Chem., 2016, 59(22), 10329-10334.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01268] [PMID: 27805821]
[51]
Kamal, A.; Srikanth, P.S.; Vishnuvardhan, M.V.P.S.; Kumar, G.B.; Suresh Babu, K.; Hussaini, S.M.A.; Kapure, J.S.; Alarifi, A. Combretastatin linked 1,3,4-oxadiazole conjugates as a Potent Tubulin Polymerization inhibitors. Bioorg. Chem., 2016, 65, 126-136.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.007] [PMID: 26943479]
[52]
Li, Y-H.; Zhang, B.; Yang, H-K.; Li, Q.; Diao, P-C.; You, W-W.; Zhao, P-L. Design, synthesis, and biological evaluation of novel alkylsulfanyl-1,2,4-triazoles as cis-restricted combretastatin A-4 analogues. Eur. J. Med. Chem., 2017, 125, 1098-1106.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.051] [PMID: 27810596]
[53]
Jung, E-K.; Leung, E.; Barker, D. Synthesis and biological activity of pyrrole analogues of combretastatin A-4. Bioorg. Med. Chem. Lett., 2016, 26(13), 3001-3005.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.026] [PMID: 27212068]
[54]
Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; Lemelle, E.; McFerrin, H.; Wang, G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem., 2014, 57(8), 3369-3381.
[http://dx.doi.org/10.1021/jm500002k] [PMID: 24669888]
[55]
Guan, Q.; Zuo, D.; Jiang, N.; Qi, H.; Zhai, Y.; Bai, Z.; Feng, D.; Yang, L.; Jiang, M.; Bao, K.; Li, C.; Wu, Y.; Zhang, W. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues. Bioorg. Med. Chem. Lett., 2015, 25(3), 631-634.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.004] [PMID: 25529737]
[56]
Guan, Q.; Yang, F.; Guo, D.; Xu, J.; Jiang, M.; Liu, C.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and biological evaluation of novel 3,4-diaryl-1,2,5-selenadiazol analogues of combretastatin A-4. Eur. J. Med. Chem., 2014, 87, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.046] [PMID: 25233100]
[57]
Muenzner, J.K.; Biersack, B.; Kalie, H.; Andronache, I.C.; Kaps, L.; Schuppan, D.; Sasse, F.; Schobert, R. Gold(I) biscarbene complexes derived from vascular-disrupting combretastatin A-4 address different targets and show antimetastatic potential. ChemMedChem, 2014, 9(6), 1195-1204.
[http://dx.doi.org/10.1002/cmdc.201400049] [PMID: 24648184]
[58]
Wang, Z.; Yang, Q.; Bai, Z.; Sun, J.; Jiang, X.; Song, H.; Wu, Y.; Zhang, W. Synthesis and biological evaluation of 2,3-diarylthiophene analogues of combretastatin A-4. MedChemComm, 2015, 6, 971-976.
[http://dx.doi.org/10.1039/C5MD00028A]
[59]
Galli, U.; Travelli, C.; Aprile, S.; Arrigoni, E.; Torretta, S.; Grosa, G.; Massarotti, A.; Sorba, G.; Canonico, P.L.; Genazzani, A.A.; Tron, G.C. Design, synthesis, and biological evaluation of combretabenzodiazepines: A novel class of anti-tubulin agents. J. Med. Chem., 2015, 58(3), 1345-1357.
[http://dx.doi.org/10.1021/jm5016389] [PMID: 25584687]
[60]
Nakamura, M.; Kajita, D.; Matsumoto, Y.; Hashimoto, Y. Design and synthesis of silicon-containing tubulin polymerization inhibitors: Replacement of the ethylene moiety of combretastatin A-4 with a silicon linker. Bioorg. Med. Chem., 2013, 21(23), 7381-7391.
[http://dx.doi.org/10.1016/j.bmc.2013.09.046] [PMID: 24139940]
[61]
Jedhe, G.S.; Paul, D.; Gonnade, R.G.; Santra, M.K.; Hamel, E.; Nguyen, T.L.; Sanjayan, G.J. Correlation of hydrogen-bonding propensity and anticancer profile of tetrazole-tethered combretastatin analogues. Bioorg. Med. Chem. Lett., 2013, 23(16), 4680-4684.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.004] [PMID: 23809851]
[62]
Assadieskandar, A.; Amini, M.; Ostad, S.N.; Riazi, G.H.; Cheraghi-Shavi, T.; Shafiei, B.; Shafiee, A. Design, synthesis, cytotoxic evaluation and tubulin inhibitory activity of 4-aryl-5-(3,4,5-trimethoxyphenyl)-2-alkylthio-1H-imidazole derivatives. Bioorg. Med. Chem., 2013, 21(10), 2703-2709.
[http://dx.doi.org/10.1016/j.bmc.2013.03.011] [PMID: 23566762]
[63]
Wang, Z.; Qi, H.; Shen, Q.; Lu, G.; Li, M.; Bao, K.; Wu, Y.; Zhang, W. 4,5-Diaryl-3H-1,2-dithiole-3-thiones and related compounds as combretastatin A-4/oltipraz hybrids: Synthesis, molecular modelling and evaluation as antiproliferative agents and inhibitors of tubulin. Eur. J. Med. Chem., 2016, 122, 520-529.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.055] [PMID: 27428395]
[64]
O’Boyle, N.M.; Greene, L.M.; Keely, N.O.; Wang, S.; Cotter, T.S.; Zisterer, D.M.; Meegan, M.J. Synthesis and biochemical activities of antiproliferative amino acid and phosphate derivatives of microtubule-disrupting β-lactam combretastatins. Eur. J. Med. Chem., 2013, 62, 705-721.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.016] [PMID: 23454513]
[65]
Das, B.C.; Tang, X-Y.; Rogler, P.; Evans, T. Design and synthesis of 3,5-disubstituted boron-containing 1,2,4-oxadiazoles as potential combretastatin A-4 (CA-4) analogs. Tetrahedron Lett., 2012, 53(31), 3947-3950.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.110] [PMID: 24039307]
[66]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Aghazadeh Tabrizi, M.; Brancale, A.; Fu, X-H.; Li, J.; Zhang, S-Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem., 2012, 55(1), 475-488.
[http://dx.doi.org/10.1021/jm2013979] [PMID: 22136312]
[67]
Kamal, A.; Viswanath, A.; Ramaiah, M.J.; Murty, J.N.S.R.C.; Sultana, F.; Ramakrishna, G.; Tamboli, J.R.; Pushpavalli, S.N.C.V.L. pal D, Kishor C, Addlagatta A, Bhadra Mp. Synthesis of tetrazole–isoxazoline hybrids as a new class of tubulin polymerization inhibitors. MedChemComm, 2012, 3, 1386-1392.
[http://dx.doi.org/10.1039/c2md20085f]
[68]
Zhang, M.; Liang, Y-R.; Li, H.; Liu, M-M.; Wang, Y. Design, synthesis, and biological evaluation of hydantoin bridged analogues of combretastatin A-4 as potential anticancer agents. Bioorg. Med. Chem., 2017, 25(24), 6623-6634.
[http://dx.doi.org/10.1016/j.bmc.2017.10.045] [PMID: 29126741]
[69]
Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[70]
Eissa, I.H.; Dahab, M.A.; Ibrahim, M.K.; Alsaif, N.A.; Alanazi, A.Z.; Eissa, S.I.; Mehany, A.B.M.; Beauchemin, A.M. Design and discovery of new antiproliferative 1,2,4- triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg. Chem., 2021, 112, 104965.
[http://dx.doi.org/10.1016/j.bioorg.2021.104965] [PMID: 34020238]
[71]
Stefański, T.; Mikstacka, R.; Kurczab, R.; Dutkiewicz, Z.; Kucińska, M.; Murias, M.; Zielińska-Przyjemska, M.; Cichocki, M.; Teubert, A.; Kaczmarek, M.; Hogendorf, A.; Sobiak, S. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur. J. Med. Chem., 2018, 144, 797-816.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.050] [PMID: 29291446]
[72]
Chernysheva, N.B.; Maksimenko, A.S.; Andreyanov, F.A.; Kislyi, V.P.; Strelenko, Y.A.; Khrustalev, V.N.; Semenova, M.N.; Semenov, V.V. Regioselective synthesis of 3,4- diaryl-5-unsubstituted isoxazoles, analogues of natural cytostatic combretastatin A4. Eur. J. Med. Chem., 2018, 146, 511-518.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.070] [PMID: 29407976]
[73]
Zhou, P.; Liang, Y.; Zhang, H.; Jiang, H.; Feng, K.; Xu, P.; Wang, J.; Wang, X.; Ding, K.; Luo, C.; Liu, M.; Wang, Y. Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. Eur. J. Med. Chem., 2018, 144, 817-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.004] [PMID: 29306206]
[74]
Kumar, B.; Sharma, P.; Gupta, V.P.; Khullar, M.; Singh, S.; Dogra, N.; Kumar, V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem., 2018, 78, 130-140.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.027] [PMID: 29554587]
[75]
Malashchuk, A.; Chernykh, A.V.; Hurmach, V.V.; Platonov, M.O.; Onopchenko, O.; Zozulya, S.; Daniliuc, C.G.; Dobrydnev, A.V.; Kondratov, I.S.; Moroz, Y.S.; Grygorenko, O.O. Synthesis, biological evaluation, and modeling studies of 1,3-disubstituted cyclobutane-containing analogs of combretastatin A4. J. Mol. Struct., 2020, 1210, 128025.
[http://dx.doi.org/10.1016/j.molstruc.2020.128025] [PMID: 32655187]
[76]
Mahal, K.; Biersack, B.; Schruefer, S.; Resch, M.; Ficner, R.; Schobert, R.; Mueller, T. Combretastatin A-4 derived 5-(1-methyl-4-phenyl-imidazol-5-yl)indoles with superior cytotoxic and anti-vascular effects on chemoresistant cancer cells and tumors. Eur. J. Med. Chem., 2016, 118, 9-20.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.045] [PMID: 27116710]
[77]
Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett., 2016, 26(18), 4527-4535.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.044] [PMID: 27515320]
[78]
Subba Rao, A.V.; Swapna, K.; Shaik, S.P.; Lakshma Nayak, V.; Srinivasa Reddy, T.; Sunkari, S.; Shaik, T.B.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg. Med. Chem., 2017, 25(3), 977-999.
[http://dx.doi.org/10.1016/j.bmc.2016.12.010] [PMID: 28034647]
[79]
Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, Q.; Bao, K.; Wu, Y.; Zhang, W. 3-(3,4,5-Trimethoxyphenylselenyl)-1H-indoles and their selenoxides as combretastatin A-4 analogs: Microwave-assisted synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 90, 184-194.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.024] [PMID: 25461319]
[80]
Yan, J.; Hu, J.; An, B.; Huang, L.; Li, X. Design, synthesis, and biological evaluation of cyclic-indole derivatives as anti-tumor agents via the inhibition of tubulin polymerization. Eur. J. Med. Chem., 2017, 125, 663-675.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.056] [PMID: 27721152]
[81]
La Regina, G.; Bai, R.; Rensen, W.M.; Di Cesare, E.; Coluccia, A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Da Pozzo, E.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M.L.; Santoni, A.; Li, J.; Miranda Cona, M.; Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J. Med. Chem., 2013, 56(1), 123-149.
[http://dx.doi.org/10.1021/jm3013097] [PMID: 23214452]
[82]
Zong, Y.; Shea, C.; Maffucci, K.; Ojima, I. Computational design and synthesis of novel fluoro-analogs of combretastatins A-4 and A-1. J. Fluor. Chem., 2017, 203, 193-199.
[http://dx.doi.org/10.1016/j.jfluchem.2017.09.007] [PMID: 29311752]
[83]
Quan, Y.P.; Cheng, L.P.; Wang, T.C.; Pang, W.; Wu, F.H.; Huang, J.W. Molecular modeling study, synthesis and biological evaluation of combretastatin A-4 analogues as anticancer agents and tubulin inhibitors. MedChemComm., 2017, 9(2), 316-327.
[http://dx.doi.org/10.1039/C7MD00416H] [PMID: 30108925]
[84]
Huang, Z.; Li, G.; Wang, X.; Xu, H.; Zhang, Y.; Gao, Q. Deciphering the origins of molecular toxicity of combretastatin A4 and its glycoconjugates: interactions with major drug transporters and their safety profiles in vitro and in vivo. MedChemComm., 2017, 8(7), 1542-1552.
[http://dx.doi.org/10.1039/C7MD00246G] [PMID: 30108866]
[85]
Barnes, N.G.; Parker, A.W.; Ahmed Mal Ullah, A.A.; Ragazzon, P.A.; Hadfield, J.A. A 2-step synthesis of Combretastatin A-4 and derivatives as potent tubulin assembly inhibitors. Bioorg. Med. Chem., 2020, 28(19), 115684.
[http://dx.doi.org/10.1016/j.bmc.2020.115684] [PMID: 32912434]
[86]
Yang, B.; Zhou, J.; Wang, F.; Hu, X-W.; Shi, Y. Pyrazoline derivatives as tubulin polymerization inhibitors with one hit for vascular endothelial growth factor receptor 2 inhibition. Bioorg. Chem., 2021, 114, 105134.
[http://dx.doi.org/10.1016/j.bioorg.2021.105134] [PMID: 34246970]
[87]
Lin, S.; Liang, Y.; Cheng, J.; Pan, F.; Wang, Y. Novel diaryl-2H-azirines: Antitumor hybrids for dual-targeting tubulin and DNA. Eur. J. Med. Chem., 2021, 214, 113256.
[http://dx.doi.org/10.1016/j.ejmech.2021.113256] [PMID: 33581556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy